コード例 #1
0
    def getDashboard_info(self, start, end, device_type="Solar", interval="900", location_list=None):

        dash = Dashboard()

        #current day
        print('current', start, end)
        dpm_value, tree_save, irr_value, co2, X_dpm, Y_dpm, Y_irr,Y_tree,Y_perform,Y_expected = self.getSummary_data(start, end, device_type="Solar", interval="900", location_list=location_list)

        # last Hour
        end_time = DateUtil.getlowest_min_date(min=60)
        start_time = end_time - timedelta(hours=1)
        print('last_hour', start_time, end_time)
        lh_dpm_value, lh_tree_save, lh_irr_value, lh_co2, lh_X_dpm, lh_Y_dpm, lh_Y_irr,lh_Y_tree,lh_Y_perform,lh_Y_expected = self.getSummary_data(start_time, end_time, device_type="Solar", interval="900", location_list=location_list)
        #print(lh_dpm_value, lh_tree_save, lh_irr_value, lh_co2)
        #print(Y_dpm)
        #print(Y_irr)
        dash.setE_Generation_summary(last_hour=lh_dpm_value,current=dpm_value)
        dash.setE_Generation_SummaryGraph(lh_X_dpm, lh_Y_dpm, x_uom="", y_uom="Wh")
        dash.setE_Generation_Graph(X_dpm,Y_dpm, x_uom="", y_uom="Wh")
        dash.setIrr_summary(last_hour=lh_irr_value,current=irr_value,uom='W/m2')
        dash.setIrr_SummaryGraph(lh_X_dpm, lh_Y_irr, x_uom="", y_uom="W/m2")
        dash.setIrr_Graph(X_dpm,Y_irr, x_uom="", y_uom="W/m2")
        dash.setTree_save_summary(last_hour=lh_tree_save, current=tree_save, co2=co2)
        dash.setTree_save_SummaryGraph(lh_X_dpm,lh_Y_tree)
        dash.setExpected_Graph(X_dpm,Y_expected,y_uom="kWh")
        dash.setPR_Graph(X_dpm,Y_perform,y_uom='%')

        #print(X_dpm)
        return dash
コード例 #2
0
 def get_batch_job_time(self,job_name):
     data = config.energy_iot_DB_RW[TABLE.IOT_CRON_JOB_TABLE].find_one({'job_name':job_name})
     if data is not None:
         start_date = data['last_run']
     else:
         start_date = DateUtil.get_current_day(add_hr=-48)
     return start_date
コード例 #3
0
def Mapview():
    error = APP_ERRORS.NO_ERROR
    err_desc = APP_ERRORS.DESC[APP_ERRORS.NO_ERROR]
    result = Dashboard()
    try:
        start_time = request.args.get('start_time')
        end_time = request.args.get('end_time')
        ty = request.args.get('type')
        values = request.args.get('values')
        device_type = request.args.get('device_type')
        loc_list = None

        if device_type is None:
            device_type = "Solar"

        if start_time is None:
            start_time = DateUtil.get_current_day()
        if end_time is None:
            end_time = start_time + timedelta(days=int(1))
        print(start_time, end_time)

        interval = "900"  # Each 900 sec (15 min)

        try:

            error, map_data = agg_Services.get15MinSummaryData_for_map(
                start_time, end_time)
            print("$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$", map_data)
            if not map_data:
                map_data = []
        except Exception as err:
            error = APP_ERRORS.UNKNOWN
            err_desc = str(err)
            app.logger.error("mapview 1 >> error   " + str(err))

    except Exception as err:
        app.logger.error("mapview 2 >> error   " + str(err))

    return render_template('Map.html', menu="menu_map", map_data=map_data)
コード例 #4
0
def inv_energy__gen():
    print('inv_energy__gen')
    # Getting the form values
    filter_date = None
    filter_location_list = None
    filter_type = 'DAY'
    filter_type_nev = None
    try:
        filter_date = request.form['filter_date']
        filter_location_list = request.form.getlist('filter_location_list[]')
        filter_type = request.form['filter_type']
        filter_type_nev = request.form['filter_type_nev']
    except Exception as err:
        print(str(err))

    req_param = {
        'filter_date': filter_date,
        'filter_location_list': filter_location_list
    }

    # Changing to the time format
    try:
        start_time = datetime.strptime(filter_date, '%d/%m/%Y')
        end_time = start_time + timedelta(days=int(1))
    except Exception as err:
        print(str(err))
        start_time = None
        end_time = None

    if start_time is None and start_time != "":
        start_time = DateUtil.get_current_day()
    if end_time is None and end_time != "":
        end_time = start_time + timedelta(days=int(1))

    # Change the table and time condition based on the query
    curr_day = DateUtil.get_current_day()
    if filter_type_nev == "NEXT":
        curr_day = session['last_end_time'] + timedelta(days=int(1))
        start_time = curr_day
        end_time = curr_day + timedelta(days=int(1))
    elif filter_type_nev == "PREV":
        curr_day = session['last_start_date'] - timedelta(days=int(1))
        start_time = curr_day
        end_time = curr_day + timedelta(days=int(1))

    time_axis_format = '%d-%b(%H:%M)'
    _table = TABLE.IOT_AGG_1_HOUR_SUMMARY_TABLE
    if filter_type == "WEEK":
        start_time, end_time = DateUtil.week_range(curr_day)
        _table = TABLE.IOT_AGG_1_HOUR_SUMMARY_TABLE
        time_axis_format = '%d-%b(%H:%M)'
    elif filter_type == "MONTH":
        start_time, end_time = DateUtil.month_range(curr_day)
        _table = TABLE.IOT_AGG_1_HOUR_SUMMARY_TABLE
        time_axis_format = '%d-%b-%Y'
    elif filter_type == "YEAR":
        start_time, end_time = DateUtil.year_range(curr_day)
        _table = TABLE.IOT_AGG_1_HOUR_SUMMARY_TABLE
        time_axis_format = '%d-%b(%H:%M)'

    session['last_start_date'] = start_time
    session['last_end_time'] = end_time
    _condition = {
        "sender_timestamp": {
            "$gte": start_time,
            "$lte": end_time
        },
        'sensor_type': "INVERTER",
        "irr_value": {
            "$exists": 'true'
        }
    }
    if filter_location_list and "ALL" not in filter_location_list:
        _condition.__setitem__('resource_path', {'$in': filter_location_list})

    _projection = {
        "sender_timestamp": 1,
        'resource_path': 1,
        'sensor_id': 1,
        'AGGREGATE_VALUE': 1,
        'performance_ratio': 1,
        'expected_value': 1
    }

    print("search criteria ", _condition)
    print("Projection ", _projection)
    result = iot_dao.getrecord_from_table(
        _table, _condition, _projection,
        _sortby='resource_path').reset_index()
    try:
        result['AGGREGATE_VALUE'] = result['AGGREGATE_VALUE'].replace(
            [np.NaN, ''], 0).astype(np.float64).fillna(0.0)
        result['AGGREGATE_VALUE'] = round(result['AGGREGATE_VALUE'], 2)
        result['performance_ratio'] = result['performance_ratio'].replace(
            [np.NaN, ''], 0).astype(np.float64).fillna(0.0)
        result['performance_ratio'] = round(result['performance_ratio'], 2)
    except Exception as err:
        print(str(err))

    agg = {"AGGREGATE_VALUE": 'sum', "performance_ratio": 'mean'}
    location_detail = uti_service.get_location_details()
    data_lst = []

    graph_set = []
    common_x = []
    max_y = 10
    if not result.empty:
        #result_4_grp = result[result['AGGREGATE_VALUE'] > 0]
        result_4_grp = result.groupby(['sender_timestamp',
                                       'sensor_id']).agg(agg).reset_index()
        result_4_grp = result_4_grp.sort_values(['sender_timestamp'],
                                                ascending=[True])

        sensor_id_list = []
        summary = []
        for sensor_id in result_4_grp['sensor_id'].unique():
            sensor_id_list.append(sensor_id)
            x = []
            y = []
            result_4_grp_tmp = result_4_grp[result_4_grp['sensor_id'] ==
                                            sensor_id]
            print("sensor_id    ", sensor_id)
            summary_info = {}
            max = 0
            sum = 0
            min = 1000
            for index, row in result_4_grp_tmp.iterrows():
                print(index)
                x.append(row['sender_timestamp'].strftime('%d-%m-%Y %H:%M'))
                y.append(round(row['AGGREGATE_VALUE'], 2))
                sum = sum + round(row['AGGREGATE_VALUE'], 2)
                if max < round(row['AGGREGATE_VALUE'], 2):
                    max = round(row['AGGREGATE_VALUE'], 2)
                if row['AGGREGATE_VALUE'] != 0 and min > round(
                        row['AGGREGATE_VALUE'], 2):
                    min = row['AGGREGATE_VALUE']
                if max_y < row['AGGREGATE_VALUE']:
                    max_y = round(row['AGGREGATE_VALUE'])

            summary_info.__setitem__('sensor_id', sensor_id)
            summary_info.__setitem__('max_energy', round(max, 2))
            if min == 1000:
                min = 0
            summary_info.__setitem__('min_energy', round(min, 2))
            summary_info.__setitem__('energy_gen', round(sum, 2))
            summary.append(summary_info)

            if len(common_x) < len(x):
                common_x = x
            gp = {'X': x, 'Y': y, 'label': sensor_id, 'type': 'line'}
            print(gp)
            graph_set.append(gp)

        asert_info_tmp = iot_dao.getJSON_LISTrecord_from_table(
            TABLE.IOT_ASSET_MSTR, {"sensor_id": {
                '$in': sensor_id_list
            }}, {
                "asset_name": 1,
                "resource_path": 1,
                "asset_capacity": 1,
                "asset_location": 1,
                "asset_desc": 1,
                "sensor_id": 1,
                "sensor_type": 1,
                "model": 1,
                "module_efficiency": 1,
                "serial_no": 1,
                "total_panel_area": 1,
                "vendor_detail": 1
            }, None)
        asert_info = []
        for row in asert_info_tmp:
            rw = {}
            rw.__setitem__('Device Id', row['sensor_id'])
            rw.__setitem__('Location', row['resource_path'])
            rw.__setitem__('model', row['model'])
            rw.__setitem__('Device Name', row['asset_name'])
            rw.__setitem__('Device Desc', row['asset_desc'])
            rw.__setitem__('Total PV Area (SQM)', row['total_panel_area'])
            rw.__setitem__('Capacity (kWp)', row['asset_capacity'])

            asert_info.append(rw)

        for index, row in result.iterrows():
            rw = {}
            rw.__setitem__('SENDER_TIMESTAMP',
                           row['sender_timestamp'].strftime('%d-%m-%Y %H:%M'))
            rw.__setitem__('Location', row['resource_path'])
            rw.__setitem__(
                'Location Code',
                location_detail[row['resource_path']]['location_code'])
            rw.__setitem__('sensor_id', row['sensor_id'])
            rw.__setitem__('Energy (kWh)', row['AGGREGATE_VALUE'])
            rw.__setitem__('Performance Ratio (%)', row['performance_ratio'])

            data_lst.append(rw)

    loc_list = []
    for index, val in location_detail.items():
        val['selected'] = 'F'
        if filter_location_list:
            if (val['resource_path'] in filter_location_list):
                val['selected'] = 'Y'

        loc_list.append(val)

    print(max_y)
    return render_template('sub_pages/common_template.html',
                           pagename="inv_energy_gen_summary",
                           title="Inverter Energy Generation",
                           menu="menu_pr",
                           data=data_lst,
                           location_detail=loc_list,
                           req_param=req_param,
                           filter_type=filter_type,
                           graph_set=graph_set,
                           X_axies=common_x,
                           max_y=max_y,
                           info=asert_info,
                           summary=summary)
コード例 #5
0
def inverter_pr():
    print('inverter_pr')
    # Getting the form values
    filter_date = None
    filter_location_list = None
    filter_type = 'DAY'
    filter_type_nev = None
    try:
        filter_date = request.form['filter_date']
        filter_location_list = request.form.getlist('filter_location_list[]')
        filter_type = request.form['filter_type']
        filter_type_nev = request.form['filter_type_nev']
    except Exception as err:
        print(str(err))

    req_param = {
        'filter_date': filter_date,
        'filter_location_list': filter_location_list
    }

    # Changing to the time format
    try:
        start_time = datetime.strptime(filter_date, '%d/%m/%Y')
        end_time = start_time + timedelta(days=int(1))
    except Exception as err:
        print(str(err))
        start_time = None
        end_time = None

    if start_time is None and start_time != "":
        start_time = DateUtil.get_current_day()
    if end_time is None and end_time != "":
        end_time = start_time + timedelta(days=int(1))

    # Change the table and time condition based on the query
    curr_day = DateUtil.get_current_day()
    if filter_type_nev == "NEXT":
        curr_day = session['last_end_time'] + timedelta(days=int(1))
        start_time = curr_day
        end_time = curr_day + timedelta(days=int(1))
    elif filter_type_nev == "PREV":
        curr_day = session['last_start_date'] - timedelta(days=int(1))
        start_time = curr_day
        end_time = curr_day + timedelta(days=int(1))

    time_axis_format = '%d-%b(%H:%M)'
    _table = TABLE.IOT_AGG_1_HOUR_SUMMARY_TABLE
    if filter_type == "WEEK":
        start_time, end_time = DateUtil.week_range(curr_day)
        _table = TABLE.IOT_AGG_1_HOUR_SUMMARY_TABLE
        time_axis_format = '%d-%b(%H:%M)'
    elif filter_type == "MONTH":
        start_time, end_time = DateUtil.month_range(curr_day)
        _table = TABLE.IOT_AGG_1_HOUR_SUMMARY_TABLE
        time_axis_format = '%d-%b-%Y'
    elif filter_type == "YEAR":
        start_time, end_time = DateUtil.year_range(curr_day)
        _table = TABLE.IOT_AGG_1_HOUR_SUMMARY_TABLE
        time_axis_format = '%d-%b(%H:%M)'

    session['last_start_date'] = start_time
    session['last_end_time'] = end_time
    _condition = {
        "sender_timestamp": {
            "$gte": start_time,
            "$lte": end_time
        },
        'sensor_type': "INVERTER",
        "irr_value": {
            "$exists": 'true'
        }
    }
    if filter_location_list and "ALL" not in filter_location_list:
        _condition.__setitem__('resource_path', {'$in': filter_location_list})

    _projection = {
        "sender_timestamp": 1,
        'resource_path': 1,
        'sensor_id': 1,
        'AGGREGATE_VALUE': 1,
        'performance_ratio': 1,
        'expected_value': 1
    }

    print("search criteria ", _condition)
    print("Projection ", _projection)
    result = iot_dao.getrecord_from_table(
        _table, _condition, _projection,
        _sortby='resource_path').reset_index()
    try:
        result['AGGREGATE_VALUE'] = result['AGGREGATE_VALUE'].replace(
            [np.NaN, ''], 0).astype(np.float64).fillna(0.0)
        result['AGGREGATE_VALUE'] = round(result['AGGREGATE_VALUE'], 2)
        result['performance_ratio'] = result['performance_ratio'].replace(
            [np.NaN, ''], 0).astype(np.float64).fillna(0.0)
        result['performance_ratio'] = round(result['performance_ratio'], 2)
    except Exception as err:
        print(str(err))

    agg = {"AGGREGATE_VALUE": 'sum', "performance_ratio": 'mean'}
    location_detail = uti_service.get_location_details()
    data_lst = []
    x = []
    y1 = []
    y2 = []
    if not result.empty:
        result_4_grp = result[result['AGGREGATE_VALUE'] > 0]
        result_4_grp = result_4_grp.groupby(['sensor_id'
                                             ]).agg(agg).reset_index()
        result_4_grp = result_4_grp.sort_values(['AGGREGATE_VALUE'],
                                                ascending=[True])
        for index, row in result_4_grp.iterrows():
            x.append(row['sensor_id'])
            if row['performance_ratio'] > 100:
                row['performance_ratio'] = 100
            y1.append(round(row['performance_ratio']))
            y2.append(round(row['AGGREGATE_VALUE'], 2))

        for index, row in result.iterrows():
            rw = {}
            rw.__setitem__('SENDER_TIMESTAMP',
                           row['sender_timestamp'].strftime('%d-%m-%Y %H:%M'))
            rw.__setitem__('Location', row['resource_path'])
            rw.__setitem__(
                'Location Code',
                location_detail[row['resource_path']]['location_code'])
            rw.__setitem__('sensor_id', row['sensor_id'])
            rw.__setitem__('Energy (kWh)', row['AGGREGATE_VALUE'])
            rw.__setitem__('Performance Ratio (%)', row['performance_ratio'])

            data_lst.append(rw)

    loc_list = []
    for index, val in location_detail.items():
        val['selected'] = 'F'
        if filter_location_list:
            if (val['resource_path'] in filter_location_list):
                val['selected'] = 'Y'

        loc_list.append(val)

    plot_data, layout = polt_dashboard.rander_simplegraph(
        x_axies=x,
        y_axies_01=y1,
        y_label_01="PR (%)",
        y_axies_02=y2,
        y_label_02="Energy (kWh)",
        title="Time Vs performance_ratio",
        type_01="Scatter",
        type_02="Bar")
    print(plot_data)
    print(layout)
    graphs = dict(data=plot_data, layout=layout)
    graphJSON = json.dumps(graphs, cls=plotly.utils.PlotlyJSONEncoder)
    return render_template('sub_pages/common_template.html',
                           pagename="inv_performance_ratio_summary",
                           title="Inverter Performance Ratio",
                           menu="menu_pr",
                           data=data_lst,
                           location_detail=loc_list,
                           req_param=req_param,
                           filter_type=filter_type,
                           graphJSON=graphJSON,
                           X=x,
                           Y1=y1,
                           Y2=y2,
                           y1_lable="Energy (kWh)",
                           y2_lable="Performance Ratio (%)")
コード例 #6
0
def GETDashbord_info():
    error = APP_ERRORS.NO_ERROR
    err_desc = APP_ERRORS.DESC[APP_ERRORS.NO_ERROR]
    result = Dashboard()
    try:
        filter_date = None
        filter_location_list = None
        filter_type = 'DAY'
        filter_type_nev = None
        try:
            filter_date = request.form['filter_date']
            filter_location_list = request.form.getlist(
                'filter_location_list[]')
            filter_type = request.form['filter_type']
            filter_type_nev = request.form['filter_type_nev']
        except Exception as err:
            print(str(err))

        req_param = {
            'filter_date': filter_date,
            'filter_location_list': filter_location_list
        }

        # Changing to the time format
        try:
            start_time = datetime.strptime(filter_date, '%d/%m/%Y')
            end_time = start_time + timedelta(days=int(1))
        except Exception as err:
            print(str(err))
            start_time = None
            end_time = None

        if start_time is None and start_time != "":
            start_time = DateUtil.get_current_day()
        if end_time is None and end_time != "":
            end_time = start_time + timedelta(days=int(1))

        # Change the table and time condition based on the query
        curr_day = DateUtil.get_current_day()
        if filter_type_nev == "NEXT":
            curr_day = session['last_end_time'] + timedelta(days=int(1))
            start_time = curr_day
            end_time = curr_day + timedelta(days=int(1))
        elif filter_type_nev == "PREV":
            curr_day = session['last_start_date'] - timedelta(days=int(1))
            start_time = curr_day
            end_time = curr_day + timedelta(days=int(1))

        interval = "900"  # Each 900 sec (15 min)
        device_type = "Solar"
        try:

            result = agg_Services.getDashboard_info(
                start=start_time,
                end=end_time,
                device_type=device_type,
                interval=interval,
                location_list=filter_location_list)

        except Exception as err:
            traceback.print_exc()
            error = APP_ERRORS.UNKNOWN
            err_desc = str(err)
            result = Dashboard()
            app.logger.error("getDashboard_info 1 >> error   " + str(err))

    except Exception as err:
        traceback.print_exc()
        result = Dashboard()
        app.logger.error("getDashboard_info 2 >> error   " + str(err))
        error = APP_ERRORS.UNKNOWN
        err_desc = str(err)

    WeatherInfo = getWeatherInfo()

    result_data = MyEncoder().encode(result)
    plot_data, layout = polt_dashboard.rander_graph(result_data)
    print(plot_data)
    print(layout)
    graphs = dict(data=plot_data, layout=layout)
    graphJSON = json.dumps(graphs, cls=plotly.utils.PlotlyJSONEncoder)
    print('success')
    location_detail = uti_service.get_location_details()
    loc_list = []
    print(filter_location_list)
    for index, val in location_detail.items():
        val['selected'] = 'F'
        if filter_location_list:
            if (val['resource_path'] in filter_location_list):
                val['selected'] = 'Y'
        # print(val)

        loc_list.append(val)

    print(req_param)
    return render_template('home.html',
                           menu="menu_dash",
                           dashboard_data=result,
                           weatherInfo=WeatherInfo,
                           current_day_dpm=None,
                           graphJSON=graphJSON,
                           location_detail=loc_list,
                           filter_type=filter_type,
                           req_param=req_param)
コード例 #7
0
def getEnergy_info():
    start_time = request.args.get('start_date')
    end_time = request.args.get('to_date')
    location = request.args.get('location')
    sensor_type = request.args.get('sensor_type')
    if not sensor_type:
        sensor_type = 'DPM'

    projection = request.args.get('projection_' + sensor_type)

    req_param = {
        'start_date': start_time,
        'to_date': end_time,
        'location': location
    }

    try:
        start_time = datetime.strptime(start_time, '%Y-%m-%d')
        end_time = datetime.strptime(end_time, '%Y-%m-%d')
    except Exception as err:
        start_time = DateUtil.get_current_day()
        end_time = start_time + timedelta(days=int(1))

    _table = TABLE.IOT_AGG_15_MINUTES_SUMMARY_TABLE
    _projection = None
    _condition = {"sender_timestamp": {"$gte": start_time, "$lte": end_time}}
    if location and location != "ALL":
        _condition.__setitem__('resource_path', location)
    if sensor_type:
        _condition.__setitem__('sensor_type', sensor_type)

    if not projection:
        projection = 'AGGREGATE_VALUE'

    _projection = {
        "sender_timestamp": 1,
        'resource_path': 1,
        'sensor_type': 1,
        projection: 1
    }

    _sortby = "sender_timestamp"
    print(_condition)
    print(_projection)
    result = iot_dao.getrecord_from_table(_table, _condition, _projection,
                                          _sortby).reset_index()
    data_lst = []
    x = []
    y = []
    for index, row in result.iterrows():
        rw = {}
        rw.__setitem__('sender_timestamp',
                       row['sender_timestamp'].strftime('%d-%m-%Y %H:%M'))
        x.append(row['sender_timestamp'].strftime('%H:%M-%d%b%Y '))
        rw.__setitem__('location', row['resource_path'])
        rw.__setitem__('sensor_type', row['sensor_type'])
        rw.__setitem__(projection, row[projection])
        y.append(row[projection])
        data_lst.append(rw)

    location_detail = uti_service.get_location_details()
    loc_list = []
    for index, val in location_detail.items():
        loc_list.append(val)

    plot_data, layout = polt_dashboard.rander_simplegraph(
        x_axies=x, y_axies_01=y, y_label_01=projection)
    print(plot_data)
    print(layout)
    graphs = dict(data=plot_data, layout=layout)
    graphJSON = json.dumps(graphs, cls=plotly.utils.PlotlyJSONEncoder)

    return render_template('sub_pages/common_template.html',
                           pagename="dyn_summary_main",
                           menu="menu_sv",
                           data=data_lst,
                           location_detail=loc_list,
                           req_param=req_param,
                           graphJSON=graphJSON)
コード例 #8
0
    def insert_1day_summary(self, duration_limit=5):
        total_inserted_rows = 0
        assert_det = dao.getAssert_master()
        loc_irr_det = dao.getLocation_IRR()
        to = DateUtil.get_current_day()
        frm = DateUtil.get_current_day() - timedelta(days=int(duration_limit))
        app.logger.info('pr_calculation :: ' + str(frm) + " <  t >= " +
                        str(to))
        data_set = dao.getAll_iot_Main_table_detail(
            sensor_type=None,
            device_type=Util.Util.Solar,
            from_time=frm,
            to_time=to,
            table_name=TABLE.IOT_AGG_1_HOUR_SUMMARY_TABLE,
            mandatory_col='irr_value')

        CONFIG_TABLE = util_service.get_Config_matrix()
        print(CONFIG_TABLE)
        if data_set is None:
            app.logger.info(
                "************************  No record available ************************  "
            )
            return 0
        for device_type in data_set['device_type'].unique():
            for sensor_type in data_set['sensor_type'].unique():
                agg_columns = CONFIG_TABLE[device_type + '#' + sensor_type]
                agg = {}
                for col in agg_columns:
                    if col['is_aggr'] == 'Y':
                        fun = col['aggr_funct']
                        col_name = col['column_ref']
                        print(sensor_type, col_name, fun)
                        data_set[col_name] = pd.to_numeric(data_set[col_name],
                                                           errors='coerse')
                        #logger.info(col_name + "$" + fun)
                        if fun == "SUM":
                            data_set[col_name] = data_set[col_name].replace(
                                [np.NaN, ''], 0).astype(np.float64).fillna(0.0)
                            agg.__setitem__(col_name, 'sum')
                        elif fun == "AVG":
                            data_set[col_name] = data_set[col_name].replace(
                                [np.NaN, ''], 0).astype(np.float64).fillna(0.0)
                            agg.__setitem__(col_name, 'mean')
                        elif fun == "DIFF":
                            data_set[col_name] = data_set[col_name].replace(
                                [np.NaN, ''], 0).astype(np.float64).fillna(0.0)
                            agg.__setitem__(col_name, 'max')

                agg.__setitem__('sensor_capacity', 'mean')
                data_set['sensor_capacity'] = data_set[
                    'sensor_capacity'].replace([np.NaN, ''], 0).astype(
                        np.float64).fillna(0.0)
                agg.__setitem__('irr_value', 'sum')
                data_set['irr_value'] = data_set['irr_value'].replace(
                    [np.NaN, ''], 0).astype(np.float64).fillna(0.0)
                agg.__setitem__('AGGREGATE_VALUE', 'sum')
                data_set['AGGREGATE_VALUE'] = data_set[
                    'AGGREGATE_VALUE'].replace([np.NaN, ''], 0).astype(
                        np.float64).fillna(0.0)
                app.logger.info(agg)
                print(agg)

                data = data_set[data_set['sensor_type'].notnull()
                                & (data_set['sensor_type'] == sensor_type)
                                & data_set['device_type'].notnull() &
                                (data_set['device_type'] == device_type)]

                data = data.groupby([
                    'resource_path', 'device_type', 'sender_id', 'device_id',
                    'sensor_type', 'sensor_id',
                    Grouper(key='sender_timestamp', freq='1D')
                ]).agg(agg).reset_index()

                data = data.sort_values(
                    ['resource_path', 'sensor_type', 'sender_timestamp'],
                    ascending=[True, True, True])

                # to change the group by tome to lower limit
                # e.g if 12:15 - 12:30 => group by function return 12:15. But that should be 12:30 value
                #data['sender_timestamp'] = data['sender_timestamp'] + timedelta(hours=24)

                print(sensor_type, data.shape)
                batch_no = DateUtil().getcurr_datetime_String(
                    format='%Y%m%d%H%M%S')
                app.logger.info(
                    "-------------------------------------------------------------------------------------------"
                )
                app.logger.info(
                    "************************  Insert record into Aggregation table  ************************  "
                )
                app.logger.info("device_type " + device_type)
                app.logger.info("sensor_type " + sensor_type)
                app.logger.info("No of Rows " + str(len(data.index)))
                app.logger.info(
                    "-------------------------------------------------------------------------------------------"
                )

                for index, row in data.iterrows():
                    # print(1)
                    row['batch_no'] = batch_no
                    json_res = {}
                    json_res['Created_on'] = DateUtil.getcurr_datetime()
                    for i in row.keys():
                        try:
                            json_res.__setitem__(i, row[i])
                        except Exception as err:
                            print(row)
                    if sensor_type != Util.Util.IRR:
                        expected_value = 0
                        performance_ratio = 0
                        try:
                            irr_value = row['irr_value']
                            blk_sensor_capacity = row['sensor_capacity']
                            agg_value = row['AGGREGATE_VALUE']
                            # 0.25 because of 15 minutes interval
                            # to convert to W  multiply by 1000
                            expected_value = round(
                                float(irr_value * 0.001 * blk_sensor_capacity),
                                2)
                            # for percentage calculation multiply by 100
                            performance_ratio = round(
                                float(((agg_value) / expected_value) * 100), 2)
                        except Exception as err:
                            app.logger.error(str(err))
                        json_res.__setitem__('expected_value', expected_value)
                        json_res.__setitem__('performance_ratio',
                                             performance_ratio)

                    try:
                        # dao.insert_one_record(row=json_res,table_name=TABLE.IOT_AGG_MAX_TABLE)
                        _json = json_res
                        _cond = {
                            "device_type":
                            json_res.__getitem__('device_type'),
                            "sender_timestamp":
                            json_res.__getitem__('sender_timestamp'),
                            "sender_id":
                            json_res.__getitem__('sender_id'),
                            "sensor_type":
                            json_res.__getitem__('sensor_type'),
                            "device_id":
                            json_res.__getitem__('device_id'),
                            "resource_path":
                            json_res.__getitem__('resource_path')
                        }
                        print(json_res)
                        dao.upsert(
                            table_name=TABLE.IOT_AGG_1_DAY_SUMMARY_TABLE,
                            set_json=_json,
                            _condition=_cond)
                    except Exception as err:
                        error_rec = {
                            "Error:":
                            "Error in IOT_AGG_1_HOUR_SUMMARY_TABLE (insert )",
                            "Error Desc": str(err),
                            "batchjob_time": {
                                'from': frm,
                                'to': to
                            },
                            'created_on': DateUtil.getcurr_datetime()
                        }
                        dao.insert_one_record(
                            row=error_rec, table_name=TABLE.IOT_CRON_EXCEPTION)
                    # print(3)
                total_inserted_rows += len(data.index)

                app.logger.info(
                    "-------------------------------------------------------------------------------------------"
                )
                app.logger.info(
                    "************************  Update status into Main table  ************************  "
                )
                app.logger.info(
                    "-------------------------------------------------------------------------------------------"
                )

                _json = {'last_run': to}
                _cond = {"job_name": 'insert_1day_summary'}
                dao.upsert(table_name=TABLE.IOT_CRON_JOB_TABLE,
                           set_json=_json,
                           _condition=_cond)

        return "Done"
コード例 #9
0
    def pr_calculation(self, duration_limit=5):
        assert_det = dao.getAssert_master()
        loc_irr_det = dao.getLocation_IRR()
        to = DateUtil.getlowest_min_date(min=30)
        frm = to - timedelta(hours=int(duration_limit))
        app.logger.info('pr_calculation :: ' + str(frm) + " <  t >= " +
                        str(to))
        data_set = dao.getAll_iot_Main_table_detail(
            sensor_type=None,
            device_type=Util.Util.Solar,
            from_time=frm,
            to_time=to,
            table_name=TABLE.IOT_AGG_15_MINUTES_SUMMARY_TABLE)

        irr_data = data_set[data_set['sensor_type'].notnull()
                            & (data_set['sensor_type'] == Util.Util.IRR)]
        if irr_data.empty:
            return 0
        else:
            irr_summary = {}
            for index, row in irr_data.iterrows():
                sensor_id = row['sensor_id']
                sender_timestamp = row['sender_timestamp'].strftime(
                    "%Y-%m-%d:%H:%M")
                irr_val = row['irr']
                irr_summary.__setitem__(sensor_id + "#" + sender_timestamp,
                                        irr_val)
            print(irr_summary)

            other_data = data_set[data_set['sensor_type'].notnull()
                                  & (data_set['sensor_type'] != Util.Util.IRR)]

            for index, row1 in other_data.iterrows():
                expected_value = 0
                performance_ratio = 0
                irr_value = 0
                blk_sensor_capacity = 0
                try:
                    agg_value = row1['AGGREGATE_VALUE']
                    resource_path = row1['resource_path']
                    sender_timestamp = row1['sender_timestamp'].strftime(
                        "%Y-%m-%d:%H:%M")
                    irr_sensor = loc_irr_det[resource_path]
                    irr_value = irr_summary.get(irr_sensor + "#" +
                                                sender_timestamp)
                    if not irr_value:
                        irr_value = 0
                    sensor_id = row1['sensor_id']
                    blk_sensor_capacity = assert_det[sensor_id]
                    #print(agg_value, resource_path, irr_sensor, sender_timestamp, irr_value, irr_capacity)

                    # 0.25 because of 15 minutes interval
                    # to convert to W  multiply by 1000
                    expected_value = round(
                        float(irr_value * 0.001 * blk_sensor_capacity * 0.25),
                        2)
                    # for percentage calculation multiply by 100
                    performance_ratio = round(
                        float(((agg_value) / expected_value) * 100), 2)
                except Exception as err:
                    expected_value = 0
                    performance_ratio = 0
                #print('expected_value ',expected_value,'performance_ratio ', performance_ratio)

                try:
                    set_json = {
                        'expected_value': expected_value,
                        'performance_ratio': performance_ratio,
                        'irr_value': irr_value,
                        'sensor_capacity': blk_sensor_capacity,
                        'updated_on': DateUtil.getcurr_datetime()
                    }
                    _condition = {'_id': row1['_id']}
                    result_up = dao.update_record(
                        set_json,
                        TABLE.IOT_AGG_15_MINUTES_SUMMARY_TABLE,
                        _condition,
                        multi=False)
                    #print("Update", result_up)
                except Exception as err:
                    error_rec = {
                        "Error:":
                        "Error in pr_calculation (Update performance_ratio)",
                        "Error Desc": str(err),
                        "batchjob_time": {
                            'from': frm,
                            'to': to
                        },
                        'created_on': DateUtil.getcurr_datetime()
                    }
                    dao.insert_one_record(row=error_rec,
                                          table_name=TABLE.IOT_CRON_EXCEPTION)

            #dpm_data = data_set[data_set['sensor_type'].notnull() & (data_set['sensor_type'] == Util.Util.DPM)]

        return "Done"
コード例 #10
0
    def insert_aggregation_15_minutes_summary(self, duration_limit=5):
        app.logger.info("****insert_aggregation_15_minutes_summary***")

        total_inserted_rows = 0

        CONFIG_TABLE = util_service.get_Config_matrix()
        #print(CONFIG_TABLE)

        #frm = DateUtil.get_current_day(add_hr=-duration_limit)
        to = DateUtil.getlowest_min_date(min=30)
        frm = to - timedelta(hours=int(duration_limit))
        app.logger.info('insert_aggregation_15_minutes_summary :: ' +
                        str(frm) + " <  t >= " + str(to))
        #frm = DateUtil().getcurr_datetime(add_hr=-10)
        #to = DateUtil().getcurr_datetime(add_hr=-1)
        #print(frm,to)
        df = dao.getAll_iot_Main_table_detail(
            sensor_type=None,
            from_time=frm,
            to_time=to,
            table_name=TABLE.IOT_AGG_MAX_TABLE)
        print('Total No of Records', df.shape)
        if df is None:
            app.logger.info(
                "************************  No record available ************************  "
            )
            return 0

        res_data = []
        for device_type in df['device_type'].unique():
            for sensor_type in df['sensor_type'].unique():
                agg_columns = CONFIG_TABLE[device_type + '#' + sensor_type]
                agg = {}
                for col in agg_columns:
                    if col['is_aggr'] == 'Y':
                        fun = col['aggr_funct']
                        col_name = col['column_ref']
                        #logger.info(col_name + " : " + fun)
                        df[col_name] = pd.to_numeric(df[col_name],
                                                     errors='coerse')
                        #logger.info(col_name + "$" + fun)
                        if fun == "SUM":
                            agg.__setitem__(col_name, 'sum')
                            df[col_name] = df[col_name].replace(
                                [np.NaN, ''], 0).astype(np.float64).fillna(0.0)
                        elif fun == "AVG":
                            agg.__setitem__(col_name, 'mean')
                            df[col_name] = df[col_name].replace(
                                [np.NaN, ''], 0).astype(np.float64).fillna(0.0)
                        elif fun == "DIFF":
                            agg.__setitem__(col_name, 'max')
                            df[col_name] = df[col_name].replace(
                                [np.NaN, ''], 0).astype(np.float64).fillna(0.0)
                app.logger.info(agg)

                for resource_path in df['resource_path'].unique():
                    data = df[df['sensor_type'].notnull()
                              & (df['sensor_type'] == sensor_type)
                              & df['device_type'].notnull() &
                              (df['device_type'] == device_type)
                              & df['resource_path'].notnull() &
                              (df['resource_path'] == resource_path)]

                    data = data.groupby([
                        'resource_path', 'device_type', 'sender_id',
                        'device_id', 'sensor_type', 'sensor_id',
                        'sender_timestamp'
                    ]).agg(agg).reset_index()
                    data = data.sort_values(
                        ['resource_path', 'sensor_type', 'sender_timestamp'],
                        ascending=[True, True, True])
                    #logger.info("No of data " + str(len(data.index)))
                    dpm__previous_reading = 0
                    inv__previous_reading = {}
                    for sensor_id in data['resource_path'].unique():
                        inv__previous_reading.__setitem__(sensor_id, 0)

                    for index, row in data.iterrows():
                        agg_value = '0'
                        if sensor_type == Util.Util.DPM:
                            if 'Act_Energy_Del' in row.keys():
                                dpm__current_reading = row['Act_Energy_Del']
                                #print('DPM__previous_reading', dpm__previous_reading)
                                #print('DPM__current_reading', dpm__current_reading)

                                if index > 0:
                                    try:
                                        agg_value = round(
                                            float(dpm__current_reading -
                                                  dpm__previous_reading), 2)
                                        # if Reset happend
                                        if dpm__current_reading <= 0:
                                            agg_value = 0
                                    except Exception as err:
                                        app.logger.error(str(err))
                                        agg_value = 0
                                    #print('DPM_aggregated_value', agg_value)
                                dpm__previous_reading = dpm__current_reading

                        elif sensor_type == Util.Util.INV:
                            if 'E_DAY' in row.keys():
                                current_reading = row['E_DAY']
                                #print('INV_previous_reading', inv__previous_reading)
                                #print('INV_current_reading', current_reading)
                                if index > 0:
                                    try:
                                        agg_value = round(
                                            float(current_reading -
                                                  inv__previous_reading.get(
                                                      row['sensor_id'])), 2)

                                        # if Reset happend
                                        if agg_value < 0:
                                            agg_value = current_reading
                                    except Exception as err:
                                        app.logger.error(str(err))
                                    #print('INV_aggregated_value', agg_value)
                                inv__previous_reading.__setitem__(
                                    row['sensor_id'], current_reading)
                        elif sensor_type == Util.Util.IRR:
                            if 'irr' in row.keys():
                                agg_value = row['irr']

                        if index > 0:
                            row.__setitem__('AGGREGATE_VALUE', agg_value)
                            res_data.append(row)

        batch_no = DateUtil().getcurr_datetime_String(format='%Y%m%d%H%M%S')
        for row in res_data:
            # print(1)
            row['batch_no'] = batch_no
            json_res = {}
            json_res['Created_on'] = DateUtil.getcurr_datetime()
            for i in row.keys():
                try:
                    json_res.__setitem__(i, row[i])
                except Exception as err:
                    print(row)
            try:
                #print(json_res)
                total_inserted_rows += 1
                #dao.insert_one_record(row=json_res, table_name=TABLE.IOT_AGG_15_MINUTES_SUMMARY_TABLE)
                _json = json_res
                _cond = {
                    "device_type": json_res.__getitem__('device_type'),
                    "sender_timestamp":
                    json_res.__getitem__('sender_timestamp'),
                    "sender_id": json_res.__getitem__('sender_id'),
                    "sensor_type": json_res.__getitem__('sensor_type'),
                    "device_id": json_res.__getitem__('device_id'),
                    "resource_path": json_res.__getitem__('resource_path')
                }
                dao.upsert(table_name=TABLE.IOT_AGG_15_MINUTES_SUMMARY_TABLE,
                           set_json=_json,
                           _condition=_cond)
            except Exception as err:
                error_rec = {
                    "Error:":
                    "Error in IOT_AGG_15_MINUTES_SUMMARY_TABLE (insert )",
                    "Error Desc": str(err),
                    "batchjob_time": {
                        'from': frm,
                        'to': to
                    },
                    'created_on': DateUtil.getcurr_datetime()
                }
                dao.insert_one_record(row=error_rec,
                                      table_name=TABLE.IOT_CRON_EXCEPTION)

        _json = {'last_run': to}
        _cond = {"job_name": 'insert_aggregation_15_minutes_summary'}
        dao.upsert(table_name=TABLE.IOT_CRON_JOB_TABLE,
                   set_json=_json,
                   _condition=_cond)
        app.logger.info(
            "-------------------------------------------------------------------------------------------"
        )
        app.logger.info(
            "************************  Completed Aggregation table  15_max ************************  "
        )
        app.logger.info("total_inserted_rows: " + str(total_inserted_rows))
        app.logger.info(
            "-------------------------------------------------------------------------------------------"
        )
        #return data
        return total_inserted_rows
コード例 #11
0
    def insert_aggregation_15_min_Max(self, duration_limit, interval,
                                      device_type, sensor_type):
        app.logger.info("****get_aggregation_tableFrom_main***")

        total_inserted_rows = 0

        CONFIG_TABLE = util_service.get_Config_matrix()
        #print(CONFIG_TABLE)

        #frm = DateUtil().getcurr_datetime(add_hr=-duration_limit)
        to = DateUtil().getlowest_min_date(min=15)
        frm = to - timedelta(hours=int(duration_limit))
        app.logger.info('insert_aggregation_15_min_Max :: ' + str(frm) +
                        " <  t >= " + str(to))
        df = dao.getAll_iot_Main_table_detail(sensor_type=None,
                                              from_time=frm,
                                              to_time=to,
                                              processed_status=None,
                                              table_name=TABLE.IOT_MAIN_TABLE)
        print('Total No of Records', df.shape)
        if df is None:
            app.logger.info(
                "************************  No record available ************************  "
            )
            return 0
        for device_type in df['device_type'].unique():
            for sensor_type in df['sensor_type'].unique():
                agg_columns = CONFIG_TABLE[device_type + '#' + sensor_type]
                agg = {}
                for col in agg_columns:
                    if col['is_aggr'] == 'Y':
                        fun = col['aggr_funct']
                        col_name = col['column_ref']
                        #logger.info(col_name + " : " + fun)
                        df[col_name] = pd.to_numeric(df[col_name],
                                                     errors='coerse')
                        #logger.info(col_name + "$" + fun)
                        if fun == "SUM":
                            df[col_name] = df[col_name].replace(
                                [np.NaN, ''], 0).astype(np.float64).fillna(0.0)
                            agg.__setitem__(col_name, 'sum')
                        elif fun == "AVG":
                            df[col_name] = df[col_name].replace(
                                [np.NaN, ''], 0).astype(np.float64).fillna(0.0)
                            agg.__setitem__(col_name, 'mean')
                        elif fun == "DIFF":
                            df[col_name] = df[col_name].replace(
                                [np.NaN, ''], 0).astype(np.float64).fillna(0.0)
                            agg.__setitem__(col_name, 'max')
                app.logger.info(agg)

                data = df[df['sensor_type'].notnull()
                          & (df['sensor_type'] == sensor_type)
                          & df['device_type'].notnull() &
                          (df['device_type'] == device_type)]

                data = data.groupby([
                    'resource_path', 'device_type', 'sender_id', 'device_id',
                    'sensor_type', 'sensor_id',
                    Grouper(key='sender_timestamp', freq=interval + 's')
                ]).agg(agg).reset_index()

                data = data.sort_values(
                    ['resource_path', 'sensor_type', 'sender_timestamp'],
                    ascending=[True, True, True])

                # to change the group by tome to lower limit
                # e.g if 12:15 - 12:30 => group by function return 12:15. But that should be 12:30 value
                data['sender_timestamp'] = data[
                    'sender_timestamp'] + timedelta(seconds=int(interval))

                print(sensor_type, data.shape)
                batch_no = DateUtil().getcurr_datetime_String(
                    format='%Y%m%d%H%M%S')
                app.logger.info(
                    "-------------------------------------------------------------------------------------------"
                )
                app.logger.info(
                    "************************  Insert record into Aggregation table  ************************  "
                )
                app.logger.info("device_type " + device_type)
                app.logger.info("sensor_type " + sensor_type)
                app.logger.info("No of Rows " + str(len(data.index)))
                app.logger.info(
                    "-------------------------------------------------------------------------------------------"
                )

                for index, row in data.iterrows():
                    #print(1)
                    row['batch_no'] = batch_no
                    json_res = {}
                    json_res['Created_on'] = DateUtil.getcurr_datetime()
                    for i in row.keys():
                        try:
                            json_res.__setitem__(i, row[i])
                        except Exception as err:
                            print(row)
                    try:
                        #dao.insert_one_record(row=json_res,table_name=TABLE.IOT_AGG_MAX_TABLE)
                        _json = json_res
                        _cond = {
                            "device_type":
                            json_res.__getitem__('device_type'),
                            "sender_timestamp":
                            json_res.__getitem__('sender_timestamp'),
                            "sender_id":
                            json_res.__getitem__('sender_id'),
                            "sensor_type":
                            json_res.__getitem__('sensor_type'),
                            "device_id":
                            json_res.__getitem__('device_id'),
                            "resource_path":
                            json_res.__getitem__('resource_path')
                        }
                        dao.upsert(table_name=TABLE.IOT_AGG_MAX_TABLE,
                                   set_json=_json,
                                   _condition=_cond)
                    except Exception as err:
                        error_rec = {
                            "Error:":
                            "Error in insert_aggregation_15_min_Max (insert )",
                            "Error Desc": str(err),
                            "batchjob_time": {
                                'from': frm,
                                'to': to
                            },
                            'created_on': DateUtil.getcurr_datetime()
                        }
                        dao.insert_one_record(
                            row=error_rec, table_name=TABLE.IOT_CRON_EXCEPTION)
                    #print(3)
                total_inserted_rows += len(data.index)

                app.logger.info(
                    "-------------------------------------------------------------------------------------------"
                )
                app.logger.info(
                    "************************  Update status into Main table  ************************  "
                )
                app.logger.info(
                    "-------------------------------------------------------------------------------------------"
                )

                _json = {'last_run': to}
                _cond = {"job_name": 'insert_aggregation_15_min_Max'}
                dao.upsert(table_name=TABLE.IOT_CRON_JOB_TABLE,
                           set_json=_json,
                           _condition=_cond)
        '''
        app.logger.info("insert_aggregation_15_min_Max (Update processed_status)")
        for index, row1 in df.iterrows():
            try:
                set_json = {'processed_status': 'Y'}
                _condition = {'_id': row1['_id']}
                result_up = dao.update_record(set_json, TABLE.IOT_MAIN_TABLE, _condition, multi=False)
                #print("Update", _condition)
            except Exception as err:
                error_rec = {"Error:": "Error in insert_aggregation_15_min_Max (Update processed_status)", "Error Desc": str(err), "batchjob_time": {'from': frm, 'to': to},'created_on': DateUtil.getcurr_datetime()}
                dao.insert_one_record(row=error_rec,table_name=TABLE.IOT_CRON_EXCEPTION)

        '''

        app.logger.info(
            "-------------------------------------------------------------------------------------------"
        )
        app.logger.info(
            "************************  Completed Aggregation table  15_max ************************  "
        )
        app.logger.info("total_inserted_rows: " + str(total_inserted_rows))
        app.logger.info(
            "-------------------------------------------------------------------------------------------"
        )
        #return data
        return total_inserted_rows