コード例 #1
0
 def test_dateInput(self):
     """Test parseDates returns correct values when passed date info"""
     year, month, day, hour, minute, dt = loadData.parseDates(
         self.input_dates, self.indicator)
     assert_almost_equal(year, self.year)
     assert_almost_equal(month, self.month)
     assert_almost_equal(day, self.day)
     assert_almost_equal(hour, self.hour)
     assert_almost_equal(minute, self.minute)
コード例 #2
0
ファイル: test_loadData.py プロジェクト: HyeonJeongKim/tcrm
 def test_dateInput(self):
     """Test parseDates returns correct values when passed date info"""
     year, month, day, hour, minute, dt = loadData.parseDates(self.input_dates,
                                                          self.indicator)
     assert_almost_equal(year, self.year)
     assert_almost_equal(month, self.month)
     assert_almost_equal(day, self.day)
     assert_almost_equal(hour, self.hour)
     assert_almost_equal(minute, self.minute)
コード例 #3
0
    def test_ParseDatesNoMinsInput(self):
        """Test parseDates with year, month, day, hour (no minutes) input"""
        inputdata = dict(year=self.year,
                         month=self.month,
                         day=self.day,
                         hour=self.hour)
        year, month, day, hour, minute, dt = loadData.parseDates(
            inputdata, self.indicator)

        assert_almost_equal(year, self.year)
        assert_almost_equal(month, self.month)
        assert_almost_equal(day, self.day)
        assert_almost_equal(hour, self.hour)
        assert_almost_equal(minute, np.zeros((self.hour.size), 'i'))
コード例 #4
0
    def test_parseDatesYMDHInput(self):
        """Test parseDates with year, month, day, hourminute (HHMM) input"""
        inputdata = dict(year=self.year,
                         month=self.month,
                         day=self.day,
                         hour=self.hourmin)
        year, month, day, hour, minute, dt = loadData.parseDates(
            inputdata, self.indicator)

        assert_almost_equal(year, self.year)
        assert_almost_equal(month, self.month)
        assert_almost_equal(day, self.day)
        assert_almost_equal(hour, self.hour)
        assert_almost_equal(minute, self.minute)
コード例 #5
0
ファイル: test_loadData.py プロジェクト: HyeonJeongKim/tcrm
    def test_ParseDatesNoMinsInput(self):
        """Test parseDates with year, month, day, hour (no minutes) input"""
        inputdata = dict(year=self.year,
                         month=self.month,
                         day=self.day,
                         hour=self.hour)
        year, month, day, hour, minute, dt = loadData.parseDates(inputdata,
                                                             self.indicator)

        assert_almost_equal(year, self.year)
        assert_almost_equal(month, self.month)
        assert_almost_equal(day, self.day)
        assert_almost_equal(hour, self.hour)
        assert_almost_equal(minute, np.zeros((self.hour.size), 'i'))
コード例 #6
0
ファイル: test_loadData.py プロジェクト: HyeonJeongKim/tcrm
    def test_parseDatesYMDHInput(self):
        """Test parseDates with year, month, day, hourminute (HHMM) input"""
        inputdata = dict(year=self.year,
                         month=self.month,
                         day=self.day,
                         hour=self.hourmin)
        year, month, day, hour, minute, dt = loadData.parseDates(inputdata,
                                                             self.indicator)

        assert_almost_equal(year, self.year)
        assert_almost_equal(month, self.month)
        assert_almost_equal(day, self.day)
        assert_almost_equal(hour, self.hour)
        assert_almost_equal(minute, self.minute)
コード例 #7
0
    def processData(self, restrictToWindfieldDomain=False):
        """
        Process raw data into ASCII files that can be read by the main
        components of the system

        :param bool restrictToWindfieldDomain: if True, only process data
            within the wind field domain, otherwise, process data from
            across the track generation domain.

        """
        config = ConfigParser()
        config.read(self.configFile)

        self.logger.info("Running {0}".format(flModuleName()))

        if config.has_option('DataProcess', 'InputFile'):
            inputFile = config.get('DataProcess', 'InputFile')

        if config.has_option('DataProcess', 'Source'):
            source = config.get('DataProcess', 'Source')
            self.logger.info('Loading %s dataset', source)
            fn = config.get(source, 'filename')
            path = config.get(source, 'path')
            inputFile = pjoin(path, fn)

        # If input file has no path information, default to tcrm input folder
        if len(os.path.dirname(inputFile)) == 0:
            inputFile = pjoin(self.tcrm_input_dir, inputFile)

        self.logger.info("Processing {0}".format(inputFile))

        self.source = config.get('DataProcess', 'Source')

        inputData = colReadCSV(self.configFile, inputFile, self.source)

        inputSpeedUnits = config.get(self.source, 'SpeedUnits')
        inputPressureUnits = config.get(self.source, 'PressureUnits')
        inputLengthUnits = config.get(self.source, 'LengthUnits')
        startSeason = config.getint('DataProcess', 'StartSeason')

        indicator = loadData.getInitialPositions(inputData)
        lat = np.array(inputData['lat'], 'd')
        lon = np.mod(np.array(inputData['lon'], 'd'), 360)

        if restrictToWindfieldDomain:
            # Filter the input arrays to only retain the tracks that
            # pass through the windfield domain.
            CD = CalcTrackDomain(self.configFile)
            self.domain = CD.calcDomainFromTracks(indicator, lon, lat)
            domainIndex = self.extractTracks(indicator, lon, lat)
            inputData = inputData[domainIndex]
            indicator = indicator[domainIndex]
            lon = lon[domainIndex]
            lat = lat[domainIndex]

        if self.progressbar is not None:
            self.progressbar.update(0.125)

        # Sort date/time information
        try:
            dt = np.empty(indicator.size, 'f')
            dt[1:] = np.diff(inputData['age'])
        except (ValueError, KeyError):

            try:
                self.logger.info(("Filtering input data by season:"
                                  "season > {0}".format(startSeason)))
                # Find indicies that satisfy minimum season filter
                idx = np.where(inputData['season'] >= startSeason)[0]
                # Filter records:
                inputData = inputData[idx]
                indicator = indicator[idx]
                lon = lon[idx]
                lat = lat[idx]
            except (ValueError, KeyError):
                pass

            year, month, day, hour, minute, datetimes \
                = loadData.parseDates(inputData, indicator)

            # Time between observations:
            dt = loadData.getTimeDelta(year, month, day, hour, minute)

            # Calculate julian days:
            jdays = loadData.julianDays(year, month, day, hour, minute)

        delta_lon = np.diff(lon)
        delta_lat = np.diff(lat)

        # Split into separate tracks if large jump occurs (delta_lon >
        # 15 degrees or delta_lat > 5 degrees) This avoids two tracks
        # being accidentally combined when seasons and track numbers
        # match but basins are different as occurs in the IBTrACS
        # dataset.  This problem can also be prevented if the
        # 'tcserialno' column is specified.
        indicator[np.where(delta_lon > 15)[0] + 1] = 1
        indicator[np.where(delta_lat > 5)[0] + 1] = 1

        # Save information required for frequency auto-calculation
        try:
            origin_seasonOrYear = np.array(inputData['season'],
                                           'i').compress(indicator)
            header = 'Season'
        except (ValueError, KeyError):
            origin_seasonOrYear = year.compress(indicator)
            header = 'Year'

        flSaveFile(self.origin_year,
                   np.transpose(origin_seasonOrYear),
                   header,
                   ',',
                   fmt='%d')

        pressure = np.array(inputData['pressure'], 'd')
        novalue_index = np.where(pressure == sys.maxint)
        pressure = metutils.convert(pressure, inputPressureUnits, "hPa")
        pressure[novalue_index] = sys.maxint

        # Convert any non-physical central pressure values to maximum integer
        # This is required because IBTrACS has a mix of missing value codes
        # (i.e. -999, 0, 9999) in the same global dataset.
        pressure = np.where((pressure < 600) | (pressure > 1100), sys.maxint,
                            pressure)

        if self.progressbar is not None:
            self.progressbar.update(0.25)

        try:
            vmax = np.array(inputData['vmax'], 'd')
        except (ValueError, KeyError):
            self.logger.warning("No max wind speed data")
            vmax = np.empty(indicator.size, 'f')
        else:
            novalue_index = np.where(vmax == sys.maxint)
            vmax = metutils.convert(vmax, inputSpeedUnits, "mps")
            vmax[novalue_index] = sys.maxint

        assert lat.size == indicator.size
        assert lon.size == indicator.size
        assert pressure.size == indicator.size
        #assert vmax.size == indicator.size

        try:
            rmax = np.array(inputData['rmax'])
            novalue_index = np.where(rmax == sys.maxint)
            rmax = metutils.convert(rmax, inputLengthUnits, "km")
            rmax[novalue_index] = sys.maxint

            self._rmax(rmax, indicator)
            self._rmaxRate(rmax, dt, indicator)
        except (ValueError, KeyError):
            self.logger.warning("No rmax data available")

        if self.ncflag:
            self.data['index'] = indicator

        # ieast : parameter used in latLon2Azi
        # FIXME: should be a config setting describing the input data.
        ieast = 1

        # Determine the index of initial cyclone observations, excluding
        # those cyclones that have only one observation. This is used
        # for calculating initial bearing and speed
        indicator2 = np.where(indicator > 0, 1, 0)
        initIndex = np.concatenate(
            [np.where(np.diff(indicator2) == -1, 1, 0), [0]])

        # Calculate the bearing and distance (km) of every two
        # consecutive records using ll2azi
        bear_, dist_ = maputils.latLon2Azi(lat, lon, ieast, azimuth=0)
        assert bear_.size == indicator.size - 1
        assert dist_.size == indicator.size - 1
        bear = np.empty(indicator.size, 'f')
        bear[1:] = bear_
        dist = np.empty(indicator.size, 'f')
        dist[1:] = dist_

        self._lonLat(lon, lat, indicator, initIndex)
        self._bearing(bear, indicator, initIndex)
        self._bearingRate(bear, dt, indicator)
        if self.progressbar is not None:
            self.progressbar.update(0.375)
        self._speed(dist, dt, indicator, initIndex)
        self._speedRate(dist, dt, indicator)
        self._pressure(pressure, indicator)
        self._pressureRate(pressure, dt, indicator)
        self._windSpeed(vmax)

        try:
            self._frequency(year, indicator)
            self._juliandays(jdays, indicator, year)
        except (ValueError, KeyError):
            pass

        self.logger.info("Completed {0}".format(flModuleName()))
        if self.progressbar is not None:
            self.progressbar.update(0.5)
コード例 #8
0
ファイル: DataProcess.py プロジェクト: HyeonJeongKim/tcrm
    def processData(self, restrictToWindfieldDomain=False):
        """
        Process raw data into ASCII files that can be read by the main
        components of the system

        :param bool restrictToWindfieldDomain: if True, only process data
            within the wind field domain, otherwise, process data from
            across the track generation domain.
            
        """
        config = ConfigParser()
        config.read(self.configFile)

        self.logger.info("Running %s" % flModuleName())

        if config.has_option('DataProcess', 'InputFile'):
            inputFile = config.get('DataProcess', 'InputFile')

        if config.has_option('DataProcess', 'Source'):
            source = config.get('DataProcess', 'Source')
            self.logger.info('Loading %s dataset', source)
            fn = config.get(source, 'filename')
            path = config.get(source, 'path')
            inputFile = pjoin(path, fn)

        # If input file has no path information, default to tcrm input folder
        if len(os.path.dirname(inputFile)) == 0:
            inputFile = pjoin(self.tcrm_input_dir, inputFile)

        self.logger.info("Processing %s" % inputFile)

        self.source = config.get('DataProcess', 'Source')

        inputData = colReadCSV(self.configFile, inputFile, self.source)

        inputSpeedUnits = config.get(self.source, 'SpeedUnits')
        inputPressureUnits = config.get(self.source, 'PressureUnits')
        inputLengthUnits = config.get(self.source, 'LengthUnits')
        startSeason = config.getint('DataProcess', 'StartSeason')

        indicator = loadData.getInitialPositions(inputData)
        lat = np.array(inputData['lat'], 'd')
        lon = np.mod(np.array(inputData['lon'], 'd'), 360)

        if restrictToWindfieldDomain:
            # Filter the input arrays to only retain the tracks that
            # pass through the windfield domain.
            CD = CalcTrackDomain(self.configFile)
            self.domain = CD.calcDomainFromTracks(indicator, lon, lat)
            domainIndex = self.extractTracks(indicator, lon, lat)
            inputData = inputData[domainIndex]
            indicator = indicator[domainIndex]
            lon = lon[domainIndex]
            lat = lat[domainIndex]

        if self.progressbar is not None:
            self.progressbar.update(0.125)

        # Sort date/time information
        try:
            dt = np.empty(indicator.size, 'f')
            dt[1:] = np.diff(inputData['age'])
        except (ValueError, KeyError):

            try:
                self.logger.info("Filtering input data by season: season > %d"%startSeason)
                # Find indicies that satisfy minimum season filter
                idx = np.where(inputData['season'] >= startSeason)[0]
                # Filter records:
                inputData = inputData[idx]
                indicator = indicator[idx]
                lon = lon[idx]
                lat = lat[idx]
            except (ValueError, KeyError):
                pass

            year, month, day, hour, minute, datetimes \
                = loadData.parseDates(inputData, indicator)

            # Time between observations:
            dt = loadData.getTimeDelta(year, month, day, hour, minute)

            # Calculate julian days:
            jdays = loadData.julianDays(year, month, day, hour, minute)

        delta_lon = np.diff(lon)
        delta_lat = np.diff(lat)

        # Split into separate tracks if large jump occurs (delta_lon >
        # 15 degrees or delta_lat > 5 degrees) This avoids two tracks
        # being accidentally combined when seasons and track numbers
        # match but basins are different as occurs in the IBTrACS
        # dataset.  This problem can also be prevented if the
        # 'tcserialno' column is specified.
        indicator[np.where(delta_lon > 15)[0] + 1] = 1
        indicator[np.where(delta_lat > 5)[0] + 1] = 1

        # Save information required for frequency auto-calculation
        try:
            origin_seasonOrYear = np.array(
                inputData['season'], 'i').compress(indicator)
            header = 'Season'
        except (ValueError, KeyError):
            origin_seasonOrYear = year.compress(indicator)
            header = 'Year'

        flSaveFile(self.origin_year, np.transpose(origin_seasonOrYear),
                   header, ',', fmt='%d')

        pressure = np.array(inputData['pressure'], 'd')
        novalue_index = np.where(pressure == sys.maxint)
        pressure = metutils.convert(pressure, inputPressureUnits, "hPa")
        pressure[novalue_index] = sys.maxint

        # Convert any non-physical central pressure values to maximum integer
        # This is required because IBTrACS has a mix of missing value codes
        # (i.e. -999, 0, 9999) in the same global dataset.
        pressure = np.where((pressure < 600) | (pressure > 1100),
                            sys.maxint, pressure)

        if self.progressbar is not None:
            self.progressbar.update(0.25)

        try:
            vmax = np.array(inputData['vmax'], 'd')
        except (ValueError, KeyError):
            self.logger.warning("No max wind speed data")
            vmax = np.empty(indicator.size, 'f')
        else:
            novalue_index = np.where(vmax == sys.maxint)
            vmax = metutils.convert(vmax, inputSpeedUnits, "mps")
            vmax[novalue_index] = sys.maxint

        assert lat.size == indicator.size
        assert lon.size == indicator.size
        assert pressure.size == indicator.size
        #assert vmax.size == indicator.size

        try:
            rmax = np.array(inputData['rmax'])
            novalue_index = np.where(rmax == sys.maxint)
            rmax = metutils.convert(rmax, inputLengthUnits, "km")
            rmax[novalue_index] = sys.maxint

            self._rmax(rmax, indicator)
            self._rmaxRate(rmax, dt, indicator)
        except (ValueError, KeyError):
            self.logger.warning("No rmax data available")

        if self.ncflag:
            self.data['index'] = indicator

        # ieast : parameter used in latLon2Azi
        # FIXME: should be a config setting describing the input data.
        ieast = 1

        # Determine the index of initial cyclone observations, excluding
        # those cyclones that have only one observation. This is used
        # for calculating initial bearing and speed
        indicator2 = np.where(indicator > 0, 1, 0)
        initIndex = np.concatenate([np.where(np.diff(indicator2) ==
                                             -1, 1, 0), [0]])

        # Calculate the bearing and distance (km) of every two
        # consecutive records using ll2azi
        bear_, dist_ = maputils.latLon2Azi(lat, lon, ieast, azimuth=0)
        assert bear_.size == indicator.size - 1
        assert dist_.size == indicator.size - 1
        bear = np.empty(indicator.size, 'f')
        bear[1:] = bear_
        dist = np.empty(indicator.size, 'f')
        dist[1:] = dist_

        self._lonLat(lon, lat, indicator, initIndex)
        self._bearing(bear, indicator, initIndex)
        self._bearingRate(bear, dt, indicator)
        if self.progressbar is not None:
            self.progressbar.update(0.375)
        self._speed(dist, dt, indicator, initIndex)
        self._speedRate(dist, dt, indicator)
        self._pressure(pressure, indicator)
        self._pressureRate(pressure, dt, indicator)
        self._windSpeed(vmax)

        try:
            self._frequency(year, indicator)
            self._juliandays(jdays, indicator, year)
        except (ValueError, KeyError):
            pass

        self.logger.info("Completed %s" % flModuleName())
        if self.progressbar is not None:
            self.progressbar.update(0.5)