コード例 #1
0
def plot_mean_boxplot_with_pearson(dataset_id):
    data = []
    pearson = []
    for i, technique_id in enumerate(technique_list):
        print(Globals.acronyms[technique_id], end=' ', flush=True)
        technique_pearson = []
        technique_data = []
        history = Parser.parse_rectangles(technique_id, dataset_id)
        for revision in range(len(history) - 1):
            delta_vis = DeltaMetrics.compute_delta_vis(history[revision],
                                                       history[revision + 1])
            delta_data = DeltaMetrics.compute_delta_data(
                history[revision], history[revision + 1])
            un_mov = UnavoidableMovement.compute_unavoidable_movement(
                history[revision], history[revision + 1])

            ratios = (1 - delta_vis) / (1 - delta_data)
            diffs = 1 - abs(delta_vis - delta_data)
            unavoidable = 1 - (delta_vis - un_mov)
            mean = (ratios + diffs + unavoidable) / 3
            technique_data.append(mean)

            # Compute linear regression statistics
            _, _, r_value, _, _ = stats.linregress(delta_data, delta_vis)
            technique_pearson.append(r_value if r_value > 0 else 0)

        data.append(technique_data)
        pearson.append(technique_pearson)

    TimeBoxplot.plot_with_pearson(data,
                                  technique_list,
                                  pearson,
                                  title='Mean with Pearson - ' + dataset_id)
コード例 #2
0
def plot_time_boxplot(dataset_id):
    data = []
    for i, technique_id in enumerate(technique_list):
        technique_data = []
        history = Parser.parse_rectangles(technique_id, dataset_id)
        for revision in range(len(history) - 1):
            shneiderman = compute_shneiderman(history[revision],
                                              history[revision + 1])
            technique_data.append(shneiderman)
        data.append(technique_data)

    TimeBoxplot.plot(data, technique_list, title="Shneiderman - " + dataset_id)
コード例 #3
0
def plot_time_boxplot(dataset_id):
    data = []
    for i, technique_id in enumerate(technique_list):
        technique_data = []
        history = Parser.parse_rectangles(technique_id, dataset_id)
        for revision in range(len(history) - 1):
            rpc = relative_position_change_wrapper(history[revision],
                                                   history[revision + 1])
            technique_data.append(rpc)
        data.append(technique_data)
        print(Globals.acronyms[technique_id], end=' ', flush=True)

    TimeBoxplot.plot(data, technique_list, title="RPC - " + dataset_id)
コード例 #4
0
def pearson_matrix(dataset_ids):
    matrix = []
    for dataset_id in dataset_ids:
        dataset_values = []
        for technique_id in technique_list:
            # print(Globals.acronyms[technique_id], dataset_id)
            history = Parser.parse_rectangles(technique_id, dataset_id)
            # Compute all delta_vis and delta_data values for a dataset (1 pair per cell)
            all_delta_data = np.array([])
            all_delta_vis = np.array([])
            for revision in range(len(history) - 1):
                delta_data = DeltaMetrics.compute_delta_data(history[revision], history[revision + 1])
                all_delta_data = np.append(all_delta_data, delta_data)

                delta_vis = DeltaMetrics.compute_delta_vis(history[revision], history[revision + 1])
                all_delta_vis = np.append(all_delta_vis, delta_vis)

            # Compute linear regression statistics
            slope, intercept, r_value, p_value, std_err = stats.linregress(all_delta_data, all_delta_vis)

            dataset_values.append(r_value)
            print(Globals.acronyms[technique_id], dataset_id, r_value)
        matrix.append(dataset_values)

    matrix = np.array(matrix).transpose()

    MatrixPlot.plot(matrix, dataset_ids, technique_list,
                    shared_cm=False,
                    cell_text=True,
                    title='Pearson')

    MatrixPlot.plot(matrix, dataset_ids, technique_list,
                    shared_cm=True,
                    cell_text=True,
                    title='Pearson')

    MatrixPlot.plot(matrix, dataset_ids, technique_list,
                    shared_cm=False,
                    cell_text=False,
                    title='Pearson')

    MatrixPlot.plot(matrix, dataset_ids, technique_list,
                    shared_cm=True,
                    cell_text=False,
                    title='Pearson')
コード例 #5
0
def plot_ar_matrix(dataset_ids):
    matrix = []
    for dataset_id in dataset_ids:
        dataset_values = []
        for technique_id in technique_list:
            history = Parser.parse_rectangles(technique_id, dataset_id)
            all_ratios = np.array([])
            for revision in range(len(history) - 1):
                ratios = compute_aspect_ratios(history[revision])
                all_ratios = np.append(all_ratios, ratios.values)

            dataset_values.append(all_ratios.mean())
            print(Globals.acronyms[technique_id], dataset_id,
                  all_ratios.mean())
        matrix.append(dataset_values)

    matrix = np.array(matrix).transpose()

    MatrixPlot.plot(matrix,
                    dataset_ids,
                    technique_list,
                    shared_cm=False,
                    cell_text=True,
                    title='Aspect ratio')

    MatrixPlot.plot(matrix,
                    dataset_ids,
                    technique_list,
                    shared_cm=True,
                    cell_text=True,
                    title='Aspect ratio')

    MatrixPlot.plot(matrix,
                    dataset_ids,
                    technique_list,
                    shared_cm=False,
                    cell_text=False,
                    title='Aspect ratio')

    MatrixPlot.plot(matrix,
                    dataset_ids,
                    technique_list,
                    shared_cm=True,
                    cell_text=False,
                    title='Aspect ratio')
コード例 #6
0
def plot_matrix(dataset_ids):
    matrix = []
    for dataset_id in dataset_ids:
        dataset_values = []
        for technique_id in technique_list:
            history = Parser.parse_rectangles(technique_id, dataset_id)
            avg = compute_location_drift(history)
            dataset_values.append(avg)
            print(Globals.acronyms[technique_id], dataset_id, avg)
        matrix.append(dataset_values)

    matrix = np.array(matrix).transpose()

    MatrixPlot.plot(matrix,
                    dataset_ids,
                    technique_list,
                    cell_text=True,
                    title='Location Drift')
コード例 #7
0
def delta_ratio_boxplots(dataset_id):
    data = []
    for i, technique_id in enumerate(technique_list):
        technique_data = []
        history = Parser.parse_rectangles(technique_id, dataset_id)
        for revision in range(len(history) - 1):
            delta_vis = compute_delta_vis(history[revision], history[revision + 1])
            delta_data = compute_delta_data(history[revision], history[revision + 1])
            ratios = (1 - delta_vis) / (1 - delta_data)
            technique_data.append(ratios)
        data.append(technique_data)

    TimeBoxplot.plot(data, technique_list,
                     title="Delta Ratio - " + dataset_id)

    TimeBoxplot.plot(data, technique_list,
                     median_sorted=True,
                     title="Delta Ratio - " + dataset_id)
コード例 #8
0
def plot_time_boxplot(dataset_id):
    data = []
    for i, technique_id in enumerate(technique_list):
        technique_data = []
        history = Parser.parse_rectangles(technique_id, dataset_id)
        for revision in range(len(history)):
            ratios = compute_aspect_ratios(history[revision]).tolist()
            technique_data.append(ratios)
        data.append(technique_data)

    TimeBoxplot.plot(data,
                     technique_list,
                     title="Aspect Ratios - " + dataset_id)

    TimeBoxplot.plot(data,
                     technique_list,
                     median_sorted=True,
                     title="Aspect Ratios - " + dataset_id)
コード例 #9
0
def plot_mean_boxplot(
        dataset_id,
        metrics='VIS'):  # Default case was what was used at VIS18 paper
    data = []
    for i, technique_id in enumerate(technique_list):
        print(Globals.acronyms[technique_id], end=' ', flush=True)
        technique_data = []
        history = Parser.parse_rectangles(technique_id, dataset_id)
        for revision in range(len(history) - 1):
            if metrics == 'VIS':
                delta_vis = DeltaMetrics.compute_delta_vis(
                    history[revision], history[revision + 1])
                delta_data = DeltaMetrics.compute_delta_data(
                    history[revision], history[revision + 1])
                un_mov = UnavoidableMovement.compute_unavoidable_movement(
                    history[revision], history[revision + 1])

                ratios = (1 - delta_vis) / (1 - delta_data)
                diffs = 1 - abs(delta_vis - delta_data)
                unavoidable = 1 - (delta_vis - un_mov)

                mean = (ratios + diffs + unavoidable) / 3

            elif metrics == 'SIBGRAPI':
                delta_vis = DeltaMetrics.compute_delta_vis(
                    history[revision], history[revision + 1])
                delta_data = DeltaMetrics.compute_delta_data(
                    history[revision], history[revision + 1])

                ratios = (1 - delta_vis) / (1 - delta_data)
                shn = ShneidermanWattenberg.compute_shneiderman(
                    history[revision], history[revision + 1])

                mean = (ratios + shn) / 2

            technique_data.append(mean)
        data.append(technique_data)

    TimeBoxplot.plot(data, technique_list, title='Mean - ' + dataset_id)

    TimeBoxplot.plot(data,
                     technique_list,
                     median_sorted=True,
                     title='Mean - ' + dataset_id)
コード例 #10
0
def plot(dataset_id):

    fig, axs = plt.subplots(math.ceil(len(technique_list) / 5), 5)
    fig.suptitle("Centroid Trail - " + dataset_id)

    norm = math.sqrt(
        1000**2 + 1000**
        2)  # Assuming we are plotting the treemap in a 1000x1000 pixel frame

    for i, technique_id in enumerate(technique_list):
        ax = fig.axes[i]
        ax.set_title(Globals.acronyms[technique_id])
        history = Parser.parse_rectangles(technique_id, dataset_id)
        centroids = compute_centroids(history)

        lines = []
        colors = []
        for key, centroid_list in centroids.items():
            for i in range(len(centroid_list) - 1):
                a = centroid_list[i]
                b = centroid_list[i + 1]
                lines.append((a, b))  # Add line segment
                alpha = math.sqrt((a[0] - b[0])**2 + (a[1] - b[1])**2) / norm
                alpha = alpha / math.sqrt(len(centroid_list))
                colors.append((0, 0, 0, alpha))  # Set color for line segment

        lc = mc.LineCollection(lines, colors=colors, linewidths=1)
        ax.add_collection(lc)
        ax.set_xlim(0, 1000)
        ax.set_ylim(0, 1000)
        ax.tick_params(axis='x',
                       which='both',
                       bottom=False,
                       top=False,
                       labelbottom=False)
        ax.tick_params(axis='y',
                       which='both',
                       left=False,
                       right=False,
                       labelleft=False)
        ax.set_aspect('equal', adjustable='box')

    fig.savefig(Globals.plot_subdir + dataset_id + '.png', dpi=500)
コード例 #11
0
def delta_ratio_matrix(dataset_ids):
    matrix = []
    for dataset_id in dataset_ids:
        dataset_values = []
        for technique_id in technique_list:
            history = Parser.parse_rectangles(technique_id, dataset_id)
            all_ratios = np.array([])
            for revision in range(len(history) - 1):
                delta_vis = compute_delta_vis(history[revision], history[revision + 1])
                delta_data = compute_delta_data(history[revision], history[revision + 1])
                ratio = (1 - delta_vis) / (1 - delta_data)
                all_ratios = np.append(all_ratios, ratio.values)

            dataset_values.append(all_ratios.mean())
            print(Globals.acronyms[technique_id], dataset_id, all_ratios.mean())
        matrix.append(dataset_values)

    matrix = np.array(matrix).transpose()

    MatrixPlot.plot(matrix, dataset_ids, technique_list,
                    shared_cm=False,
                    cell_text=True,
                    title='Delta ratio')

    MatrixPlot.plot(matrix, dataset_ids, technique_list,
                    shared_cm=True,
                    cell_text=True,
                    title='Delta ratio')

    MatrixPlot.plot(matrix, dataset_ids, technique_list,
                    shared_cm=False,
                    cell_text=False,
                    title='Delta ratio')

    MatrixPlot.plot(matrix, dataset_ids, technique_list,
                    shared_cm=True,
                    cell_text=False,
                    title='Delta ratio')
コード例 #12
0
def plot_matrix(dataset_ids):
    matrix = []
    for dataset_id in dataset_ids:
        dataset_values = []
        for technique_id in technique_list:
            history = Parser.parse_rectangles(technique_id, dataset_id)
            all_ratios = np.array([])
            for revision in range(len(history) - 1):
                distances = compute_shneiderman(history[revision],
                                                history[revision + 1])
                all_ratios = np.append(all_ratios, distances.values)

            dataset_values.append(all_ratios.mean())
            print(Globals.acronyms[technique_id], dataset_id,
                  all_ratios.mean())
        matrix.append(dataset_values)

    matrix = np.array(matrix).transpose()

    MatrixPlot.plot(matrix,
                    dataset_ids,
                    technique_list,
                    cell_text=True,
                    title='Shneiderman-Wattenberg')
コード例 #13
0
def scatter(dataset_id):
    fig, axs = plt.subplots(int(len(technique_list)/2), 2, sharex=True, sharey=True, figsize=(20, 44))

    xlim = 0
    for i, technique_id in enumerate(technique_list):
        # print(Globals.acronyms[technique_id])
        ax = fig.axes[i]

        history = Parser.parse_rectangles(technique_id, dataset_id)
        # Compute all delta_vis and delta_data values for a dataset (1 pair per cell)
        all_delta_data = np.array([])
        all_delta_vis = np.array([])
        for revision in range(len(history) - 1):
            delta_data = DeltaMetrics.compute_delta_data(history[revision], history[revision + 1])
            all_delta_data = np.append(all_delta_data, delta_data)

            delta_vis = DeltaMetrics.compute_delta_vis(history[revision], history[revision + 1])
            all_delta_vis = np.append(all_delta_vis, delta_vis)

        # Compute linear regression and draw regression line
        slope, intercept, r_value, p_value, std_err = stats.linregress(all_delta_data, all_delta_vis)

        if xlim == 0:
            xlim = np.percentile(all_delta_data, 99.99)  # Remove outliers

        # If there are too many points to handle, first we draw all of them in black (alpha),
        # then subsample the space, perform kde, and draw the colored subsample
        # over the original points
        sample_size = 10000
        if len(all_delta_data) > sample_size:
            ax.scatter(all_delta_data, all_delta_vis, color='k', s=1, alpha=.25)

            # matrix = df[['delta_data', 'delta_vis']].sample(sample_size).T.as_matrix()
            indices = np.random.choice(len(all_delta_vis), sample_size)
            matrix = np.vstack([all_delta_data[indices], all_delta_vis[indices]])
            dens = stats.gaussian_kde(matrix)
            dens_pt = dens(matrix)
            colours = make_colors(dens_pt, 'inferno')
            ax.scatter(matrix[0], matrix[1], color=colours, s=3, alpha=.05)
        else:
            matrix = np.vstack([all_delta_data, all_delta_vis])
            dens = stats.gaussian_kde(matrix)
            dens_pt = dens(matrix)
            colours = make_colors(dens_pt, 'inferno')
            ax.scatter(matrix[0], matrix[1], color=colours, s=3, alpha=.25)

        line = np.poly1d([slope, intercept])(all_delta_data)
        ax.plot(all_delta_data, line, 'r-', lw=.5)

        print(Globals.acronyms[technique_id], r_value)

        title = Globals.acronyms[technique_id]
        title += r"  $\alpha = $" + "{0:.2f}".format(intercept)
        title += r"  $\beta = $" + "{0:.2f}".format(slope)
        title += r"  $r = $" + "{0:.3f}".format(r_value)
        title += r"  $s_e = $" + "{0:.3f}".format(std_err)
        ax.set_title(title)

        ax.spines['top'].set_visible(False)
        ax.spines['right'].set_visible(False)
        ax.tick_params(axis='x', which='both', top='off')
        ax.tick_params(axis='y', which='both', right='off')
        ax.set_xlim(xmin=0, xmax=xlim)
        ax.set_ylim(ymin=0)

    fig.savefig(Globals.plot_subdir + 'scatter-' + dataset_id + '.png', dpi=500)
    # plt.show()
    return