コード例 #1
0
ファイル: NetworkBaseLayer.py プロジェクト: rwth-i6/returnn
  def load(self, head):
    """
    :type head: h5py.File
    """
    try:
      grp = head[self.name]
    except Exception:
      print("warning: unable to load parameters for layer", self.name, file=log.v3)
      return

    grp_class = as_str(grp.attrs['class'])
    if grp_class == "<unknown_softmax>": grp_class = "softmax"  # bug in some CRNN version. can be ignored.
    if grp_class != self.layer_class:
      from NetworkLayer import get_layer_class
      if not get_layer_class(grp_class, raise_exception=False) is get_layer_class(self.layer_class):
        print("warning: invalid layer class (expected " + self.layer_class + " got " + grp.attrs['class'] + ")", file=log.v3)
    for p in self.params:
      if p not in grp:
        print("unable to load parameter %s in %s" % (p, self.name), file=log.v4)
    for p in grp:
      if p in self.params:
        if self.params[p].get_value(borrow=True, return_internal_type=True).shape == grp[p].shape:
          array = grp[p][...]
          assert not (numpy.isinf(array).any() or numpy.isnan(array).any())
          self.params[p].set_value(array)
        else:
          print("warning: invalid layer parameter shape for parameter " + p + " of layer " + self.name + \
            " (expected  " + str(self.params[p].get_value(borrow=True, return_internal_type=True).shape) + \
            " got " + str(grp[p].shape) + ")", file=log.v2)
          #assert self.params[p].get_value(borrow=True, return_internal_type=True).shape == grp[p].shape, \
          #  "invalid layer parameter shape for parameter " + p + " of layer " + self.name + \
          #  " (expected  " + str(self.params[p].get_value(borrow=True, return_internal_type=True).shape) + \
          #  " got " + str(grp[p].shape) + ")"
      else:
        print("unable to match parameter %s in %s" % (p, self.name), file=log.v4)
コード例 #2
0
ファイル: Network.py プロジェクト: rwth-i6/returnn
 def from_hdf(cls, filename=None, model=None, load_params=True, **kwargs):
   """
   Gets the JSON from the hdf file, initializes the network and loads the network params.
   :param str|None filename: filename of hdf
   :param h5py.File|None model: hdf, if no filename is provided
   :param bool load_params: whether to load the params
   """
   if model is None:
     assert filename
     model = h5py.File(filename, "r")
     close_at_end = True
   else:
     assert not filename
     close_at_end = False
   assert "json" in model.attrs, "Maybe old network model where JSON was not stored. Use version before 2016-10-11."
   json_content_s = as_str(model.attrs['json'])
   assert json_content_s and json_content_s != "{}"
   json_content = json.loads(json_content_s)
   kwargs = kwargs.copy()
   if "n_out" not in kwargs:
     n_in, n_out = cls._n_in_out_from_hdf_model(model)
     n_out['__final'] = True
     kwargs["n_in"] = n_in
     kwargs["n_out"] = n_out
   network = cls.from_json(json_content, **kwargs)
   if load_params:
     network.load_hdf(model)
   if close_at_end:
     model.close()
   return network
コード例 #3
0
 def __init__(self, layer_class=None, name="", network=None,
              train_flag=False, eval_flag=False, depth=1, consensus="flat",
              forward_weights_init=None, bias_init=None, weight_clip=0.0, cost=None,
              recurrent_weights_init=None,
              substitute_param_expr=None):
   """
   :param str layer_class: name of layer type, e.g. "hidden", "recurrent", "lstm" or so. see LayerClasses.
   :param str name: custom layer name, e.g. "hidden_2"
   :param Network.LayerNetwork network: the network which we will be part of
   :param str forward_weights_init: see self.create_forward_weights()
   :param str bias_init: see self.create_bias()
   """
   self.params = {}; """ :type: dict[str,theano.compile.sharedvalue.SharedVariable] """
   self.attrs = {}; """ :type: dict[str,str|float|int|bool|dict] """
   self.device = None
   if layer_class:
     self.layer_class = as_str(layer_class.encode("utf8"))
   self.name = as_str(name.encode("utf8"))
   self.train_flag = train_flag
   self.eval_flag = eval_flag
   self.depth = depth
   if depth != 1:
     self.set_attr('depth', depth)
   if consensus != "flat":
     self.set_attr('consensus', consensus)
   self.network = network
   if forward_weights_init:
     self.set_attr("forward_weights_init", forward_weights_init)
   self.forward_weights_init = forward_weights_init or "random_normal()"
   if recurrent_weights_init:
     self.set_attr("recurrent_weights_init", recurrent_weights_init)
   self.recurrent_weights_init = recurrent_weights_init or "random_uniform()"
   if bias_init:
     self.set_attr("bias_init", bias_init)
   self.bias_init = bias_init or "zeros()"
   if substitute_param_expr:
     self.set_attr("substitute_param_expr", substitute_param_expr)
   self.substitute_param_expr = substitute_param_expr
   if weight_clip:
     self.set_attr('weight_clip', weight_clip)
   if cost:
     self.set_attr('cost', cost)
コード例 #4
0
ファイル: NetworkBaseLayer.py プロジェクト: rwth-i6/returnn
 def __init__(self, layer_class=None, name="", network=None,
              train_flag=False, eval_flag=False, depth=1, consensus="flat",
              forward_weights_init=None, bias_init=None, weight_clip=0.0, cost=None,
              recurrent_weights_init=None,
              substitute_param_expr=None):
   """
   :param str layer_class: name of layer type, e.g. "hidden", "recurrent", "lstm" or so. see LayerClasses.
   :param str name: custom layer name, e.g. "hidden_2"
   :param Network.LayerNetwork network: the network which we will be part of
   :param str forward_weights_init: see self.create_forward_weights()
   :param str bias_init: see self.create_bias()
   """
   self.params = {}; """ :type: dict[str,theano.compile.sharedvalue.SharedVariable] """
   self.attrs = {}; """ :type: dict[str,str|float|int|bool|dict] """
   self.device = None
   if layer_class:
     self.layer_class = as_str(layer_class.encode("utf8"))
   self.name = as_str(name.encode("utf8"))
   self.train_flag = train_flag
   self.eval_flag = eval_flag
   self.depth = depth
   if depth != 1:
     self.set_attr('depth', depth)
   if consensus != "flat":
     self.set_attr('consensus', consensus)
   self.network = network
   if forward_weights_init:
     self.set_attr("forward_weights_init", forward_weights_init)
   self.forward_weights_init = forward_weights_init or "random_normal()"
   if recurrent_weights_init:
     self.set_attr("recurrent_weights_init", recurrent_weights_init)
   self.recurrent_weights_init = recurrent_weights_init or "random_uniform()"
   if bias_init:
     self.set_attr("bias_init", bias_init)
   self.bias_init = bias_init or "zeros()"
   if substitute_param_expr:
     self.set_attr("substitute_param_expr", substitute_param_expr)
   self.substitute_param_expr = substitute_param_expr
   if weight_clip:
     self.set_attr('weight_clip', weight_clip)
   if cost:
     self.set_attr('cost', cost)
コード例 #5
0
    def load(self, head):
        """
    :type head: h5py.File
    """
        try:
            grp = head[self.name]
        except Exception:
            print("warning: unable to load parameters for layer",
                  self.name,
                  file=log.v3)
            return

        grp_class = as_str(grp.attrs['class'])
        if grp_class == "<unknown_softmax>":
            grp_class = "softmax"  # bug in some CRNN version. can be ignored.
        if grp_class != self.layer_class:
            from NetworkLayer import get_layer_class
            if not get_layer_class(grp_class,
                                   raise_exception=False) is get_layer_class(
                                       self.layer_class):
                print("warning: invalid layer class (expected " +
                      self.layer_class + " got " + grp.attrs['class'] + ")",
                      file=log.v3)
        for p in self.params:
            if p not in grp:
                print("unable to load parameter %s in %s" % (p, self.name),
                      file=log.v4)
        for p in grp:
            if p in self.params:
                if self.params[p].get_value(
                        borrow=True,
                        return_internal_type=True).shape == grp[p].shape:
                    array = grp[p][...]
                    assert not (numpy.isinf(array).any()
                                or numpy.isnan(array).any())
                    self.params[p].set_value(array)
                else:
                    print("warning: invalid layer parameter shape for parameter " + p + " of layer " + self.name + \
                      " (expected  " + str(self.params[p].get_value(borrow=True, return_internal_type=True).shape) + \
                      " got " + str(grp[p].shape) + ")", file=log.v2)
                    #assert self.params[p].get_value(borrow=True, return_internal_type=True).shape == grp[p].shape, \
                    #  "invalid layer parameter shape for parameter " + p + " of layer " + self.name + \
                    #  " (expected  " + str(self.params[p].get_value(borrow=True, return_internal_type=True).shape) + \
                    #  " got " + str(grp[p].shape) + ")"
            else:
                print("unable to match parameter %s in %s" % (p, self.name),
                      file=log.v4)
コード例 #6
0
ファイル: Network.py プロジェクト: atuxhe/returnn
 def from_hdf(cls, filename, load_params=True, **kwargs):
   """
   Gets the JSON from the hdf file, initializes the network and loads the network params.
   :param str filename: filename of hdf
   :param bool load_params: whether to load the params
   """
   model = h5py.File(filename, "r")
   json_content_s = as_str(model.attrs['json'])
   assert json_content_s and json_content_s != "{}"
   json_content = json.loads(json_content_s)
   kwargs = kwargs.copy()
   if "n_out" not in kwargs:
     n_in, n_out = cls._n_in_out_from_hdf_model(model)
     kwargs["n_in"] = n_in
     kwargs["n_out"] = n_out
   network = cls.from_json(json_content, **kwargs)
   if load_params:
     network.load_hdf(model)
   model.close()
   return network
コード例 #7
0
ファイル: NetworkOutputLayer.py プロジェクト: atuxhe/returnn
  def __init__(self, loss, y, dtype=None, copy_input=None, copy_output=None, time_limit=0,
               use_source_index=False,
               compute_priors=False, compute_priors_exp_average=0, compute_distortions=False,
               softmax_smoothing=1.0, grad_clip_z=None, grad_discard_out_of_bound_z=None, normalize_length=False,
               exclude_labels=[],
               apply_softmax=True,
               substract_prior_from_output=False,
               input_output_similarity=None,
               input_output_similarity_scale=1,
               **kwargs):
    """
    :param theano.Variable index: index for batches
    :param str loss: e.g. 'ce'
    """
    super(OutputLayer, self).__init__(**kwargs)
    self.set_attr("normalize_length", normalize_length)
    if dtype:
      self.set_attr('dtype', dtype)
    if copy_input:
      self.set_attr("copy_input", copy_input.name)
    if grad_clip_z is not None:
      self.set_attr("grad_clip_z", grad_clip_z)
    if compute_distortions:
      self.set_attr("compute_distortions", compute_distortions)
    if grad_discard_out_of_bound_z is not None:
      self.set_attr("grad_discard_out_of_bound_z", grad_discard_out_of_bound_z)
    if not apply_softmax:
      self.set_attr("apply_softmax", apply_softmax)
    if substract_prior_from_output:
      self.set_attr("substract_prior_from_output", substract_prior_from_output)
    if input_output_similarity:
      self.set_attr("input_output_similarity", input_output_similarity)
      self.set_attr("input_output_similarity_scale", input_output_similarity_scale)
    if use_source_index:
      self.set_attr("use_source_index", use_source_index)
      src_index = self.sources[0].index
      self.index = src_index
    if not copy_input:
      self.z = self.b
      self.W_in = [self.add_param(self.create_forward_weights(source.attrs['n_out'], self.attrs['n_out'],
                                                              name="W_in_%s_%s" % (source.name, self.name)))
                   for source in self.sources]

      assert len(self.sources) == len(self.masks) == len(self.W_in)
      assert len(self.sources) > 0
      for source, m, W in zip(self.sources, self.masks, self.W_in):
        source_output = source.output
        # 4D input from TwoD Layers -> collapse height dimension
        if source_output.ndim == 4:
          source_output = source_output.sum(axis=0)
        if source.attrs['sparse']:
          if source.output.ndim == 3:
            input = source_output[:, :, 0]  # old sparse format
          else:
            assert source_output.ndim == 2
            input = source.output
          self.z += W[T.cast(input, 'int32')]
        elif m is None:
          self.z += self.dot(source_output, W)
        else:
          self.z += self.dot(self.mass * m * source_output, W)
    else:
      self.z = copy_input.output
    assert self.z.ndim == 3
    if grad_clip_z is not None:
      grad_clip_z = numpy.float32(grad_clip_z)
      self.z = theano.gradient.grad_clip(self.z, -grad_clip_z, grad_clip_z)
    if grad_discard_out_of_bound_z is not None:
      grad_discard_out_of_bound_z = numpy.float32(grad_discard_out_of_bound_z)
      self.z = grad_discard_out_of_bound(self.z, -grad_discard_out_of_bound_z, grad_discard_out_of_bound_z)
    if not copy_output:
      self.y = y
    else:
      self.index = copy_output.index
      self.y = copy_output.y_out
    if y is None:
      self.y_data_flat = None
    elif isinstance(y, T.Variable):
      self.y_data_flat = time_batch_make_flat(y)
    else:
      assert self.attrs.get("target", "").endswith("[sparse:coo]")
      assert isinstance(self.y, tuple)
      assert len(self.y) == 3
      s0, s1, weight = self.y
      from NativeOp import max_and_argmax_sparse
      n_time = self.z.shape[0]
      n_batch = self.z.shape[1]
      mask = self.network.j[self.attrs.get("target", "").replace("[sparse:coo]", "[sparse:coo:2:0]")]
      out_arg = T.zeros((n_time, n_batch), dtype="float32")
      out_max = T.zeros((n_time, n_batch), dtype="float32") - numpy.float32(1e16)
      out_arg, out_max = max_and_argmax_sparse(s0, s1, weight, mask, out_arg, out_max)
      assert out_arg.ndim == 2
      self.y_data_flat = out_arg.astype("int32")

    self.norm = numpy.float32(1)
    self.target_index = self.index
    if time_limit == 'inf':
      # target_length = self.index.shape[0]
      # mass = T.cast(T.sum(self.index),'float32')
      # self.index = theano.ifelse.ifelse(T.gt(self.z.shape[0],target_length),self.sources[0].index,self.index)
      # self.norm = mass / T.cast(T.sum(self.index),'float32')
      num = T.cast(T.sum(self.index), 'float32')
      if self.eval_flag:
        self.index = self.sources[0].index
      else:
        import theano.ifelse
        padx = T.zeros((T.abs_(self.index.shape[0] - self.z.shape[0]), self.index.shape[1], self.z.shape[2]),
                       'float32') + self.z[-1]
        pady = T.zeros((T.abs_(self.index.shape[0] - self.z.shape[0]), self.index.shape[1]), 'int32')  # + y[-1]
        padi = T.ones((T.abs_(self.index.shape[0] - self.z.shape[0]), self.index.shape[1]), 'int8')
        self.z = theano.ifelse.ifelse(T.lt(self.z.shape[0], self.index.shape[0]),
                                      T.concatenate([self.z, padx], axis=0), self.z)
        # self.z = theano.ifelse.ifelse(T.gt(self.z.shape[0], self.index.shape[0]),self.z[:self.index.shape[0]], self.z)
        self.y_data_flat = time_batch_make_flat(theano.ifelse.ifelse(T.gt(self.z.shape[0], self.index.shape[0]),
                                                                     T.concatenate([y, pady], axis=0), y))
        # self.index = theano.ifelse.ifelse(T.gt(self.z.shape[0], self.index.shape[0]), T.concatenate([T.ones((self.z.shape[0] - self.index.shape[0],self.z.shape[1]),'int8'), self.index], axis=0), self.index)
        self.index = theano.ifelse.ifelse(T.gt(self.z.shape[0], self.index.shape[0]),
                                          T.concatenate([padi, self.index], axis=0), self.index)
      self.norm *= num / T.cast(T.sum(self.index), 'float32')
    elif time_limit > 0:
      end = T.min([self.z.shape[0], T.constant(time_limit, 'int32')])
      num = T.cast(T.sum(self.index), 'float32')
      self.index = T.set_subtensor(self.index[end:], T.zeros_like(self.index[end:]))
      self.norm = num / T.cast(T.sum(self.index), 'float32')
      self.z = T.set_subtensor(self.z[end:], T.zeros_like(self.z[end:]))

    # xs = [s.output for s in self.sources]
    # self.z = AccumulatorOpInstance(*[self.b] + xs + self.W_in)
    # outputs_info = None #[ T.alloc(numpy.cast[theano.config.floatX](0), index.shape[1], self.attrs['n_out']) ]

    # self.z, _ = theano.scan(step,
    #                        sequences = [s.output for s in self.sources],
    #                        non_sequences = self.W_in + [self.b])

    self.set_attr('from', ",".join([s.name for s in self.sources]))
    index_flat = self.index.flatten()
    for label in exclude_labels:
      index_flat = T.set_subtensor(index_flat[(T.eq(self.y_data_flat, label) > 0).nonzero()], numpy.int8(0))
    self.i = (index_flat > 0).nonzero()
    self.j = ((numpy.int32(1) - index_flat) > 0).nonzero()
    self.loss = as_str(loss.encode("utf8"))
    self.attrs['loss'] = self.loss
    if compute_priors:
      self.set_attr('compute_priors', compute_priors)
      if compute_priors_exp_average:
        self.set_attr('compute_priors_exp_average', compute_priors_exp_average)
    if softmax_smoothing != 1.0:
      self.attrs['softmax_smoothing'] = softmax_smoothing
      print >> log.v4, "Logits before the softmax scaled with factor ", softmax_smoothing
      self.z *= numpy.float32(softmax_smoothing)
    if self.loss == 'priori':
      self.priori = self.shared(value=numpy.ones((self.attrs['n_out'],), dtype=theano.config.floatX), borrow=True)

    if input_output_similarity:
      # First a self-similarity of input and output,
      # and then add -similarity or distance between those to the constraints,
      # so that the input and output correlate on a frame-by-frame basis.
      # Here some other similarities/distances we could try:
      # http://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html
      # https://brenocon.com/blog/2012/03/cosine-similarity-pearson-correlation-and-ols-coefficients/
      from TheanoUtil import self_similarity_cosine
      self_similarity = self_similarity_cosine  # maybe other
      data_layer = self.find_data_layer()
      assert data_layer
      assert data_layer.output.ndim == 3
      n_time = data_layer.output.shape[0]
      n_batch = data_layer.output.shape[1]
      findex = T.cast(self.output_index(), "float32")
      findex_bc = findex.reshape((n_time * n_batch,)).dimshuffle(0, 'x')
      findex_sum = T.sum(findex)
      data = data_layer.output.reshape((n_time * n_batch, data_layer.output.shape[2])) * findex_bc
      assert self.z.ndim == 3
      z = self.z.reshape((n_time * n_batch, self.z.shape[2])) * findex_bc
      data_self_sim = T.flatten(self_similarity(data))
      z_self_sim = T.flatten(self_similarity(z))
      assert data_self_sim.ndim == z_self_sim.ndim == 1
      sim = T.dot(data_self_sim, z_self_sim)  # maybe others make sense
      assert sim.ndim == 0
      # sim is ~ proportional to T * T, so divide by T.
      sim *= numpy.float32(input_output_similarity_scale) / findex_sum
      self.constraints -= sim

    # self.make_output(self.z, collapse = False)
    # Note that self.output is going to be overwritten in our derived classes.
    self.output = self.make_consensus(self.z) if self.depth > 1 else self.z
    self.y_m = None  # flat log(self.p_y_given_x)