コード例 #1
0
def smooth1D(niter, eps):
    fail = False
    nzs = CPlot.getSelectedZones()
    for nz in nzs:
        nob = CTK.Nb[nz]+1
        noz = CTK.Nz[nz]
        z = CTK.t[2][nob][2][noz]
        dims = Internal.getZoneDim(z)
        try:
            if dims[0] == 'Unstructured': a = C.convertBAR2Struct(z)
            else: a = z
            a = D.getCurvilinearAbscissa(a)
            distrib = C.cpVars(a, 's', a, 'CoordinateX')
            C._initVars(distrib, 'CoordinateY', 0.)
            C._initVars(distrib, 'CoordinateZ', 0.)
            distrib = C.rmVars(distrib, 's')
            bornes = P.exteriorFaces(distrib)
            distrib = T.smooth(distrib, eps=eps, niter=niter, 
                               fixedConstraints=[bornes])
            b = G.map(a, distrib)
            CTK.replace(CTK.t, nob, noz, b)
        except Exception as e:
            fail = True
            Panels.displayErrors([0,str(e)], header='Error: smooth1D')
    return fail
コード例 #2
0
c2 = C.addBC2Zone(c2, 'overlap1', 'BCOverlap', 'imax')
c2 = C.initVars(c2, 'centers:celln', 1.)
c2 = C.initVars(c2, 'Density', dens, ['CoordinateX', 'CoordinateY'])
a = T.patch(c1, c2, (1, 1, 1))
t = C.newPyTree(['Base', 3])
t[2][1][2].append(a)
test.testT(t, 1)

# multizone
a = D.sphere6((0, 0, 0), 1, N=20)
t = C.newPyTree(['Base', 3])
t[2][1][2] += a
k = 0
t2 = T.subzone(t, (1, 1, k + 1), (-1, -1, k + 1))
t2 = T.smooth(t2,
              eps=0.5,
              niter=20,
              projConstraints=Internal.getNodesFromType(t2, 'Zone_t'))
t = T.patch(t, t2, (1, 1, k + 1))
test.testT(t, 3)

# cas 3D
c1 = G.cart((0, 0, 0), (0.01, 0.01, 1), (201, 101, 20))
c1 = C.addBC2Zone(c1, 'wall1', 'BCWall', 'imin')
c1 = C.addBC2Zone(c1, 'match1', 'BCMatch', 'imax', c1, 'imin', [1, 2, 3])
c1 = C.addBC2Zone(c1, 'overlap1', 'BCOverlap', 'jmax')
c1 = C.initVars(c1, 'centers:celln', 1.)
c1 = C.initVars(c1, 'Density', dens, ['CoordinateX', 'CoordinateY'])

c2 = G.cart((0, 0, 0), (0.01, 0.01, 1), (51, 81, 20))
c2 = T.rotate(c2, (0, 0, 0), (0, 0, 1), 0.2)
c2 = C.addBC2Zone(c2, 'wall1', 'BCWall', 'imin')
コード例 #3
0
def smooth():
    if CTK.t == []: return
    if CTK.__MAINTREE__ <= 0:
        CTK.TXT.insert('START', 'Fail on a temporary tree.\n')
        CTK.TXT.insert('START', 'Error: ', 'Error'); return

    nzs = CPlot.getSelectedZones()
    if nzs == []:
        CTK.TXT.insert('START', 'Selection is empty.\n')
        CTK.TXT.insert('START', 'Error: ', 'Error'); return
    
    smooth = CTK.varsFromWidget(VARS[0].get(), type=2)
    if len(smooth) != 1:
        CTK.TXT.insert('START', 'Smooth iter is incorrect.\n')
        CTK.TXT.insert('START', 'Error: ', 'Error'); return
    smooth = smooth[0]

    eps = CTK.varsFromWidget(VARS[4].get(), type=1)
    if len(eps) != 1:
        CTK.TXT.insert('START', 'Eps is incorrect.\n')
        CTK.TXT.insert('START', 'Error: ', 'Error'); return
    eps = eps[0]

    ntype = VARS[8].get()
    if ntype == 'Volume': ntype = 0
    elif ntype == 'Scale': ntype = 1
    elif ntype == 'Taubin': ntype = 2
    else: ntype = 0

    # Constraint strength
    strength = CTK.varsFromWidget(VARS[2].get(), type=1)
    if len(strength) != 1:
        CTK.TXT.insert('START', 'Constraint strength is incorrect.\n')
        CTK.TXT.insert('START', 'Error: ', 'Error'); return
    strength = strength[0]

    # Constraints
    fixedConstraints = []; projConstraints = []

    name = VARS[1].get()
    names = name.split(';')    
    for v in names:
        v = v.lstrip(); v = v.rstrip()
        sname = v.split('/', 1)
        base = Internal.getNodeFromName1(CTK.t, sname[0])
        if base is not None:
            nodes = Internal.getNodesFromType1(base, 'Zone_t')
            for z in nodes:
                if (z[0] == sname[1]): fixedConstraints.append(z)

    CTK.saveTree()
    
    # Get all zones
    zones = []
    for nz in nzs:
        nob = CTK.Nb[nz]+1
        noz = CTK.Nz[nz]
        z = CTK.t[2][nob][2][noz]
        zones.append(z)

    # Mesh unique
    try:
        A = C.convertArray2Tetra(zones)
        A = T.join(A); A = G.close(A)
    except Exception as e:
        Panels.displayErrors([0,str(e)], header='Error: smooth')
        CTK.TXT.insert('START', 'Some zones are invalid for smoothing.\n')
        CTK.TXT.insert('START', 'Error: ', 'Error'); return

    # pb surfacique ou volumique?
    dims = Internal.getZoneDim(A)
    pbDim = 3
    if dims[3] == 'TRI': pbDim = 2
        
    # Keep external faces
    if VARS[3].get() == 1 or pbDim == 3: 
        try: ext = P.exteriorFaces(A)
        except: ext = []
    if VARS[3].get() == 1 and ext != []: fixedConstraints.append(ext)

    # Keep sharp edges
    if VARS[5].get() == 1:
        angle = CTK.varsFromWidget(VARS[6].get(), type=1)
        if len(angle) != 1:
            CTK.TXT.insert('START', 'Sharp edges angle is incorrect.\n')
            CTK.TXT.insert('START', 'Error: ', 'Error'); return
        angle = angle[0]
        if pbDim == 2:
            try:
                sharp = P.sharpEdges(A, angle)
                fixedConstraints += sharp
            except: pass
        else:
            try:
                sharp = P.sharpEdges(ext, angle)
                fixedConstraints += sharp
            except: pass

    # Project on surface
    Pj = VARS[7].get()
    if pbDim == 2: projSurf = A
    else:
        # projSurf = ext
        # Pour l'instant, on ne sait pas projeter un maillage volumique
        # sur une surface
        Pj = 0
    
    # Smooth
    fail = False
    try:
        if Pj == 0:
            zones = T.smooth(zones, eps=eps, niter=smooth, type=ntype,
                             fixedConstraints=fixedConstraints, 
                             projConstraints=projConstraints, delta=strength)
        else:
            for s in xrange(smooth):
                zones = T.smooth(zones, eps=eps, niter=2, type=ntype,
                                 fixedConstraints=fixedConstraints, 
                                 projConstraints=projConstraints, 
                                 delta=strength)
                zones = T.projectOrtho(zones, [projSurf])
    except Exception as e:
        fail = True
        Panels.displayErrors([0,str(e)], header='Error: smooth')

    if fail == False:
        c = 0
        for nz in nzs:
            nob = CTK.Nb[nz]+1
            noz = CTK.Nz[nz]
            a = zones[c]; c += 1
            CTK.replace(CTK.t, nob, noz, a)
            CTK.TXT.insert('START', 'Mesh smoothed.\n')
    else:
        CTK.TXT.insert('START', 'Smooth fails.\n')
        CTK.TXT.insert('START', 'Error: ', 'Error')

    #C._fillMissingVariables(CTK.t)
    (CTK.Nb, CTK.Nz) = CPlot.updateCPlotNumbering(CTK.t)
    CTK.TKTREE.updateApp()
    CPlot.render()
コード例 #4
0
c1 = G.cart((0, 0, 0), (0.01, 0.01, 1), (201, 101, 20))
C._addBC2Zone(c1, 'wall1', 'BCWall', 'imin')
C._addBC2Zone(c1, 'match1', 'BCMatch', 'imax', c1, 'imin', [1, 2, 3])
C._addBC2Zone(c1, 'overlap1', 'BCOverlap', 'jmax')
C._initVars(c1, 'centers:celln', 1.)
C._initVars(c1, 'Density', dens, ['CoordinateX', 'CoordinateY'])

c2 = G.cart((0, 0, 0), (0.01, 0.01, 1), (51, 81, 20))
c2 = T.rotate(c2, (0, 0, 0), (0, 0, 1), 0.2)
C._addBC2Zone(c2, 'wall1', 'BCWall', 'imin')
C._addBC2Zone(c2, 'overlap1', 'BCOverlap', 'imax')
C._initVars(c2, 'centers:celln', 1.)
C._initVars(c2, 'Density', dens, ['CoordinateX', 'CoordinateY'])
a = T.patch(c1, c2, (1, 1, 1))
t = C.newPyTree(['Base', a])
test.testT(t, 2)

# multi-zone 3D
a = D.sphere6(
    (0, 0, 0),
    1,
    N=20,
)
d = G.cart((0.1, 0., 0.), (0.1, 1, 1), (5, 1, 1))
a = G.addNormalLayers(a, d)
t = C.newPyTree(['Base', 3, a])
t2 = T.subzone(t, (1, 1, 2), (-1, -1, 4))
t2 = T.smooth(t2, eps=0.5, niter=20)
t = T.patch(t, t2, (1, 1, 2))
test.testT(t, 3)
コード例 #5
0
def apply3D(density, npts, factor, ntype):
    nzs = CPlot.getSelectedZones()
    nz = nzs[0]
    nob = CTK.Nb[nz]+1
    noz = CTK.Nz[nz]
    zone = CTK.t[2][nob][2][noz]
    ret = getEdges3D(zone, 0.)
    if ret is None: return True
    (m, r, f, ue, uf, ind) = ret
    out = []
    # Applique la fonction sur m
    i = m[0]
    dims = Internal.getZoneDim(i)
    np = dims[1]*dims[2]*dims[3]
    if ntype == 0: # uniformize
        if density > 0: npts = D.getLength(i)*density
        if factor > 0: npts = np*factor[0]
        npts = int(max(npts, 2))
        distrib = G.cart((0,0,0), (1./(npts-1.),1,1), (npts,1,1))
        b = G.map(i, distrib)
    elif ntype == 1: # refine
        if factor < 0: factor = (npts-1.)/(np-1)
        else: npts = factor*(np-1)+1
        b = G.refine(i, factor, 1)
    elif ntype == 2: # stretch (factor=h)
        h = factor
        l = D.getLength(i)
        a = D.getCurvilinearAbscissa(i)
        distrib = C.cpVars(a, 's', a, 'CoordinateX')
        C._initVars(distrib, 'CoordinateY', 0.)
        C._initVars(distrib, 'CoordinateZ', 0.)
        distrib = C.rmVars(distrib, 's')
        N = dims[1]
        val = C.getValue(a, 's', ind)
        Xc = CPlot.getActivePoint()
        valf = val
        Pind = C.getValue(i, 'GridCoordinates', ind)
        if ind < N-1: # cherche avec indp1
            Pindp1 = C.getValue(i, 'GridCoordinates', ind+1)
            v1 = Vector.sub(Pindp1, Pind)
            v2 = Vector.sub(Xc, Pind)
            if Vector.dot(v1,v2) >= 0:
                val2 = C.getValue(a, 's', ind+1)
                alpha = Vector.norm(v2)/Vector.norm(v1)
                valf = val+alpha*(val2-val)
        if ind > 0 and val == valf: # cherche avec indm1
            Pindm1 = C.getValue(i, 'GridCoordinates', ind-1)
            v1 = Vector.sub(Pindm1, Pind)
            v2 = Vector.sub(Xc, Pind)
            if Vector.dot(v1,v2) >= 0:
                val2 = C.getValue(a, 's', ind-1)
                alpha = Vector.norm(v2)/Vector.norm(v1)
                valf = val+alpha*(val2-val)
        if h < 0: distrib = G.enforcePoint(distrib, valf)
        else:
            if val == 0: distrib = G.enforcePlusX(distrib, h/l, N/10, 1)
            elif val == 1: distrib = G.enforceMoinsX(distrib, h/l, N/10, 1)
            else: distrib = G.enforceX(distrib, valf, h/l, N/10, 1)
        b = G.map(i, distrib)
    elif ntype == 3:
        source = factor
        b = G.map(i, source, 1)
    elif ntype == 4: # smooth (factor=eps, npts=niter)
        niter = npts
        eps = factor
        a = D.getCurvilinearAbscissa(i)
        distrib = C.cpVars(a, 's', a, 'CoordinateX')
        C._initVars(distrib, 'CoordinateY', 0.)
        C._initVars(distrib, 'CoordinateZ', 0.)
        distrib = C.rmVars(distrib, 's')
        bornes = P.exteriorFaces(distrib)
        distrib = T.smooth(distrib, eps=eps, niter=niter, 
                           fixedConstraints=[bornes])
        b = G.map(i, distrib, 1)
    dimb = Internal.getZoneDim(b)
    npts = dimb[1]
    out.append(b)
    # Raffine les edges si necessaires
    if npts != np:
        ret = getEdges3D(zone, 2.)
        if ret is None: return True
        (m, r, f, ue, uf, ind) = ret
    for i in r:
        dims = Internal.getZoneDim(i)
        np = dims[1]*dims[2]*dims[3]
        factor = (npts-1.)/(np-1)  # npts de m
        b = G.refine(i, factor, 1)
        out.append(b)
    # Garde les autres
    out += ue
    outf = []
    # Rebuild les faces
    for i in f:
        # trouve les edges de la face
        edges = P.exteriorFacesStructured(i)
        match = []
        for e in edges:
            dime = Internal.getZoneDim(e)
            np = dime[1]-1
            P0 = C.getValue(e, Internal.__GridCoordinates__, 0)
            P1 = C.getValue(e, Internal.__GridCoordinates__, np)
            for ei in out: # retrouve les edges par leurs extremites
                dimei = Internal.getZoneDim(ei)
                npi = dimei[1]-1
                Q0 = C.getValue(ei, Internal.__GridCoordinates__, 0)
                Q1 = C.getValue(ei, Internal.__GridCoordinates__, npi)
                t1 = Vector.norm2(Vector.sub(P0,Q0))
                t2 = Vector.norm2(Vector.sub(P1,Q1))
                if (t1 < 1.e-12 and t2 < 1.e-12): match.append(ei)
        if len(match) == 4: # OK
            fn = G.TFI(match)
            # Projection du patch interieur
            #dimsf = Internal.getZoneDim(fn)
            #fns = T.subzone(fn, (2,2,1), (dimsf[1]-1,dimsf[2]-1,1))
            #fns = T.projectOrtho(fns, [i])
            #fn = T.patch(fn, fns, position=(2,2,1))

            #fn = T.projectOrtho(fn, [i])
            outf.append(fn)
        else: return True
    outf += uf
    try:
        b = G.TFI(outf)
        CTK.replace(CTK.t, nob, noz, b)
        return False
    except Exception as e:
        Panels.displayErrors([0,str(e)], header='Error: apply3D')
        return True
コード例 #6
0
def apply2D(density, npts, factor, ntype=0):
    nzs = CPlot.getSelectedZones()
    nz = nzs[0]
    nob = CTK.Nb[nz]+1
    noz = CTK.Nz[nz]
    zone = CTK.t[2][nob][2][noz]
    ret = getEdges2D(zone, 0.)
    if ret is None: return True
    (m, r, u, ind) = ret
    out = []
    # Applique la fonction sur m[0] (edge a modifier)
    i = m[0]
    dims = Internal.getZoneDim(i)
    np = dims[1]*dims[2]*dims[3]
    if ntype == 0: # uniformize
        if density > 0: npts = D.getLength(i)*density
        if factor > 0: npts = np*factor[0]
        npts = int(max(npts, 2))
        distrib = G.cart((0,0,0), (1./(npts-1.),1,1), (npts,1,1))
        b = G.map(i, distrib)
    elif ntype == 1: # refine
        if factor < 0: factor = (npts-1.)/(np-1)
        else: npts = factor*(np-1)+1
        b = G.refine(i, factor, 1)
    elif ntype == 2: # stretch (factor=h)
        h = factor
        l = D.getLength(i)
        a = D.getCurvilinearAbscissa(i)
        distrib = C.cpVars(a, 's', a, 'CoordinateX')
        C._initVars(distrib, 'CoordinateY', 0.)
        C._initVars(distrib, 'CoordinateZ', 0.)
        distrib = C.rmVars(distrib, 's')
        N = dims[1]
        val = C.getValue(a, 's', ind)
        Xc = CPlot.getActivePoint()
        valf = val
        Pind = C.getValue(i, 'GridCoordinates', ind)
        if ind < N-1: # cherche avec indp1
            Pindp1 = C.getValue(i, 'GridCoordinates', ind+1)
            v1 = Vector.sub(Pindp1, Pind)
            v2 = Vector.sub(Xc, Pind)
            if Vector.dot(v1,v2) >= 0:
                val2 = C.getValue(a, 's', ind+1)
                alpha = Vector.norm(v2)/Vector.norm(v1)
                valf = val+alpha*(val2-val)
        if ind > 0 and val == valf: # cherche avec indm1
            Pindm1 = C.getValue(i, 'GridCoordinates', ind-1)
            v1 = Vector.sub(Pindm1, Pind)
            v2 = Vector.sub(Xc, Pind)
            if Vector.dot(v1,v2) >= 0:
                val2 = C.getValue(a, 's', ind-1)
                alpha = Vector.norm(v2)/Vector.norm(v1)
                valf = val+alpha*(val2-val)
        if h < 0: distrib = G.enforcePoint(distrib, valf)
        else:
            if val == 0: distrib = G.enforcePlusX(distrib, h/l, N/10, 1)
            elif val == 1: distrib = G.enforceMoinsX(distrib, h/l, N/10, 1)
            else: distrib = G.enforceX(distrib, valf, h/l, N/10, 1)
        b = G.map(i, distrib)
    elif ntype == 3: # copyDistrib (factor=source=edge pour l'instant)
        source = factor
        b = G.map(i, source, 1)
    elif ntype == 4: # smooth (factor=eps, npts=niter)
        niter = npts
        eps = factor
        a = D.getCurvilinearAbscissa(i)
        distrib = C.cpVars(a, 's', a, 'CoordinateX')
        C._initVars(distrib, 'CoordinateY', 0.)
        C._initVars(distrib, 'CoordinateZ', 0.)
        distrib = C.rmVars(distrib, 's')
        bornes = P.exteriorFaces(distrib)
        distrib = T.smooth(distrib, eps=eps, niter=niter, 
                           fixedConstraints=[bornes])
        b = G.map(i, distrib, 1)
    dimb = Internal.getZoneDim(b)
    npts = dimb[1]
    out.append(b)
    # Raffine les edges si necessaires
    if npts != np:
        ret = getEdges2D(zone, 2.)
        if ret is None: return True
        (m, r, u, ind) = ret
    for i in r:
        dims = Internal.getZoneDim(i)
        np = dims[1]*dims[2]*dims[3]
        factor = (npts-1.)/(np-1)  # npts de m
        b = G.refine(i, factor, 1)
        out.append(b)
    # Garde les autres
    out += u
    #tp = C.newPyTree(['Base'])
    #tp[2][1][2] += out
    #C.convertPyTree2File(tp, 'edges.cgns')

    # Rebuild
    try:
        b = G.TFI(out)
        # Projection du patch interieur
        #dimsb = Internal.getZoneDim(b)
        #bs = T.subzone(b, (2,2,1), (dimsb[1]-1,dimsb[2]-1,1))
        #bs = T.projectOrtho(bs, [zone])
        #b = T.patch(b, bs, position=(2,2,1))

        #tp = C.newPyTree(['Base'])
        #tp[2][1][2] += [b, zone]
        #C.convertPyTree2File(tp, 'face.cgns')
        b = T.projectOrtho(b, [zone])
        CTK.replace(CTK.t, nob, noz, b)
        return False
    except Exception as e:
        Panels.displayErrors([0,str(e)], header='Error: apply2D')
        return True
コード例 #7
0
# - smooth (pyTree) -
import Transform.PyTree as T
import Geom.PyTree as D
import Converter.PyTree as C
import KCore.test as test

# TRI
a = D.sphere((0.,0.,0.), 1)
b = C.convertArray2Tetra(a)
b = C.addVars(b,'Density'); b = C.initVars(b,'centers:cellN',1.)
b = T.smooth(b, eps=0.5, niter=10)
test.testT(b,1)

# QUAD
b = C.convertArray2Hexa(a)
b = C.addVars(b,'Density'); b = C.initVars(b,'centers:cellN',1.)
b = T.smooth(b, eps=0.5, niter=10)
test.testT(b,2)