コード例 #1
0
ファイル: Networks.py プロジェクト: bitores/MachineLearning
 def draw_conv_weights(self):
     for i, (name, weight) in enumerate(zip(self.layer_names, self._weights)):
         if len(weight.shape) != 4:
             return
         for j, _w in enumerate(weight):
             for k, _ww in enumerate(_w):
                 VisUtil.show_img(_ww, "{} {} filter {} channel {}".format(name, i+1, j+1, k+1))
コード例 #2
0
ファイル: Networks.py プロジェクト: bitores/MachineLearning
 def draw_conv_weights(self):
     with self._sess.as_default():
         for i, (name, weight) in enumerate(zip(self.layer_names, self._tf_weights)):
             weight = weight.eval()
             if len(weight.shape) != 4:
                 continue
             for j, _w in enumerate(weight.transpose(2, 3, 0, 1)):
                 VisUtil.show_batch_img(_w, "{} {} filter {}".format(name, i + 1, j + 1))
コード例 #3
0
ファイル: Networks.py プロジェクト: bitores/MachineLearning
 def draw_conv_series(self, x, shape=None):
     for xx in x:
         VisUtil.show_img(VisUtil.trans_img(xx, shape), "Original")
         activations = self._get_activations(np.array([xx]), predict=True)
         for i, (layer, ac) in enumerate(zip(self._layers, activations)):
             if len(ac.shape) == 4:
                 for n in ac:
                     _n, height, width = n.shape
                     a = int(ceil(sqrt(_n)))
                     g = np.ones((a * height + a, a * width + a), n.dtype)
                     g *= np.min(n)
                     _i = 0
                     for y in range(a):
                         for x in range(a):
                             if _i < _n:
                                 g[y * height + y:(y + 1) * height + y, x * width + x:(x + 1) * width + x] = n[
                                     _i, :, :]
                                 _i += 1
                     # normalize to [0,1]
                     max_g = g.max()
                     min_g = g.min()
                     g = (g - min_g) / (max_g - min_g)
                     VisUtil.show_img(g, "Layer {} ({})".format(i + 1, layer.name))
             else:
                 ac = ac[0]
                 length = sqrt(np.prod(ac.shape))
                 if length < 10:
                     continue
                 (height, width) = xx.shape[1:] if shape is None else shape[1:]
                 sqrt_shape = sqrt(height * width)
                 oh, ow = int(length * height / sqrt_shape), int(length * width / sqrt_shape)
                 VisUtil.show_img(ac[:oh*ow].reshape(oh, ow), "Layer {} ({})".format(i + 1, layer.name))
コード例 #4
0
ファイル: Networks.py プロジェクト: bitores/MachineLearning
 def draw_conv_series(self, x, shape=None):
     x = np.asarray(x)
     for xx in x:
         VisUtil.show_img(VisUtil.trans_img(xx, shape), "Original")
         for i, (layer, ac) in enumerate(zip(
                 self._layers, self._get_acts(np.array([xx.transpose(1, 2, 0)], dtype=np.float32)))):
             if len(ac.shape) == 4:
                 VisUtil.show_batch_img(ac[0].transpose(2, 0, 1), "Layer {} ({})".format(i + 1, layer.name))
             else:
                 ac = ac[0]
                 length = sqrt(np.prod(ac.shape))
                 if length < 10:
                     continue
                 (height, width) = xx.shape[1:] if shape is None else shape[1:]
                 sqrt_shape = sqrt(height * width)
                 oh, ow = int(length * height / sqrt_shape), int(length * width / sqrt_shape)
                 VisUtil.show_img(ac[:oh * ow].reshape(oh, ow), "Layer {} ({})".format(i + 1, layer.name))
コード例 #5
0
ファイル: Networks.py プロジェクト: bitores/MachineLearning
    def _draw_2d_network(self, radius=6, width=1200, height=800, padding=0.2,
                         plot_scale=2, plot_precision=0.03,
                         sub_layer_height_scale=0, **kwargs):
        if not kwargs["show"] and not kwargs["mp4"]:
            return
        layers = len(self._layers) + 1
        units = [layer.shape[0] for layer in self._layers] + [self._layers[-1].shape[1]]
        whether_sub_layers = np.array([False] + [isinstance(layer, SubLayer) for layer in self._layers])
        n_sub_layers = np.sum(whether_sub_layers)  # type: int

        plot_num = int(1 / plot_precision)
        if plot_num % 2 == 1:
            plot_num += 1
        half_plot_num = int(plot_num * 0.5)
        xf = np.linspace(self._x_min * plot_scale, self._x_max * plot_scale, plot_num)
        yf = np.linspace(self._x_min * plot_scale, self._x_max * plot_scale, plot_num) * -1
        input_x, input_y = np.meshgrid(xf, yf)
        input_xs = np.c_[input_x.ravel(), input_y.ravel()]

        activations = [activation.T.reshape(units[i + 1], plot_num, plot_num)
                       for i, activation in enumerate(self._get_activations(input_xs, predict=True))]
        graphs = []
        for j, activation in enumerate(activations):
            graph_group = []
            if j == len(activations) - 1:
                classes = np.argmax(activation, axis=0)
            else:
                classes = None
            for k, ac in enumerate(activation):
                data = np.zeros((plot_num, plot_num, 3), np.uint8)
                if j != len(activations) - 1:
                    mask = ac >= np.average(ac)
                else:
                    mask = classes == k
                data[mask], data[~mask] = [0, 165, 255], [255, 165, 0]
                graph_group.append(data)
            graphs.append(graph_group)

        img = np.full([height, width, 3], 255, dtype=np.uint8)
        axis0_padding = int(height / (layers - 1 + 2 * padding)) * padding + plot_num
        axis0_step = (height - 2 * axis0_padding) / layers
        sub_layer_decrease = int((1 - sub_layer_height_scale) * axis0_step)
        axis0 = np.linspace(
            axis0_padding,
            height + n_sub_layers * sub_layer_decrease - axis0_padding,
            layers, dtype=np.int)
        axis0 -= sub_layer_decrease * np.cumsum(whether_sub_layers)
        axis1_padding = plot_num
        axis1 = [np.linspace(axis1_padding, width - axis1_padding, unit + 2, dtype=np.int)
                 for unit in units]
        axis1 = [axis[1:-1] for axis in axis1]

        colors, thicknesses, masks = [], [], []
        for weight in self._weights:
            line_info = VisUtil.get_line_info(weight.copy())
            colors.append(line_info[0])
            thicknesses.append(line_info[1])
            masks.append(line_info[2])

        for i, (y, xs) in enumerate(zip(axis0, axis1)):
            for j, x in enumerate(xs):
                if i == 0:
                    cv2.circle(img, (x, y), radius, (20, 215, 20), int(radius / 2))
                else:
                    graph = graphs[i - 1][j]
                    img[y - half_plot_num:y + half_plot_num, x - half_plot_num:x + half_plot_num] = graph
            if i > 0:
                cv2.putText(img, self._layers[i - 1].name, (12, y - 36), cv2.LINE_AA, 0.6, (0, 0, 0), 1)
        for i, y in enumerate(axis0):
            if i == len(axis0) - 1:
                break
            for j, x in enumerate(axis1[i]):
                new_y = axis0[i + 1]
                whether_sub_layer = isinstance(self._layers[i], SubLayer)
                for k, new_x in enumerate(axis1[i + 1]):
                    if whether_sub_layer and j != k:
                        continue
                    if masks[i][j][k]:
                        cv2.line(img, (x, y + half_plot_num), (new_x, new_y - half_plot_num),
                                 colors[i][j][k], thicknesses[i][j][k])

        return img
コード例 #6
0
ファイル: Networks.py プロジェクト: CourAgeZ/MachineLearning
    def _draw_img_network(self, img_shape, width=1200, height=800, padding=0.2,
                          sub_layer_height_scale=0, delay=1,
                          weight_average=None):

        img_width, img_height = img_shape
        half_width = int(img_width * 0.5) if img_width % 2 == 0 else int(img_width * 0.5) + 1
        half_height = int(img_height * 0.5) if img_height % 2 == 0 else int(img_height * 0.5) + 1

        layers = len(self._layers)
        units = [layer.shape[1] for layer in self._layers]
        whether_sub_layers = np.array([isinstance(layer, SubLayer) for layer in self._layers])
        n_sub_layers = int(np.sum(whether_sub_layers))

        _activations = [self._weights[0].copy().T]
        for weight in self._weights[1:]:
            _activations.append(weight.T.dot(_activations[-1]))
        _graphs = []
        for j, activation in enumerate(_activations):
            _graph_group = []
            for ac in activation:
                ac = ac.reshape(img_width, img_height)
                ac -= np.average(ac)
                data = np.zeros((img_width, img_height, 3), np.uint8)
                mask = ac >= 0.25
                data[mask], data[~mask] = [0, 130, 255], [255, 130, 0]
                _graph_group.append(data)
            _graphs.append(_graph_group)

        img = np.zeros((height, width, 3), np.uint8)
        axis0_padding = int(height / (layers - 1 + 2 * padding)) * padding + img_height
        axis0_step = (height - 2 * axis0_padding) / layers
        sub_layer_decrease = int((1 - sub_layer_height_scale) * axis0_step)
        axis0 = np.linspace(
            axis0_padding,
            height + n_sub_layers * sub_layer_decrease - axis0_padding,
            layers, dtype=np.int)
        axis0 -= sub_layer_decrease * np.cumsum(whether_sub_layers)
        axis1_padding = img_width
        axis1 = [np.linspace(axis1_padding, width - axis1_padding, unit + 2, dtype=np.int)
                 for unit in units]
        axis1 = [axis[1:-1] for axis in axis1]

        colors, thicknesses = [], []
        color_weights = [weight.copy() for weight in self._weights]
        color_min = [np.min(weight) for weight in color_weights]
        color_max = [np.max(weight) for weight in color_weights]
        color_average = [np.average(weight) for weight in color_weights] if weight_average is None else weight_average
        for weight, weight_min, weight_max, weight_average in zip(
                color_weights, color_min, color_max, color_average
        ):
            line_info = VisUtil.get_line_info(weight, weight_min, weight_max, weight_average)
            colors.append(line_info[0])
            thicknesses.append(line_info[1])

        for i, (y, xs) in enumerate(zip(axis0, axis1)):
            for j, x in enumerate(xs):
                graph = _graphs[i][j]
                img[y - half_height:y + half_height, x - half_width:x + half_width] = graph
            cv2.putText(img, self._layers[i].name, (12, y - 36), cv2.LINE_AA, 0.6, (255, 255, 255), 2)

        for i, y in enumerate(axis0):
            if i == len(axis0) - 1:
                break
            for j, x in enumerate(axis1[i]):
                new_y = axis0[i + 1]
                whether_sub_layer = isinstance(self._layers[i + 1], SubLayer)
                for k, new_x in enumerate(axis1[i + 1]):
                    if whether_sub_layer and j != k:
                        continue
                    cv2.line(img, (x, y + half_height), (new_x, new_y - half_height),
                             colors[i + 1][j][k], thicknesses[i + 1][j][k])

        cv2.imshow("Neural Network", img)
        cv2.waitKey(delay)
        return img
コード例 #7
0
ファイル: Networks.py プロジェクト: CourAgeZ/MachineLearning
    def _draw_detailed_network(self, radius=6, width=1200, height=800, padding=0.2,
                               plot_scale=2, plot_precision=0.03,
                               sub_layer_height_scale=0, delay=1,
                               weight_average=None):

        layers = len(self._layers) + 1
        units = [layer.shape[0] for layer in self._layers] + [self._layers[-1].shape[1]]
        whether_sub_layers = np.array([False] + [isinstance(layer, SubLayer) for layer in self._layers])
        n_sub_layers = int(np.sum(whether_sub_layers))

        plot_num = int(1 / plot_precision)
        if plot_num % 2 == 1:
            plot_num += 1
        half_plot_num = int(plot_num * 0.5)
        xf = np.linspace(self._x_min * plot_scale, self._x_max * plot_scale, plot_num)
        yf = np.linspace(self._x_min * plot_scale, self._x_max * plot_scale, plot_num) * -1
        input_x, input_y = np.meshgrid(xf, yf)
        input_xs = np.c_[input_x.ravel(), input_y.ravel()]

        _activations = [activation.T.reshape(units[i + 1], plot_num, plot_num)
                        for i, activation in enumerate(self._get_activations(input_xs, predict=True))]
        _graphs = []
        for j, activation in enumerate(_activations):
            _graph_group = []
            for ac in activation:
                data = np.zeros((plot_num, plot_num, 3), np.uint8)
                mask = ac >= np.average(ac)
                data[mask], data[~mask] = [0, 125, 255], [255, 125, 0]
                _graph_group.append(data)
            _graphs.append(_graph_group)

        img = np.ones((height, width, 3), np.uint8) * 255
        axis0_padding = int(height / (layers - 1 + 2 * padding)) * padding + plot_num
        axis0_step = (height - 2 * axis0_padding) / layers
        sub_layer_decrease = int((1 - sub_layer_height_scale) * axis0_step)
        axis0 = np.linspace(
            axis0_padding,
            height + n_sub_layers * sub_layer_decrease - axis0_padding,
            layers, dtype=np.int)
        axis0 -= sub_layer_decrease * np.cumsum(whether_sub_layers)
        axis1_padding = plot_num
        axis1 = [np.linspace(axis1_padding, width - axis1_padding, unit + 2, dtype=np.int)
                 for unit in units]
        axis1 = [axis[1:-1] for axis in axis1]

        colors, thicknesses = [], []
        color_weights = [weight.copy() for weight in self._weights]
        color_min = [np.min(weight) for weight in color_weights]
        color_max = [np.max(weight) for weight in color_weights]
        color_average = [np.average(weight) for weight in color_weights] if weight_average is None else weight_average
        for weight, weight_min, weight_max, weight_average in zip(
                color_weights, color_min, color_max, color_average
        ):
            line_info = VisUtil.get_line_info(weight, weight_min, weight_max, weight_average)
            colors.append(line_info[0])
            thicknesses.append(line_info[1])

        for i, (y, xs) in enumerate(zip(axis0, axis1)):
            for j, x in enumerate(xs):
                if i == 0:
                    cv2.circle(img, (x, y), radius, (20, 215, 20), int(radius / 2))
                else:
                    graph = _graphs[i - 1][j]
                    img[y - half_plot_num:y + half_plot_num, x - half_plot_num:x + half_plot_num] = graph
            if i > 0:
                cv2.putText(img, self._layers[i - 1].name, (12, y - 36), cv2.LINE_AA, 0.6, (0, 0, 0), 1)

        for i, y in enumerate(axis0):
            if i == len(axis0) - 1:
                break
            for j, x in enumerate(axis1[i]):
                new_y = axis0[i + 1]
                whether_sub_layer = isinstance(self._layers[i], SubLayer)
                for k, new_x in enumerate(axis1[i + 1]):
                    if whether_sub_layer and j != k:
                        continue
                    cv2.line(img, (x, y + half_plot_num), (new_x, new_y - half_plot_num),
                             colors[i][j][k], thicknesses[i][j][k])

        cv2.imshow("Neural Network", img)
        cv2.waitKey(delay)
        return img
コード例 #8
0
ファイル: Networks.py プロジェクト: CourAgeZ/MachineLearning
    def _draw_network(self, radius=6, width=1200, height=800, padding=0.2, sub_layer_height_scale=0, delay=1,
                      weight_average=None, activations=None):

        layers = len(self._layers) + 1
        units = [layer.shape[0] for layer in self._layers] + [self._layers[-1].shape[1]]
        whether_sub_layers = np.array([False] + [isinstance(layer, SubLayer) for layer in self._layers])
        n_sub_layers = int(np.sum(whether_sub_layers))

        img = np.zeros((height, width, 3), np.uint8)
        axis0_padding = int(height / (layers - 1 + 2 * padding)) * padding
        axis0_step = (height - 2 * axis0_padding) / layers
        sub_layer_decrease = int((1 - sub_layer_height_scale) * axis0_step)
        axis0 = np.linspace(
            axis0_padding,
            height + n_sub_layers * sub_layer_decrease - axis0_padding,
            layers, dtype=np.int)
        axis0 -= sub_layer_decrease * np.cumsum(whether_sub_layers)
        axis1_divide = [int(width / (unit + 1)) for unit in units]
        axis1 = [np.linspace(divide, width - divide, units[i], dtype=np.int)
                 for i, divide in enumerate(axis1_divide)]

        colors, thicknesses = [], []
        color_weights = [weight.copy() for weight in self._weights]
        color_min = [np.min(weight) for weight in color_weights]
        color_max = [np.max(weight) for weight in color_weights]
        color_average = [np.average(weight) for weight in color_weights] if weight_average is None else weight_average
        for weight, weight_min, weight_max, weight_average in zip(
                color_weights, color_min, color_max, color_average
        ):
            line_info = VisUtil.get_line_info(weight, weight_min, weight_max, weight_average)
            colors.append(line_info[0])
            thicknesses.append(line_info[1])

        activations = [np.average(np.abs(activation), axis=0) for activation in activations]
        activations = [activation / np.max(activation) for activation in activations]
        for i, (y, xs) in enumerate(zip(axis0, axis1)):
            for j, x in enumerate(xs):
                if i == 0:
                    cv2.circle(img, (x, y), radius, (20, 215, 20), int(radius / 2))
                else:
                    activation = activations[i - 1][j]
                    try:
                        cv2.circle(img, (x, y), radius, (
                            int(255 * activation), int(255 * activation), int(255 * activation)), int(radius / 2))
                    except ValueError:
                        cv2.circle(img, (x, y), radius, (0, 0, 255), int(radius / 2))
            if i > 0:
                cv2.putText(img, self._layers[i - 1].name, (12, y - 36), cv2.LINE_AA, 0.6, (255, 255, 255), 2)

        for i, y in enumerate(axis0):
            if i == len(axis0) - 1:
                break
            for j, x in enumerate(axis1[i]):
                new_y = axis0[i + 1]
                whether_sub_layer = isinstance(self._layers[i], SubLayer)
                for k, new_x in enumerate(axis1[i + 1]):
                    if whether_sub_layer and j != k:
                        continue
                    cv2.line(img, (x, y), (new_x, new_y), colors[i][j][k], thicknesses[i][j][k])

        cv2.imshow("Neural Network", img)
        cv2.waitKey(delay)
        return img
コード例 #9
0
 def _handle_mp4(self, ims, animation_properties, name=None):
     if name is None:
         name = str(self)
     if animation_properties[2] and ims:
         VisUtil.make_mp4(ims, name)
コード例 #10
0
ファイル: Networks.py プロジェクト: F0nnys/ML
    def _draw_2d_network(self,
                         radius=6,
                         width=1200,
                         height=800,
                         padding=0.2,
                         plot_scale=2,
                         plot_precision=0.03,
                         sub_layer_height_scale=0,
                         **kwargs):
        if not kwargs["show"] and not kwargs["mp4"]:
            return
        layers = len(self._layers) + 1
        units = [layer.shape[0]
                 for layer in self._layers] + [self._layers[-1].shape[1]]
        whether_sub_layers = np.array(
            [False] + [isinstance(layer, SubLayer) for layer in self._layers])
        n_sub_layers = np.sum(whether_sub_layers)  # type: int

        plot_num = int(1 / plot_precision)
        if plot_num % 2 == 1:
            plot_num += 1
        half_plot_num = int(plot_num * 0.5)
        xf = np.linspace(self._x_min * plot_scale, self._x_max * plot_scale,
                         plot_num)
        yf = np.linspace(self._x_min * plot_scale, self._x_max * plot_scale,
                         plot_num) * -1
        input_x, input_y = np.meshgrid(xf, yf)
        input_xs = np.c_[input_x.ravel(), input_y.ravel()]

        activations = [
            activation.T.reshape(units[i + 1], plot_num, plot_num)
            for i, activation in enumerate(
                self._get_activations(input_xs, predict=True))
        ]
        graphs = []
        for j, activation in enumerate(activations):
            graph_group = []
            if j == len(activations) - 1:
                classes = np.argmax(activation, axis=0)
            else:
                classes = None
            for k, ac in enumerate(activation):
                data = np.zeros((plot_num, plot_num, 3), np.uint8)
                if j != len(activations) - 1:
                    mask = ac >= np.average(ac)
                else:
                    mask = classes == k
                data[mask], data[~mask] = [0, 165, 255], [255, 165, 0]
                graph_group.append(data)
            graphs.append(graph_group)

        img = np.full([height, width, 3], 255, dtype=np.uint8)
        axis0_padding = int(height /
                            (layers - 1 + 2 * padding)) * padding + plot_num
        axis0_step = (height - 2 * axis0_padding) / layers
        sub_layer_decrease = int((1 - sub_layer_height_scale) * axis0_step)
        axis0 = np.linspace(axis0_padding,
                            height + n_sub_layers * sub_layer_decrease -
                            axis0_padding,
                            layers,
                            dtype=np.int)
        axis0 -= sub_layer_decrease * np.cumsum(whether_sub_layers)
        axis1_padding = plot_num
        axis1 = [
            np.linspace(axis1_padding,
                        width - axis1_padding,
                        unit + 2,
                        dtype=np.int) for unit in units
        ]
        axis1 = [axis[1:-1] for axis in axis1]

        colors, thicknesses, masks = [], [], []
        for weight in self._weights:
            line_info = VisUtil.get_line_info(weight.copy())
            colors.append(line_info[0])
            thicknesses.append(line_info[1])
            masks.append(line_info[2])

        for i, (y, xs) in enumerate(zip(axis0, axis1)):
            for j, x in enumerate(xs):
                if i == 0:
                    cv2.circle(img, (x, y), radius, (20, 215, 20),
                               int(radius / 2))
                else:
                    graph = graphs[i - 1][j]
                    img[y - half_plot_num:y + half_plot_num,
                        x - half_plot_num:x + half_plot_num] = graph
            if i > 0:
                cv2.putText(img, self._layers[i - 1].name, (12, y - 36),
                            cv2.LINE_AA, 0.6, (0, 0, 0), 1)
        for i, y in enumerate(axis0):
            if i == len(axis0) - 1:
                break
            for j, x in enumerate(axis1[i]):
                new_y = axis0[i + 1]
                whether_sub_layer = isinstance(self._layers[i], SubLayer)
                for k, new_x in enumerate(axis1[i + 1]):
                    if whether_sub_layer and j != k:
                        continue
                    if masks[i][j][k]:
                        cv2.line(img, (x, y + half_plot_num),
                                 (new_x, new_y - half_plot_num),
                                 colors[i][j][k], thicknesses[i][j][k])

        return img
コード例 #11
0
ファイル: Bases.py プロジェクト: jiayanliu/MachineLearning
 def _handle_mp4(self, ims, animation_properties, name=None):
     if name is None:
         name = str(self)
     if animation_properties[2] and ims:
         VisUtil.make_mp4(ims, name)