コード例 #1
0
def subsample(training, target, sample):

    base_dir = get_main_dir()

    # randomly subsample the data and store the subsampling distribution
    fname = os.path.join(
        os.path.join(
            os.path.join(os.path.join(base_dir, 'input'), 'calibrations'),
            'idealised'), 'subsample_%d.npy' % (sample))

    if not os.path.isfile(fname):
        size = 7
        doys = np.unique(training['doy'])
        sub = np.unique(np.random.randint(doys[0], doys[-1] + 1, size=size))

        while len(sub) < size:

            sub = np.unique(
                np.append(
                    sub,
                    np.unique(
                        np.random.randint(doys[0],
                                          doys[-1] + 1,
                                          size=size - len(sub)))))

        ssub = np.asarray(training.loc[training['doy'].isin(sub)].index)
        """
        # there are small differences in day time hours... same sizes?
        if sample > 1:  # the first distribution is the reference size
            ref = np.load(fname.replace('%d.npy' % (sample), '1.npy'))
            diff = len(ref) - len(ssub)

            while diff > 0:  # random extra data points from any one day

                sub = np.unique(np.append(sub,
                                np.unique(np.random.randint(doys[0],
                                doys[-1] + 1, size=1))))

                ssub = np.asarray(training.loc[training['doy'].isin(sub)].index)
                diff = len(ref) - len(ssub)

            if diff < 0:  # randomly remove the excess
                rm = np.random.randint(0, len(ssub), size=abs(diff))
                ssub = np.delete(ssub, rm)
        """

        np.save(fname, ssub)

    else:
        ssub = np.load(fname)

    # now accordingly subsample input and output
    Y = target[ssub]
    X = training.iloc[ssub]
    X.reset_index(inplace=True, drop=True)

    return X, Y
コード例 #2
0
def check_X_Y(swaters):

    base_dir = get_main_dir()

    # check that the 4 week forcing file exists
    fname1 = os.path.join(
        os.path.join(
            os.path.join(os.path.join(base_dir, 'input'), 'calibrations'),
            'idealised'), 'training_x.csv')

    if not os.path.isfile(fname1):  # create file if it doesn't exist
        params = InForcings().defparams
        params.doy = random.randrange(92, 275)  # random day within GS
        InForcings().run(fname1, params, Ndays=7 * 4)

    for profile in swaters:

        # check that the output file from the reference model exists
        fname2 = os.path.join(
            os.path.join(
                os.path.join(os.path.join(base_dir, 'input'), 'calibrations'),
                'idealised'), 'training_%s_y.csv' % (profile))

        if not os.path.isfile(fname2):
            df1, __ = read_csv(fname1)

            # add the soil moisture profile to the input data
            df1['sw'], df1['Ps'] = soil_water(df1, profile)
            df1['Ps_pd'] = df1['Ps'].copy()  # pre-dawn soil water potentials
            df1['Ps_pd'].where(df1['PPFD'] <= 50., np.nan, inplace=True)

            # fixed value for the wind speed
            df1['u'] = df1['u'].iloc[0]

            # non time-sensitive: last valid value propagated until next valid
            df1.fillna(method='ffill', inplace=True)

            __ = hrun(fname2,
                      df1,
                      len(df1.index),
                      'Farquhar',
                      models=['Medlyn'],
                      inf_gb=True)

    return
コード例 #3
0
def prep_training_N_target(profile, sub=None):

    base_dir = get_main_dir()

    # path to input data
    fname = os.path.join(
        os.path.join(
            os.path.join(os.path.join(base_dir, 'input'), 'calibrations'),
            'idealised'), 'training_x.csv')
    df1, __ = read_csv(fname)

    # path to output data from the reference model
    fname = os.path.join(
        os.path.join(
            os.path.join(os.path.join(base_dir, 'input'), 'calibrations'),
            'idealised'), 'training_%s_y.csv' % (profile))
    df2, __ = read_csv(fname)

    # add the soil moisture profile to the input data
    df1['sw'], df1['Ps'] = soil_water(df1, profile)
    df1['Ps_pd'] = df1['Ps'].copy()  # daily pre-dawn soil water potentials
    df1['Ps_pd'].where(df1['PPFD'] <= 50., np.nan, inplace=True)

    # fix the wind speed
    df1['u'] = df1['u'].iloc[0]

    # non time-sensitive: last valid value propagated until next valid
    df1.fillna(method='ffill', inplace=True)

    # drop everything below min threshold for photosynthesis and reindex
    Y = np.asarray(df2['gs(std)'][df1['PPFD'] > 50.]) * 1000.  # mmol m-2 s-1
    X = df1[df1['PPFD'] > 50.]
    X.reset_index(inplace=True, drop=True)

    # add Rnet to the input (no ET or soil albedo feedbacks, this can be done)
    X['Rnet'] = net_radiation(X)
    X['scale2can'] = 1.

    if sub is not None:  # randomly subsample one week out of the data
        X, Y = subsample(X, Y, sub)

    return X, Y
コード例 #4
0
    def __init__(self, method='powell', store=None, inf_gb=True):

        # fitting method
        self.method = method  # which solver is used

        # MCMC-specific
        self.steps = 15000
        self.nchains = 4
        self.burn = 1000
        self.thin = 2

        if store is None:  # default storing path for the outputs
            self.base_dir = get_main_dir()  # working paths
            self.opath = os.path.join(os.path.join(self.base_dir, 'output'),
                                      'calibrations')

        else:  # user defined storing path for the outputs
            self.opath = store

        self.inf_gb = inf_gb  # whether to calculate gb or not
def main(fname1,
         fname2,
         fname3,
         calibs='both',
         orientation='both',
         colours=None):

    base_dir = get_main_dir()
    dirname = os.path.join(
        os.path.join(os.path.join(base_dir, 'output'), 'calibrations'),
        'idealised')

    # load in the data
    df1 = (pd.read_csv(os.path.join(dirname, fname1), header=[0]).dropna(
        axis=0, how='all').dropna(axis=1, how='all').squeeze())
    df2 = (pd.read_csv(os.path.join(dirname, fname2), header=[0]).dropna(
        axis=0, how='all').dropna(axis=1, how='all').squeeze())
    df3 = (pd.read_csv(os.path.join(dirname, fname3), header=[0]).dropna(
        axis=0, how='all').dropna(axis=1, how='all').squeeze())

    if orientation == 'both':

        for orientation in ['landscape', 'portrait']:

            plt_setup(calibs, orientation, colours=colours)  # rendering
            calib_info_plot(df1.copy(),
                            df2.copy(),
                            df3.copy(),
                            calibs=calibs,
                            orientation=orientation)

        solver_info_plot(df1)

    else:
        plt_setup(calibs, orientation, colours=colours)  # rendering
        solver_info_plot(df1.copy())
        calib_info_plot(df1, df2, df3, calibs=calibs, orientation=orientation)

    return
def build_calibrated_forcing(training):

    base_dir = get_main_dir()  # working paths

    # forcing file used to calibrate the models
    fname = os.path.join(os.path.join(os.path.join(os.path.join(base_dir,
                         'input'), 'calibrations'), 'obs_driven'),
                         '%s_x.csv' % (training))
    df1, columns = read_csv(fname)

    # file containing the best calibrated params
    fname = os.path.join(os.path.join(os.path.join(os.path.join(base_dir,
                         'output'), 'calibrations'), 'obs_driven'),
                         'best_fit.csv')
    df2 = (pd.read_csv(fname, header=[0]).dropna(axis=0, how='all')
             .dropna(axis=1, how='all').squeeze())
    df2 = df2[df2['training'] == training]

    # attribute the first (and second and third) parameter(s)
    for i in df2.index:

        df1.loc[0, df2.loc[i, 'p1']] = df2.loc[i, 'v1']

        if not pd.isnull(df2.loc[i, 'v2']):
            df1.loc[0, df2.loc[i, 'p2']] = df2.loc[i, 'v2']

        if not pd.isnull(df2.loc[i, 'v3']):
            df1.loc[0, df2.loc[i, 'p3']] = df2.loc[i, 'v3']

    # save the forcing file containing the calibrated params
    df1.columns = columns  # original columns
    df1.drop([('Tleaf', '[deg C]')], axis=1, inplace=True)  # drop Tleaf
    df1.to_csv(os.path.join(os.path.join(os.path.join(os.path.join(base_dir,
               'input'), 'simulations'), 'obs_driven'),
               '%s_calibrated.csv' % (training)), index=False, na_rep='',
               encoding='utf-8')

    return
コード例 #7
0
    ax.set_rgrids([0., 0.25, 0.5, 0.75], ['0', '', '', '0.75'])
    ax.set_rmax(0.75)

    # draw lines angles
    ax.set_thetagrids(np.degrees([0, -45]), [])
    ax.set_title('Reading Key:', fontsize=7., x=-1.4, y=0.05)

    fig.savefig(figname)
    plt.close()

    return


###############################################################################

base_dir = get_main_dir()
figname = os.path.join(os.path.join(os.path.join(base_dir, 'output'), 'plots'),
                       'model_sensitivities_ST_1.5.jpg')

#if not os.path.isfile(figname):
fname = os.path.join(
    os.path.join(
        os.path.join(
            os.path.join(os.path.join(base_dir, 'output'), 'simulations'),
            'idealised'), 'sensitivities'),
    'overview_of_sensitivities_1.5MPa.csv')
df = (pd.read_csv(fname,
                  header=[0]).dropna(axis=0,
                                     how='all').dropna(axis=1,
                                                       how='all').squeeze())
plot_sensitivities(df, figname)
def calib_info_plot(df1, df2, df3, calibs='wet', orientation='landscape'):

    # user-defined plot attributes
    vscale = 0.45  # scaling factor around the median
    pscale = 1.1  # positions for each model's parameters
    pspace = 0.025  # second parameter positions
    wbox = 0.9  # width of the violin plots
    vert = True
    s1 = 'left'
    s2 = 'right'

    if orientation == 'portrait':
        vert = False
        s1 = 'top'
        s2 = 'bottom'

    if calibs == 'both':  # colours for the violin plot edge lines
        c = plt.rcParams['axes.prop_cycle'].by_key()['color'][-1]
        pspace /= 2.5

    # landscape characteristics
    fs = (6., 3.)

    if orientation == 'portrait':
        fs = (3.25, 6.)

    # declare the figure and the axes
    fig, ax = plt.subplots(nrows=1, figsize=fs)

    # model order?
    models = automate_model_order(df1.copy())

    # modify and order model names across all dfs
    df1 = update_model_names(df1, models)
    df2 = update_model_names(df2, models)
    df3 = update_model_names(df3, models)

    # organise, normalise, and scale the data consistently
    df1, w, i = sorted_data(df1)
    wet1 = scaled_data(w, sc=vscale)
    inter1 = scaled_data(i, sc=vscale)

    # subset of the top 3 solvers
    df2, w, i = sorted_data(df2, norm_wet=w, norm_inter=i)
    wet2 = scaled_data(w, sc=vscale)
    inter2 = scaled_data(i, sc=vscale)

    # best params
    df3, w, i = sorted_data(df3, norm_wet=w, norm_inter=i)
    best_w = scaled_data(w, sc=vscale)
    best_i = scaled_data(i, sc=vscale)

    # param names in model order?
    params = parameter_names(w)

    # where are there 2nd params?
    all = np.array([i for i in range(len(wet1)) if np.nansum(wet1[i]) != 0.])
    isec = np.array([i for i in range(len(all)) if (all[i] % 2) != 0])
    pos = np.arange(float(len(all))) * pscale
    pos[isec] -= 8. * pspace  # second parameter position
    pos2 = pos + pspace

    if orientation == 'portrait':
        pos2 = pos - pspace

    # now that we've reworked the positions, only keep those
    wet1 = [wet1[i] for i in all]
    wet2 = [wet2[i] for i in all]
    inter1 = [inter1[i] for i in all]
    inter2 = [inter2[i] for i in all]
    best_w = [best_w[i] for i in all]
    best_i = [best_i[i] for i in all]

    # all solver data
    Npoints = 1000  # smooth violins
    bw = 0.35

    if calibs != 'inter':
        vp1 = ax.violinplot(wet1,
                            showextrema=False,
                            points=Npoints,
                            positions=pos,
                            vert=vert,
                            widths=wbox,
                            bw_method=bw)

        for vp in vp1['bodies']:

            vp.set_alpha(0.7)

    if calibs != 'wet':
        vp2 = ax.violinplot(inter1,
                            showextrema=False,
                            points=Npoints,
                            positions=pos2,
                            vert=vert,
                            widths=wbox,
                            bw_method=bw)

        for vp in vp2['bodies']:

            vp.set_alpha(0.7)

    if calibs == 'both':
        slice_vplot(vp1, s1, ec='gray')
        slice_vplot(vp2, s2, ec='gray')

    # top 3 solver data, if no substantial improvement, no plot
    bw *= 2.
    plt_wet = np.array([(np.amax(wet2[i]) - np.amin(wet2[i])) < 0.75 *
                        (np.amax(wet1[i]) - np.amin(wet1[i]))
                        for i in range(len(wet1))])
    plt_inter = np.array([(np.amax(inter2[i]) - np.amin(inter2[i])) < 0.75 *
                          (np.amax(inter1[i]) - np.amin(inter1[i]))
                          for i in range(len(inter1))])
    wet2 = [wet2[i] for i in range(len(wet2)) if plt_wet[i]]
    inter2 = [inter2[i] for i in range(len(inter2)) if plt_inter[i]]

    if calibs != 'inter':
        vp3 = ax.violinplot(wet2,
                            showextrema=False,
                            points=Npoints,
                            positions=pos[plt_wet],
                            vert=vert,
                            widths=wbox,
                            bw_method=bw)

        for vp in vp3['bodies']:

            vp.set_alpha(0.7)
            vp.set_hatch('/' * 6)

    if calibs != 'wet':
        vp4 = ax.violinplot(inter2,
                            showextrema=False,
                            points=Npoints,
                            positions=pos2[plt_inter],
                            vert=vert,
                            widths=wbox,
                            bw_method=bw)

        for vp in vp4['bodies']:

            vp.set_alpha(0.7)
            vp.set_hatch('/' * 6)

    if calibs == 'both':
        slice_vplot(vp3, s1, ec=c)
        slice_vplot(vp4, s2, ec=c)

    # best params
    if calibs == 'both':
        x = np.append(pos - wbox / 8., pos + wbox / 4. + pspace / 2.)
        y = np.append(best_w, best_i)

    elif calibs == 'wet':
        x = pos
        y = best_w

    else:
        x = pos
        y = best_i

    if orientation == 'portrait':
        y = x

        if calibs == 'both':
            x = np.append(best_i, best_w)

        elif calibs == 'wet':
            x = best_w

        else:
            x = best_i

    ax.plot(x, y, lw=0, marker='*', mec='k', zorder=9)

    # add custom legend
    if calibs == 'both':  # add custom legend
        handles = custom_legend(calibs, orientation, ec='gray')

    else:
        handles = custom_legend(calibs, orientation)

    if orientation == 'landscape':
        ax.legend(handles=handles, loc=2, bbox_to_anchor=[-0.025, 1.015])

    else:
        ax.legend(handles=handles,
                  ncol=3,
                  columnspacing=1.,
                  handlelength=1.,
                  handletextpad=0.4,
                  frameon=False,
                  loc=2,
                  bbox_to_anchor=[0., 1.03])

    # add grid and format the axes
    lpos = np.asarray([0.05, 0.5, 0.9, 1., 1.1, 2., 20.])
    mpos = np.copy(pos)
    mpos[isec - 1] += (mpos[isec] - mpos[isec - 1]) / 2.
    mpos = np.delete(mpos, isec)
    mlines = np.copy(pos) + pscale / 2.
    mlines[isec] += pspace * 2. / 3.
    mlines = np.delete(mlines, isec - 1)
    custom_grid(mlines, -(vscale**lpos), ax, orientation)

    if orientation == 'landscape':
        ax.set_yticks(-(vscale**lpos))

        if calibs == 'both':
            ax.set_xlim([np.amin(pos) - 0.5, np.amax(pos) + 0.5])

        else:
            ax.set_xlim([np.amin(pos) - 0.55, np.amax(pos) + 0.6])

        ax.set_xticks(mpos)

    else:
        ax.set_xticks(-(vscale**lpos))

        if calibs == 'both':
            ax.set_ylim([np.amin(pos) - 0.5, np.amax(pos) + 0.5])

        else:
            ax.set_ylim([np.amin(pos) - 0.6, np.amax(pos) + 0.55])

        ax.set_yticks(mpos + 0.15)

    # nicer display of the model names and normalised param values
    pvals = ['0.05', '0.5', '0.9', '', '1.1', '2', '20']
    models[models.index('WUE-LWP')] = r'WUE-$f_{\varPsi_l}$'
    models[models.index('SOX-OPT')] = r'SOX$_\mathrm{\mathsf{opt}}$'

    if orientation == 'landscape':
        ax.set_yticklabels(pvals)
        ax.set_xticklabels(models, va='top', rotation=25., size=7.)

        for i in range(len(params)):  # add param names

            t = ax.text(pos[i],
                        -(vscale**0.2),
                        params[i],
                        va='top',
                        ha='center')
            t.set_bbox(
                dict(boxstyle='round,pad=0.1', fc='w', ec='none', alpha=0.8))

        # move the y labels to the right side
        ax.yaxis.set_label_position('right')
        ax.yaxis.tick_right()
        ax.set_ylabel('Normalised parameter values')

    else:
        ax.set_xticklabels(pvals)
        ax.set_yticklabels(models, ha='left', va='top', size=7.)

        for i in range(len(params)):  # add param names

            yy = pos[i] + 0.125

            if i in [9, 14, 15, 16]:
                yy = pos[i] + 0.375

            t = ax.text(-(vscale**4.4), yy, params[i], ha='right', va='top')

            if i == 12:
                t.set_path_effects([
                    path_effects.Stroke(linewidth=0.75, foreground='w'),
                    path_effects.Normal()
                ])

        ax.tick_params(axis='y', direction='in', pad=-5.)
        plt.setp(ax.get_yticklabels(),
                 bbox=dict(boxstyle='round', fc='w', ec='none'))
        ax.set_xlabel('Normalised parameter values')

    # remove the ticks themselves
    ax.xaxis.set_tick_params(length=0.)
    ax.yaxis.set_tick_params(length=0.)

    base_dir = get_main_dir()
    opath = os.path.join(os.path.join(base_dir, 'output'), 'plots')

    fig.tight_layout()
    plt.savefig(
        os.path.join(opath, 'model_calibs_%s_%s.png' % (calibs, orientation)))
    plt.savefig(
        os.path.join(opath, 'model_calibs_%s_%s.jpg' % (calibs, orientation)))
def solver_info_plot(df):

    # declare the figure and the axes
    fig, ax = plt.subplots(figsize=(2.75, 3.))

    if 'training' not in df.columns:
        size = 30.

    else:
        size = 20.

    # solver performance info
    df = solver_performance(df)

    c = plt.rcParams['axes.prop_cycle'].by_key()['color'][-1]

    # counts plot where the points are bigger as more points overlap
    ax.scatter(df['sv'],
               df['Rank'],
               marker='o',
               c='grey',
               alpha=0.7,
               s=df['counts'] * size)

    # plot the N best data
    ax.scatter(df[df['sv'] < 3]['sv'],
               df[df['sv'] < 3]['Rank'],
               marker='o',
               c=c,
               s=df[df['sv'] < 3]['counts'] * size / 2.)

    # plot the average ranks
    ax.plot(pd.unique(df['sv']),
            df.groupby('sv')['waRank'].mean(),
            c='k',
            lw=1.5)

    # format the axes
    ax.set_xticks(np.arange(len(df['solver'].unique())) + 0.5)
    ax.set_xticklabels(df['solver'].unique(),
                       rotation=55.,
                       ha='right',
                       va='top')
    ax.xaxis.set_tick_params(length=0.)

    # replace y axis with skill arrow
    ax.get_yaxis().set_visible(False)
    ax.text(-0.125,
            0.95,
            'Low\nskill',
            va='center',
            ha='center',
            transform=ax.transAxes)
    ax.annotate('High\nskill',
                xy=(-0.125, 0.9),
                xytext=(-0.125, 0.05),
                xycoords='axes fraction',
                va='center',
                ha='center',
                arrowprops=dict(arrowstyle='<-', lw=0.75))

    for spine in ax.spines.values():  # thinner spines

        spine.set_visible(True)
        spine.set_linewidth(0.25)

    base_dir = get_main_dir()
    opath = os.path.join(os.path.join(base_dir, 'output'), 'plots')

    fig.tight_layout()
    plt.savefig(os.path.join(opath, 'solver_performance.png'))
    plt.savefig(os.path.join(opath, 'solver_performance.jpg'))

    return
コード例 #10
0
    handles, labels = ax.get_legend_handles_labels()
    ax.legend(handles[:len(mods) + 1],
              labels[:len(mods) + 1],
              bbox_to_anchor=(1.025, 1. / 3.),
              loc=3)

    fig.savefig(fname)
    plt.close()


###############################################################################

# first, activate user defined rendering options
plt_setup()

base_dir = get_main_dir()  # dir paths
ifdir = os.path.join(
    os.path.join(os.path.join(base_dir, 'input'), 'simulations'), 'idealised')
ofdir = os.path.join(
    os.path.join(os.path.join(base_dir, 'output'), 'simulations'), 'idealised')

# path to input data
fname1 = os.path.join(ifdir, 'wet_calibration.csv')
df1, __ = read_csv(fname1)

# initialise soil moisture forcings
df1['sw'] = df1['theta_sat']
df1.fillna(method='ffill', inplace=True)

# plot the atmospheric forcings
figdir = os.path.join(os.path.join(base_dir, 'output'), 'plots')
コード例 #11
0
def obs_calibs(df1, df2, figname):

    fig = plt.figure(figsize=(6.5, 8.))
    gs = fig.add_gridspec(nrows=96, ncols=16, hspace=0.3, wspace=0.2)
    ax2 = fig.add_subplot(gs[52:, 6:])  # conductance data

    ipath = os.path.join(
        os.path.join(os.path.join(get_main_dir(), 'input'), 'simulations'),
        'obs_driven')

    labels = []

    for i, what in enumerate(df1['site_spp'].unique().dropna()):

        if i < 13:
            nrow = int(i / 4) * 16
            ncol = (i % 4) * 4
            ax1 = fig.add_subplot(gs[nrow:nrow + 16, ncol:ncol + 4])

        else:
            nrow += 16
            ax1 = fig.add_subplot(gs[nrow:nrow + 16, :4])

        sub = df1.copy()[df1['site_spp'] == what]
        sub = sub.select_dtypes(exclude=['object', 'category'])
        sub = sub[sub['Pleaf'] > -9999.]
        sub['gs'] /= sub['gs'].max()

        for day in sub['doy'].unique():

            mask = sub['doy'] == day
            plot_obs(ax1, sub['Pleaf'][mask], sub['gs'][mask])

        x0, x1, obs_popt = fit_Tuzet(sub)
        x = np.linspace(sub['Pleaf'].max(), sub['Pleaf'].min(), 500)
        ax1.plot(x, fsig_tuzet(x, obs_popt[0], obs_popt[1]), 'k', zorder=30)
        ax1.vlines(x0, 0., 1., linestyle=':')
        ax1.vlines(x1, 0., 1., linestyle=':')

        # get the integrated VC given by the obs and site params
        ref, __ = read_csv(os.path.join(ipath, '%s_calibrated.csv' % (what)))
        b, c = Weibull_params(ref.iloc[0])
        int_VC = np.zeros(len(sub))

        for j in range(len(sub)):

            int_VC[j], __ = quad(f,
                                 sub['Pleaf'].iloc[j],
                                 sub['Ps'].iloc[j],
                                 args=(b, c))

        plot_obs(ax2, i, np.log(sub['E'] / int_VC), which='kmax')

        # subplot titles (including labelling)
        what = what.split('_')
        species = r'\textit{%s %s}' % (what[-2], what[-1])
        labels += [r'\textit{%s. %s}' % (what[-2][0], what[-1])]

        if 'Quercus' in what:
            species += ' (%s)' % (what[0][0])
            labels[-1] += ' (%s)' % (what[0][0])

        txt = ax1.annotate(r'\textbf{(%s)} %s' %
                           (string.ascii_lowercase[i], species),
                           xy=(0.025, 0.98),
                           xycoords='axes fraction',
                           ha='left',
                           va='top')
        txt.set_bbox(
            dict(boxstyle='round,pad=0.1', fc='w', ec='none', alpha=0.8))

        # format axes ticks
        ax1.xaxis.set_major_locator(mpl.ticker.NullLocator())

        if (i == 13) or ((ncol > 0) and (nrow == 32)):
            render_xlabels(ax1, r'$\Psi_{l}$', 'MPa')

        if ncol == 0:
            ax1.yaxis.set_major_locator(mpl.ticker.MaxNLocator(3))
            ax1.yaxis.set_major_formatter(
                mpl.ticker.FormatStrFormatter('%.1f'))
            ax1.set_ylabel(r'$g_{s, norm}$')

        else:
            ax1.yaxis.set_major_locator(mpl.ticker.MaxNLocator(3))
            ax1.set_yticklabels([])

    ax2.annotate(r'\textbf{(%s)}' % (string.ascii_lowercase[i + 1]),
                 xy=(0.05, 0.98),
                 xycoords='axes fraction',
                 ha='right',
                 va='top')

    # add max conductance parameter values
    params, models = get_calib_kmax(df2)
    params = np.asarray(params)
    locs = np.arange(len(df1['site_spp'].unique()))

    # update colour list
    colours = ([
        '#6023b7', '#af97c5', '#009231', '#6b3b07', '#ff8e12', '#ffe020',
        '#f10c80', '#ffc2cd'
    ]) * len(params)

    for i in range(params.shape[1]):

        if i < 8:
            ax2.scatter(locs,
                        params[:, i],
                        s=50,
                        linewidths=0.25,
                        c=colours[i],
                        alpha=0.9,
                        label=models[0][i],
                        zorder=4)

        else:
            ax2.scatter(locs,
                        params[:, i],
                        s=50,
                        linewidths=0.25,
                        c=colours[i],
                        alpha=0.9,
                        zorder=4)

    # tighten the subplot
    ax2.set_xlim(locs[0] - 0.8, locs[-1] + 0.8)
    ax2.set_ylim(np.log(0.025) - 0.1, np.log(80.))

    # ticks
    ax2.set_xticks(locs + 0.5)
    ax2.set_xticklabels(labels, ha='right', rotation=40)
    ax2.xaxis.set_tick_params(length=0.)

    yticks = [0.025, 0.25, 1, 5, 25, 75]
    ax2.set_yticks([np.log(e) for e in yticks])
    ax2.set_yticklabels(yticks)
    render_ylabels(ax2, r'k$_{max}$', 'mmol m$^{-2}$ s$^{-1}$ MPa$^{-1}$')

    handles, labels = ax2.get_legend_handles_labels()
    labels[3] = 'SOX$_\mathrm{\mathsf{opt}}$'
    ax2.legend(handles,
               labels,
               ncol=3,
               labelspacing=1. / 3.,
               columnspacing=0.5,
               loc=3)

    # save
    fig.savefig(figname)
コード例 #12
0

#==============================================================================

to_fit = True
sample = None  # None, 1, 2, or 3

swaters = ['wet', 'inter']  # two different soil moisture profiles

# declare empty dataframe which will be used to analyse the calibrations
odf = pd.DataFrame(columns=[
    'Model', 'training', 'solver', 'BIC', 'Rank', 'p1', 'v1', 'p2', 'v2'
])

# where should the fitting solvers' outputs be stored?
base_dir = get_main_dir()  # working paths

check_X_Y(swaters)  # check that the training calibration files exist

if to_fit:

    for swater in swaters:  # loop over the training soil moisture profiles

        X, Y = prep_training_N_target(swater, sub=sample)

        # where should the calibration output be stored?
        opath = os.path.join(
            os.path.join(os.path.join(base_dir, 'output'), 'calibrations'),
            'idealised')

        if sample is not None:  # move files to the relevant sub-dir