# In[]: Plotting print("Ploting ERPs for Class: " + Classes +" in Condition: " + Cond ) print("with the information of Subjects: " + str(N_S_list )) # Put all data X_S._data=X_data X_S.events=Y_data X_averaged=X_S.average() fig= plt.figure(figsize=(20,10)) axs= fig.add_axes([0.1,0.1,0.8,0.8]) # Plot Cues if plot_cues_bool: plt.plot([0,0],[-15,15],axes=axs,color='black') plt.plot([0.5,0.5],[-15,15],axes=axs,color='black') plt.plot([3,3],[-15,15],axes=axs,color='black') # Plot ERPs X_averaged.plot(spatial_colors = spatial_colors, picks = picks, ylim = ylim, axes = axs, xlim= [t_start , t_end]) title = "ERPs - Condition: " + Cond + " in Class" + Classes axs.set_title(title, fontsize = fontsize) # Save Figure if save_bool: Ensure_dir(save_dir) fig.savefig(save_dir + prefix + '_' + Cond + '_' + Classes + '_' + channels + '_.png', transparent = True)
# Check and Correct event events = Event_correction(N_S=N_S, N_E=N_B, events=events) # replace the raw events with the new corrected events rawdata.event = events report['Recording_time'] = int( np.round(rawdata.last_samp / rawdata.info['sfreq'])) # Cognitive Control report['Ans_R'], report['Ans_W'] = Cognitive_control_check(events) # In[] Save report file_path = save_dir + Num_s + '/ses-0' + str(N_B) Ensure_dir(file_path) file_name = file_path + '/' + Num_s + '_ses-0' + str( N_B) + '_report.pkl' with open(file_name, 'wb') as output: pickle.dump(report, output, pickle.HIGHEST_PROTOCOL) # In[]:EXG # the EXG Channels for saving picks_eog = mne.pick_types(rawdata.info, eeg=False, stim=False, include=[ 'EXG1', 'EXG2', 'EXG3', 'EXG4', 'EXG5', 'EXG6', 'EXG7', 'EXG8' ]) epochsEOG = mne.Epochs(rawdata,