コード例 #1
0
ファイル: plot_gpr_custom2D.py プロジェクト: SURGroup/UQpy
# %% md
#
# Using UQpy GaussianProcessRegression class to generate a surrogate for generated data. In this illustration, Quadratic regression model and
# Exponential correlation model are used.

# %%

regression_model = ConstantRegression()
kernel = Matern(nu=0.5)

from UQpy.utilities.MinimizeOptimizer import MinimizeOptimizer

optimizer = MinimizeOptimizer(method="L-BFGS-B")
K = GaussianProcessRegression(regression_model=regression_model,
                              optimizer=optimizer,
                              kernel=kernel,
                              optimizations_number=20,
                              hyperparameters=[1, 1, 0.1])
K.fit(samples=x.samples, values=rmodel.qoi_list)
print(K.hyperparameters)

# %% md
#
# This plot shows the actual model which is used to evaluate the samples to identify the function values.

# %%

num = 25
x1 = np.linspace(0, 1, num)
x2 = np.linspace(0, 1, num)
コード例 #2
0
rmodel = RunModel(model=model)

# %% md
#
# :class:`.Kriging` class defines an object to generate a surrogate model for a given set of data.

# %%

from UQpy.surrogates.gaussian_process.regression_models import LinearRegression
from UQpy.surrogates.gaussian_process.kernels import RBF

bounds = [[10**(-3), 10**3], [10**(-3), 10**2], [10**(-3), 10**2]]
optimizer = MinimizeOptimizer(method="L-BFGS-B", bounds=bounds)
K = GaussianProcessRegression(regression_model=LinearRegression(),
                              kernel=RBF(),
                              optimizer=optimizer,
                              hyperparameters=[1, 1, 0.1],
                              optimizations_number=10)

# %% md
#
# Choose an appropriate learning function.

# %%

from UQpy.sampling.adaptive_kriging_functions.ExpectedImprovement import ExpectedImprovement

# %% md
#
# :class:`AdaptiveKriging` class is used to generate new sample using :class:`UFunction` as active learning function.
コード例 #3
0
fig1.colorbar(surf, shrink=0.5, aspect=5)
plt.show()

#%% md
#
# :class:`.Kriging` class generated a surrogate model using :class:`.TrueStratifiedSampling` samples and function value
# at those points.

#%%

from UQpy.surrogates.gaussian_process.regression_models import LinearRegression
from UQpy.surrogates.gaussian_process.kernels import RBF

bounds = [[10**(-3), 10**3], [10**(-3), 10**2], [10**(-3), 10**2]]
K = GaussianProcessRegression(regression_model=LinearRegression(), kernel=RBF(),
                              optimizer=MinimizeOptimizer(method="L-BFGS-B", bounds=bounds),
                              hyperparameters=[1, 1, 0.1], optimizations_number=20)
K.fit(samples=x.samples, values=rmodel1.qoi_list)
print(K.hyperparameters)

#%% md
#
# This figure shows the surrogate model generated using :class:`.Kriging` class from initial samples.

#%%

num = 25
x1 = np.linspace(0, 1, num)
x2 = np.linspace(0, 1, num)
x1v, x2v = np.meshgrid(x1, x2)
y = np.zeros([num, num])
コード例 #4
0
model = PythonModel(model_script='local_python_model_1Dfunction.py',
                    model_object_name='y_func',
                    delete_files=True)
rmodel = RunModel(model=model)
rmodel.run(samples=x.samples)

from UQpy.surrogates.gaussian_process.regression_models import LinearRegression
from UQpy.utilities.MinimizeOptimizer import MinimizeOptimizer

bounds = [[10**(-3), 10**3], [10**(-3), 10**2]]
optimizer = MinimizeOptimizer(method='L-BFGS-B', bounds=bounds)

K = GaussianProcessRegression(regression_model=LinearRegression(),
                              kernel=RBF(),
                              optimizer=optimizer,
                              optimizations_number=20,
                              hyperparameters=[1, 0.1],
                              random_state=2)
K.fit(samples=x.samples, values=rmodel.qoi_list)
print(K.hyperparameters)

# %% md
#
# RunModel is used to evaluate function values at sample points. Model is defined as a function in python file
# 'python_model_function.py'.

# %%

num = 1000
x1 = np.linspace(min(x.samples), max(x.samples), num)
コード例 #5
0
# %%

bounds_1 = [[10**(-4), 10**3], [10**(-3), 10**2]]
optimizer1 = MinimizeOptimizer(method='L-BFGS-B', bounds=bounds_1)

# %% md
#
# Define the 'GaussianProcessRegressor' class object, the input attributes defined here are kernel, optimizer, initial
# estimates of hyperparameters and number of times MLE is identified using random starting point.

# %%

gpr1 = GaussianProcessRegression(kernel=kernel1,
                                 hyperparameters=[10**(-3), 10**(-2)],
                                 optimizer=optimizer1,
                                 optimizations_number=10,
                                 noise=False,
                                 regression_model=LinearRegression())

# %% md
#
# Call the 'fit' method to train the surrogate model (GPR).

# %%

gpr1.fit(X_train, y_train)

# %% md
#
# The maximum likelihood estimates of the hyperparameters are as follows:
コード例 #6
0
# %%

bounds_2 = [[10**(-3), 10**3], [10**(-3), 10**2], [10**(-3), 10**(2)]]
optimizer2 = MinimizeOptimizer(method='L-BFGS-B', bounds=bounds_2)

# %% md
#
# Define the 'GaussianProcessRegressor' class object, the input attributes defined here are kernel, optimizer, initial
# estimates of hyperparameters and number of times MLE is identified using random starting point.

# %%

gpr2 = GaussianProcessRegression(kernel=kernel2,
                                 hyperparameters=[1, 1, 0.1],
                                 optimizer=optimizer2,
                                 optimizations_number=10,
                                 noise=True,
                                 regression_model=LinearRegression())

# %% md
#
# Call the 'fit' method to train the surrogate model (GPR).

# %%

gpr2.fit(X_train, y_train)

# %% md
#
# The maximum likelihood estimates of the hyperparameters are as follows:
コード例 #7
0
ファイル: gpr_constraints.py プロジェクト: SURGroup/UQpy
# %%

cons = NonNegative(constraint_points=X_c, observed_error=0.03, z_value=2)

# %% md
#
# Define the 'GaussianProcessRegressor' class object, the input attributes defined here are kernel, optimizer, initial
# estimates of hyperparameters and number of times MLE is identified using random starting point.

# %%

gpr3 = GaussianProcessRegression(
    kernel=kernel3,
    hyperparameters=[10**(-3), 10**(-2), 10**(-10)],
    optimizer=optimizer3,
    optimizations_number=10,
    optimize_constraints=cons,
    bounds=bounds_3,
    noise=True,
    regression_model=QuadraticRegression())

# %% md
#
# Call the 'fit' method to train the surrogate model (GPR).

# %%

gpr3.fit(X_train, y_train)

# %% md
#