コード例 #1
0
    def generator(self, t_z, t_text_embedding):

        s = self.options['image_size']
        s2, s4, s8, s16 = int(s/2), int(s/4), int(s/8), int(s/16)

        reduced_text_embedding = ops.lrelu( ops.linear(t_text_embedding, self.options['t_dim'], 'g_embedding') )
        tf.summary.tensor_summary("Reduced voice embedding", reduced_text_embedding)
        #z_concat = tf.concat(1, [t_z, reduced_text_embedding])
        z_concat = t_text_embedding
        z_ = ops.linear(z_concat, self.options['gf_dim']*8*s16*s16, 'g_h0_lin')
        h0 = tf.reshape(z_, [-1, s16, s16, self.options['gf_dim'] * 8])
        h0 = tf.nn.relu(self.g_bn0(h0))

        h1 = ops.deconv2d(h0, [self.options['batch_size'], s8, s8, self.options['gf_dim']*4], name='g_h1')
        h1 = tf.nn.relu(self.g_bn1(h1))

        h2 = ops.deconv2d(h1, [self.options['batch_size'], s4, s4, self.options['gf_dim']*2], name='g_h2')
        h2 = tf.nn.relu(self.g_bn2(h2))

        h3 = ops.deconv2d(h2, [self.options['batch_size'], s2, s2, self.options['gf_dim']*1], name='g_h3')
        h3 = tf.nn.relu(self.g_bn3(h3))

        # Classify class
        h3_new = ops.lrelu(self.g_bn4(ops.conv2d(h3, self.options['df_dim'], 1, 1, 1, 1, name="g_conv")))
        h3_new = tf.reshape(h3_new, [self.options['batch_size'], -1])
        class_logit = ops.linear(h3_new, self.options['num_class'], 'g_h3_embedding')

        h4 = ops.deconv2d(h3, [self.options['batch_size'], s, s, 3], name='g_h4')

        return (tf.tanh(h4)/2. + 0.5), class_logit
コード例 #2
0
    def discriminator(self, image, t_text_embedding):
        update_collection = tf.GraphKeys.UPDATE_OPS
        with tf.variable_scope("discriminator", reuse=tf.AUTO_REUSE):
            h0 = ops.lrelu(
                ops.conv2d_sn(image,
                              self.options['df_dim'],
                              spectral_normed=True,
                              update_collection=update_collection,
                              name='d_h0_conv'))  #32
            h1 = ops.lrelu(
                self.d_bn1(
                    ops.conv2d_sn(h0,
                                  self.options['df_dim'] * 2,
                                  spectral_normed=True,
                                  update_collection=update_collection,
                                  name='d_h1_conv')))  #16
            h2 = ops.lrelu(
                self.d_bn2(
                    ops.conv2d_sn(h1,
                                  self.options['df_dim'] * 4,
                                  spectral_normed=True,
                                  update_collection=update_collection,
                                  name='d_h2_conv')))  #8
            h3 = ops.lrelu(
                self.d_bn3(
                    ops.conv2d_sn(h2,
                                  self.options['df_dim'] * 8,
                                  spectral_normed=True,
                                  update_collection=update_collection,
                                  name='d_h3_conv')))  #4
            h3_new = ops.lrelu(
                self.d_bn4(
                    ops.conv2d_sn(h3,
                                  self.options['df_dim'] * 8,
                                  1,
                                  1,
                                  1,
                                  1,
                                  spectral_normed=True,
                                  update_collection=update_collection,
                                  name='d_h3_conv_new')))  #4
            h3_new = tf.reshape(h3_new, [self.options['batch_size'], -1])
            image_embedding = ops.linear(h3_new, self.options['t_dim'],
                                         'd_h3_embedding')

            # Embedding matrix of condition
            reduced_text_embeddings = ops.linear(t_text_embedding,
                                                 self.options['t_dim'],
                                                 'd_embedding')

            # Scalar output function
            h4 = ops.linear(image_embedding, 1, 'd_scalar_output')

            discriminator_output_logit = tf.reduce_sum(tf.multiply(
                reduced_text_embeddings, image_embedding),
                                                       1,
                                                       keepdims=True) + h4

        return discriminator_output_logit, discriminator_output_logit
コード例 #3
0
    def downsampling(self, image, reuse = False):
        if reuse:
            tf.get_variable_scope().reuse_variables()
        
        # Downsample to 32*32*256
        h0 = ops.lrelu( ops.conv2d(image, 256, 
                        name = 'down_h0_conv')) #32

        # Downsample to 16*16*512
        h1 = ops.lrelu( self.down_bn1(ops.conv2d(h0, 512, 
                        name = 'down_h1_conv'))) #32
	return h1
コード例 #4
0
    def discriminator(self, image, t_text_embedding, reuse=False):
        with tf.variable_scope("discriminator", reuse=tf.AUTO_REUSE):
            h0 = ops.lrelu(
                ops.conv2d(image, self.options['df_dim'],
                           name='d_h0_conv'))  #32
            h1 = ops.lrelu(
                self.d_bn1(
                    ops.conv2d(h0,
                               self.options['df_dim'] * 2,
                               name='d_h1_conv')))  #16
            h2 = ops.lrelu(
                self.d_bn2(
                    ops.conv2d(h1,
                               self.options['df_dim'] * 4,
                               name='d_h2_conv')))  #8
            h3 = ops.lrelu(
                self.d_bn3(
                    ops.conv2d(h2,
                               self.options['df_dim'] * 8,
                               name='d_h3_conv')))  #4
            h3_new = ops.lrelu(
                self.d_bn4(
                    ops.conv2d(h3,
                               self.options['df_dim'] * 8,
                               1,
                               1,
                               1,
                               1,
                               name='d_h3_conv_new')))  #4
            h3_new = tf.reshape(h3_new, [self.options['batch_size'], -1])
            image_embedding = ops.linear(h3_new, self.options['t_dim'],
                                         'd_h3_embedding')

            # Embedding matrix of condition
            reduced_text_embeddings = ops.linear(t_text_embedding,
                                                 self.options['t_dim'],
                                                 'd_embedding')

            # Scalar output function
            h4 = ops.linear(image_embedding, 1, 'd_scalar_output')

            discriminator_output_logit = tf.reduce_sum(tf.multiply(
                reduced_text_embeddings, image_embedding),
                                                       1,
                                                       keepdims=True) + h4

        return tf.nn.sigmoid(
            discriminator_output_logit), discriminator_output_logit
コード例 #5
0
    def discriminator(self, image, reuse=False):
        if reuse:
            tf.get_variable_scope().reuse_variables()

        h0 = ops.lrelu( ops.conv2d(image, 64, 
                        name = 'd_h0_conv')) #32
        h1 = ops.lrelu( self.d_bn1(ops.conv2d(h0, 128, 
                        name = 'd_h1_conv'))) #32
        h2 = ops.lrelu( self.d_bn2(ops.conv2d(h1, 256, 
                        name = 'd_h2_conv'))) #32
        h3 = ops.lrelu( self.d_bn3(ops.conv2d(h2, 512, 
                        name = 'd_h3_conv'))) #32
	
        h4 = ops.linear(tf.reshape(h3, [self.options['batch_size'], -1]), 1, 'd_h3_lin')

        return tf.nn.sigmoid(h4), h4 
コード例 #6
0
	def sampler(self, t_z, t_text_embedding):
		tf.get_variable_scope().reuse_variables()

		s = self.options['image_size']
		s2, s4, s8, s16 = int(s/2), int(s/4), int(s/8), int(s/16)

		reduced_text_embedding =\
      ops.lrelu( ops.linear(t_text_embedding,
                            self.options['t_dim'], 'g_embedding') )
		z_concat = tf.concat([t_z, reduced_text_embedding], 1)
		z_ = ops.linear(z_concat, self.options['gf_dim']*8*s16*s16, 'g_h0_lin')
		h0 = tf.reshape(z_, [-1, s16, s16, self.options['gf_dim'] * 8])
		h0 = tf.nn.relu(self.g_bn0(h0, train = False))

		h1 = ops.deconv2d(h0, [self.options['batch_size'],
                      s8, s8, self.options['gf_dim']*4], name='g_h1')
		h1 = tf.nn.relu(self.g_bn1(h1, train = False))

		h2 = ops.deconv2d(h1, [self.options['batch_size'],
                      s4, s4, self.options['gf_dim']*2], name='g_h2')
		h2 = tf.nn.relu(self.g_bn2(h2, train = False))

		h3 = ops.deconv2d(h2, [self.options['batch_size'],
                      s2, s2, self.options['gf_dim']*1], name='g_h3')
		h3 = tf.nn.relu(self.g_bn3(h3, train = False))

		h4 = ops.deconv2d(h3, [self.options['batch_size'], s, s, 3], name='g_h4')

		return (tf.tanh(h4)/2. + 0.5)
コード例 #7
0
    def generator(self, t_z, t_text_embedding):

        s = self.options['image_size']
        s2, s4, s8, s16 = int(s / 2), int(s / 4), int(s / 8), int(s / 16)

        reduced_text_embedding = ops.lrelu(
            ops.linear(t_text_embedding, self.options['t_dim'], 'g_embedding'))
        z_concat = tf.concat(1, [t_z, reduced_text_embedding])
        z_ = ops.linear(z_concat, self.options['gf_dim'] * 8 * s16 * s16,
                        'g_h0_lin')
        h0 = tf.reshape(z_, [-1, s16, s16, self.options['gf_dim'] * 8])
        h0 = tf.nn.relu(self.g_bn0(h0))

        h1 = ops.deconv2d(
            h0,
            [self.options['batch_size'], s8, s8, self.options['gf_dim'] * 4],
            name='g_h1')
        h1 = tf.nn.relu(self.g_bn1(h1))

        h2 = ops.deconv2d(
            h1,
            [self.options['batch_size'], s4, s4, self.options['gf_dim'] * 2],
            name='g_h2')
        h2 = tf.nn.relu(self.g_bn2(h2))

        h3 = ops.deconv2d(
            h2,
            [self.options['batch_size'], s2, s2, self.options['gf_dim'] * 1],
            name='g_h3')
        h3 = tf.nn.relu(self.g_bn3(h3))

        h4 = ops.deconv2d(h3, [self.options['batch_size'], s, s, 3],
                          name='g_h4')

        return (tf.tanh(h4) / 2. + 0.5)
コード例 #8
0
ファイル: model.py プロジェクト: kapitsa2811/Auto-GANDoc
	def classifier(self, image, n_classes, t_training, reuse=False):

		if reuse:
			tf.get_variable_scope().reuse_variables()

		h0 = ops.lrelu(ops.conv2d(image, self.options['ef_dim'] * 8,
								  name='e_h0_conv'))  # 64

		h1 = ops.lrelu(slim.batch_norm(ops.conv2d(h0,
												  self.options['ef_dim'] * 8,
												  name='e_h1_conv'),
									   reuse=reuse,
									   is_training=t_training,
									   scope='e_bn1'))  # 32

		h2 = ops.lrelu(slim.batch_norm(ops.conv2d(h1,
												  self.options['ef_dim'] * 6,
												  name='e_h2_conv'),
									   reuse=reuse,
									   is_training=t_training,
									   scope='e_bn2'))  # 16
		h3 = ops.lrelu(slim.batch_norm(ops.conv2d(h2,
												  self.options['ef_dim'] * 4,
												  name='e_h3_conv'),
									   reuse=reuse,
									   is_training=t_training,
									   scope='e_bn3'))  # 8

		h4 = ops.lrelu(slim.batch_norm(ops.conv2d(h3,
												  self.options['ef_dim'] * 2,
												  name='e_h4_conv'),
									   reuse=reuse,
									   is_training=t_training,
									   scope='e_bn4'))  # 8
		h4_shape = h4.get_shape().as_list()
		h4_flat = tf.contrib.layers.flatten(h4)
		'''
		h4_flat = tf.squeeze(tf.nn.avg_pool(h4, ksize=[1, h4_shape[1],
													 h4_shape[2], 1],
								 strides=[1, h4_shape[1], h4_shape[2], 1],
								 padding='SAME', name='global_avg_pool'))

		'''
		fc1 = tf.nn.relu(ops.linear(h4_flat, 1024, 'fl_01'))
		fc2 = ops.linear(fc1, n_classes, 'fl_02')

		return fc2
コード例 #9
0
 def discriminator(self, image, t_text_embedding, reuse=False):
     with tf.variable_scope(tf.get_variable_scope(), reuse=reuse):
         # 64
         print ('check')
         print (image.shape)
         h0 = ops.lrelu(ops.conv2d(image, self.options['df_dim'] * 4, d_w = 16, name='d_h0_conv'))  # 32
         print (h0.shape)
         # h1 = ops.lrelu( self.d_bn1(ops.conv2d(h0, self.options['df_dim']*2, name = 'd_h1_conv'))) #16
         # print (h1.shape)
         # h2 = ops.lrelu( self.d_bn2(ops.conv2d(h1, self.options['df_dim']*4, name = 'd_h2_conv'))) #8
         # print (h2.shape)
         # h3 = ops.lrelu( self.d_bn3(ops.conv2d(h2, self.options['df_dim']*8, name = 'd_h3_conv'))) #4
         # print (h3.shape)
         h3 = h0
         
         # ADD TEXT EMBEDDING TO THE NETWORK
         # 256
         print ('check')
         print (t_text_embedding.shape)
         reduced_text_embeddings = ops.lrelu(ops.linear(t_text_embedding, self.options['t_dim'], 'd_embedding'))
         print (reduced_text_embeddings.shape)
         reduced_text_embeddings = tf.expand_dims(reduced_text_embeddings, 1)
         print (reduced_text_embeddings.shape)
         reduced_text_embeddings = tf.expand_dims(reduced_text_embeddings, 2)
         print (reduced_text_embeddings.shape)
         tiled_embeddings = tf.tile(reduced_text_embeddings, [1, 4, 4, 1], name='tiled_embeddings')
         print (tiled_embeddings.shape)
         
         print (h3)
         print (h3.shape)
         print (tiled_embeddings)
         print (tiled_embeddings.shape)
         h3_concat = tf.concat([h3, tiled_embeddings], 3, name='h3_concat')
         
         
         #error:
         # ValueError: Dimensions must be equal, but are 176 and 1 for 'd_h3_conv_new/Conv2D' (op: 'Conv2D') with input shapes: [64,4,4,176], [1,1,1,88].
         tmp = ops.conv2d(h3_concat, self.options['df_dim'] * 4, 1, 1, 1, 1, name='d_h3_conv_new')
         
         
         
         h3_new = ops.lrelu(self.d_bn4(tmp))  # 4
         
         h4 = ops.linear(tf.reshape(h3_new, [self.options['batch_size'], -1]), 1, 'd_h3_lin')
         
         return tf.nn.sigmoid(h4), h4
コード例 #10
0
def generator(t_z, t_text_embedding):
    with tf.variable_scope('generator', reuse=False):
        reduce_embedding_size = 256
        reduced_text_embedding = ops.lrelu(
            ops.linear(t_text_embedding, reduce_embedding_size, 'g_embedding'))
        z_concat = tf.concat([t_z, reduced_text_embedding], axis=1)
        z_concat = ops.linear(z_concat, 64 * 8 * 3 * 13, 'g_h0_lin')

        w_init = tf.truncated_normal_initializer(mean=0.0, stddev=0.02)
        b_init = tf.constant_initializer(0.0)

        x = tf.reshape(z_concat, [-1, 3, 13, 64 * 8])
        x = tf.contrib.layers.batch_norm(x)
        x = lrelu(x)

        x = tf.layers.conv2d_transpose(x,
                                       filters=256,
                                       kernel_size=[3, 6],
                                       strides=[1, 2],
                                       padding='valid',
                                       kernel_initializer=w_init,
                                       bias_initializer=b_init)
        x = tf.contrib.layers.batch_norm(x)
        x = lrelu(x)

        x = tf.layers.conv2d_transpose(x,
                                       filters=128,
                                       kernel_size=[4, 6],
                                       strides=[2, 2],
                                       padding='same',
                                       kernel_initializer=w_init,
                                       bias_initializer=b_init)
        x = tf.contrib.layers.batch_norm(x)
        x = lrelu(x)

        x = tf.layers.conv2d_transpose(x,
                                       filters=64,
                                       kernel_size=[4, 6],
                                       strides=[2, 2],
                                       padding='same',
                                       kernel_initializer=w_init,
                                       bias_initializer=b_init)
        x = tf.contrib.layers.batch_norm(x)
        x = lrelu(x)

        x = tf.layers.conv2d_transpose(x,
                                       filters=3,
                                       kernel_size=[4, 6],
                                       strides=[2, 2],
                                       padding='same',
                                       kernel_initializer=w_init,
                                       bias_initializer=b_init)
        x = tf.nn.tanh(x)

        return x
コード例 #11
0
ファイル: model.py プロジェクト: kapitsa2811/Auto-GANDoc
	def encoder(self, image, t_training, reuse = False) :

		if reuse :
			tf.get_variable_scope().reuse_variables()

		h0 = ops.lrelu(ops.conv2d(image, self.options['ef_dim'] * 8,
								  name = 'e_h0_conv'))  # 64

		h1 = ops.lrelu(slim.batch_norm(ops.conv2d(h0,
		                                     self.options['ef_dim'] * 8,
		                                     name = 'e_h1_conv'),
		                               reuse=reuse,
		                               is_training = t_training,
		                               scope = 'e_bn1'))  # 32

		h2 = ops.lrelu(slim.batch_norm(ops.conv2d(h1,
		                                     self.options['ef_dim'] * 6,
		                                     name = 'e_h2_conv'),
		                               reuse=reuse,
		                               is_training = t_training,
		                               scope = 'e_bn2'))  # 16
		h3 = ops.lrelu(slim.batch_norm(ops.conv2d(h2,
		                                     self.options['ef_dim'] * 4,
		                                     name = 'e_h3_conv'),
		                               reuse=reuse,
		                               is_training = t_training,
		                               scope = 'e_bn3'))  # 8

		h4 = ops.lrelu(slim.batch_norm(ops.conv2d(h3,
												self.options['ef_dim'] * 2,
												name = 'e_h4_conv'),
		                                reuse=reuse,
		                                is_training = t_training,
		                                scope = 'e_bn4'))  # 8

		h4_shape = h4.get_shape().as_list()
		#h4_flat = tf.contrib.layers.flatten(h4)

		#h5 = ops.linear(h4_flat, 1024, 'fl_e_01')
		#h6 = ops.linear(h5, n_classes, 'fl_e_02')
		
		return h4, h4_shape
    def discriminator(self, image, t_text_embedding):
        with tf.variable_scope("discriminator", reuse=tf.AUTO_REUSE):

            h0 = ops.lrelu(ops.conv2d(image, self.options['df_dim'], name = 'd_h0_conv')) #32
            h1 = ops.lrelu( self.d_bn1(ops.conv2d(h0, self.options['df_dim']*2, name = 'd_h1_conv'))) #16
            h2 = ops.lrelu( self.d_bn2(ops.conv2d(h1, self.options['df_dim']*4, name = 'd_h2_conv'))) #8
            h3 = ops.lrelu( self.d_bn3(ops.conv2d(h2, self.options['df_dim']*8, name = 'd_h3_conv'))) #4
            h4 = ops.linear(tf.reshape(h3, [self.options['batch_size'], -1]), 1, 'd_h3_lin')

            # ADD TEXT EMBEDDING TO THE NETWORK
            #reduced_text_embeddings = ops.lrelu(ops.linear(t_text_embedding, self.options['t_dim'], 'd_embedding'))
            #reduced_text_embeddings = tf.expand_dims(reduced_text_embeddings,1)
            #reduced_text_embeddings = tf.expand_dims(reduced_text_embeddings,2)
            #tiled_embeddings = tf.tile(reduced_text_embeddings, [1,4,4,1], name='tiled_embeddings')

            #h3_concat = tf.concat( 3, [h3, tiled_embeddings], name='h3_concat')
            #h3_new = ops.lrelu( self.d_bn4(ops.conv2d(h3_concat, self.options['df_dim']*8, 1,1,1,1, name = 'd_h3_conv_new'))) #4

            #h4 = ops.linear(tf.reshape(h3_new, [self.options['batch_size'], -1]), 1, 'd_h3_lin')

        return h4, h4
コード例 #13
0
    def discriminator(self, image, t_text_embedding):
        update_collection = tf.GraphKeys.UPDATE_OPS
        with tf.variable_scope("discriminator", reuse=tf.AUTO_REUSE):
            h0 = ops.lrelu(
                ops.conv2d_sn(image,
                              self.options['df_dim'],
                              spectral_normed=True,
                              update_collection=update_collection,
                              name='d_h0_conv'))  #32
            h1 = ops.lrelu(
                self.d_bn1(
                    ops.conv2d_sn(h0,
                                  self.options['df_dim'] * 2,
                                  spectral_normed=True,
                                  update_collection=update_collection,
                                  name='d_h1_conv')))  #16
            h2 = ops.lrelu(
                self.d_bn2(
                    ops.conv2d_sn(h1,
                                  self.options['df_dim'] * 4,
                                  spectral_normed=True,
                                  update_collection=update_collection,
                                  name='d_h2_conv')))  #8
            h3 = ops.lrelu(
                self.d_bn3(
                    ops.conv2d_sn(h2,
                                  self.options['df_dim'] * 8,
                                  spectral_normed=True,
                                  update_collection=update_collection,
                                  name='d_h3_conv')))  #4

            # ADD TEXT EMBEDDING TO THE NETWORK
            reduced_text_embeddings = ops.lrelu(
                ops.linear(t_text_embedding, self.options['t_dim'],
                           'd_embedding'))
            reduced_text_embeddings = tf.expand_dims(reduced_text_embeddings,
                                                     1)
            reduced_text_embeddings = tf.expand_dims(reduced_text_embeddings,
                                                     2)
            tiled_embeddings = tf.tile(reduced_text_embeddings, [1, 4, 4, 1],
                                       name='tiled_embeddings')

            h3_concat = tf.concat([h3, tiled_embeddings], 3, name='h3_concat')
            h3_new = ops.lrelu(
                self.d_bn4(
                    ops.conv2d_sn(h3_concat,
                                  self.options['df_dim'] * 8,
                                  1,
                                  1,
                                  1,
                                  1,
                                  spectral_normed=True,
                                  update_collection=update_collection,
                                  name='d_h3_conv_new')))  #4

            h4 = ops.linear(
                tf.reshape(h3_new, [self.options['batch_size'], -1]), 1,
                'd_h3_lin')

        return h4, h4
コード例 #14
0
	def discriminator(self, image, t_text_embedding, reuse=False):
		with tf.variable_scope('discriminator'):
			if reuse:
				tf.get_variable_scope().reuse_variables()

			h0 = ops.lrelu(ops.conv2d(image, self.options['df_dim'],
								name = 'd_h0_conv')) #32
			h1 = ops.lrelu(self.d_bn1(ops.conv2d(h0, self.options['df_dim']*2,
											name='d_h1_conv'))) #16
			h2 = ops.lrelu(self.d_bn2(ops.conv2d(h1, self.options['df_dim']*4,
											name='d_h2_conv'))) #8
			h3 = ops.lrelu(self.d_bn3(ops.conv2d(h2, self.options['df_dim']*8,
											name='d_h3_conv'))) #4

		# ADD TEXT EMBEDDING TO THE NETWORK
			reduced_text_embeddings =\
		ops.lrelu(ops.linear(t_text_embedding,
							self.options['t_dim'], 'd_embedding'))
			reduced_text_embeddings = tf.expand_dims(reduced_text_embeddings,1)
			reduced_text_embeddings = tf.expand_dims(reduced_text_embeddings,2)
			tiled_embeddings =\
		tf.tile(reduced_text_embeddings, [1,4,4,1], name='tiled_embeddings')

			h3_concat = tf.concat([h3, tiled_embeddings], 3, name='h3_concat')
			h3_new =\
		ops.lrelu( self.d_bn4(ops.conv2d(h3_concat, self.options['df_dim']*8, 1,
										1, 1, 1, name='d_h3_conv_new'))) #4

			h4 = ops.linear(tf.reshape(h3_new, [self.options['batch_size'], -1]),
						1, 'd_h3_lin')

			return tf.nn.sigmoid(h4), h4
コード例 #15
0
	def discriminator(self, image, t_text_embedding, reuse=False):
		if reuse:
			tf.get_variable_scope().reuse_variables()
			self.w_d = [w for w in tf.global_variables()]

		h0 = ops.lrelu(ops.conv2d(image, self.options['df_dim'], name = 'd_h0_conv')) #32
		h1 = ops.lrelu( self.d_bn1(ops.conv2d(h0, self.options['df_dim']*2, name = 'd_h1_conv'))) #16
		h2 = ops.lrelu( self.d_bn2(ops.conv2d(h1, self.options['df_dim']*4, name = 'd_h2_conv'))) #8
		h3 = ops.lrelu( self.d_bn3(ops.conv2d(h2, self.options['df_dim']*8, name = 'd_h3_conv'))) #4
		
		# ADD TEXT EMBEDDING TO THE NETWORK
		reduced_text_embeddings = ops.lrelu(ops.linear(t_text_embedding, self.options['t_dim'], 'd_embedding'))
		reduced_text_embeddings = tf.expand_dims(reduced_text_embeddings,1)
		reduced_text_embeddings = tf.expand_dims(reduced_text_embeddings,2)
		tiled_embeddings = tf.tile(reduced_text_embeddings, [1,4,4,1], name='tiled_embeddings')
		
		h3_concat = tf.concat([h3, tiled_embeddings], 3, name='h3_concat')
		h3_new = ops.lrelu( self.d_bn4(ops.conv2d(h3_concat, self.options['df_dim']*8, 1,1,1,1, name = 'd_h3_conv_new'))) #4
		
		h4 = ops.linear(tf.reshape(h3_new, [self.options['batch_size'], -1]), 1, 'd_h3_lin')
		
		#return tf.nn.sigmoid(h4), h4
		clip_updates = [w.assign(tf.clip_by_value(w, -1e-2, 1e-2)) for w in self.w_d]
		if self.option['gan_type'] == 1:
			return h4, h4, clip_updates
		else
			return tf.nn.sigmoid(h4), h4, clip_updates
    def image_encoder(self, image):
        with tf.variable_scope("image_vae", reuse=tf.AUTO_REUSE):
            h0 = ops.lrelu(
                ops.conv2d(image, self.options['df_dim'],
                           name='v_h0_conv'))  #32
            h1 = ops.lrelu(
                self.d_bn1(
                    ops.conv2d(h0,
                               self.options['df_dim'] * 2,
                               name='v_h1_conv')))  #16
            h2 = ops.lrelu(
                self.d_bn2(
                    ops.conv2d(h1,
                               self.options['df_dim'] * 4,
                               name='v_h2_conv')))  #8
            h3 = ops.lrelu(
                self.d_bn3(
                    ops.conv2d(h2,
                               self.options['df_dim'] * 8,
                               name='v_h3_conv')))  #4
            h3_new = ops.lrelu(
                self.d_bn4(
                    ops.conv2d(h3,
                               self.options['df_dim'] * 8,
                               1,
                               1,
                               1,
                               1,
                               name='v_h3_conv_new')))
            hidden = tf.reshape(h3_new, [self.options['batch_size'], -1])

            mean = ops.linear(hidden, self.options['t_dim'], 'v_enc_mean')
            std = 1e-6 + tf.nn.softplus(
                ops.linear(hidden, self.options['t_dim'], 'v_enc_std'))
            code = mean + std * tf.random_normal(
                mean.get_shape().as_list(), 0, 1, dtype=tf.float32)

        return code, mean, std
コード例 #17
0
    def generator(self, t_z, t_text_embedding):

        # image size by default is 64 x 64
        s = self.options['image_size']

        s2, s4, s8, s16 = int(s / 2), int(s / 4), int(s / 8), int(s / 16)

        # ops.linear() takes in the text_embedding and text dimension
        # Leaky relu takes in x and return max of (x, leak*x)
        reduced_text_embedding = ops.lrelu(
            ops.linear(t_text_embedding, self.options['t_dim'], 'g_embedding'))

        # Concatenates tensors along one dimension.
        z_concat = tf.concat([t_z, reduced_text_embedding], axis=1)

        z_ = ops.linear(z_concat, self.options['gf_dim'] * 8 * s16 * s16,
                        'g_h0_lin')

        # First layer, activation relu
        h0 = tf.reshape(z_, [-1, s16, s16, self.options['gf_dim'] * 8])
        h0 = tf.nn.relu(self.g_bn0(h0))

        # Second layer, activation relu
        h1 = ops.deconv2d(
            h0,
            [self.options['batch_size'], s8, s8, self.options['gf_dim'] * 4],
            name='g_h1')
        h1 = tf.nn.relu(self.g_bn1(h1))

        # Third layer, activation relu
        h2 = ops.deconv2d(
            h1,
            [self.options['batch_size'], s4, s4, self.options['gf_dim'] * 2],
            name='g_h2')
        h2 = tf.nn.relu(self.g_bn2(h2))

        # Four layer, activation relu
        h3 = ops.deconv2d(
            h2,
            [self.options['batch_size'], s2, s2, self.options['gf_dim'] * 1],
            name='g_h3')
        h3 = tf.nn.relu(self.g_bn3(h3))

        h4 = ops.deconv2d(h3, [self.options['batch_size'], s, s, 3],
                          name='g_h4')

        # Output layer activation tanh
        return (tf.tanh(h4) / 2. + 0.5)
コード例 #18
0
    def generator(self,
                  t_z,
                  t_text_embedding,
                  training=True,
                  name='gan-generator'):

        s = self.options['image_size']
        s2, s4, s8, s16 = int(s / 2), int(s / 4), int(s / 8), int(s / 16)
        with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
            reduced_text_embedding = ops.lrelu(
                ops.linear(t_text_embedding, self.options['t_dim'],
                           'g_embedding'))
            z_concat = tf.concat([t_z, reduced_text_embedding], 1)
            z_ = ops.linear(z_concat, self.options['gf_dim'] * 8 * s16 * s16,
                            'g_h0_lin')
            h0 = tf.reshape(z_, [-1, s16, s16, self.options['gf_dim'] * 8])
            h0 = tf.nn.relu(self.g_bn0(h0, train=training))

            h1 = ops.deconv2d(h0, [
                self.options['batch_size'], s8, s8, self.options['gf_dim'] * 4
            ],
                              name='g_h1')
            h1 = tf.nn.relu(self.g_bn1(h1, train=training))

            h2 = ops.deconv2d(h1, [
                self.options['batch_size'], s4, s4, self.options['gf_dim'] * 2
            ],
                              name='g_h2')
            h2 = tf.nn.relu(self.g_bn2(h2, train=training))

            h3 = ops.deconv2d(h2, [
                self.options['batch_size'], s2, s2, self.options['gf_dim'] * 1
            ],
                              name='g_h3')
            h3 = tf.nn.relu(self.g_bn3(h3, train=training))

            h4 = ops.deconv2d(h3, [self.options['batch_size'], s, s, 3],
                              name='g_h4')

            return (tf.tanh(h4) / 2. + 0.5)
    def sampler(self, t_z, image_code, sound_code, pretrain_image_vae):

        s = self.options['image_size']
        s2, s4, s8, s16 = int(s / 2), int(s / 4), int(s / 8), int(s / 16)

        input_code = tf.multiply(pretrain_image_vae, image_code) + tf.multiply(
            1 - pretrain_image_vae, sound_code)
        reduced_text_embedding = ops.lrelu(
            ops.linear(input_code, self.options['t_dim'], 'v_g_embedding'))
        #z_concat = tf.concat(1, [t_z, reduced_text_embedding])
        z_concat = reduced_text_embedding
        z_ = ops.linear(z_concat, self.options['gf_dim'] * 8 * s16 * s16,
                        'g_h0_lin')
        h0 = tf.reshape(z_, [-1, s16, s16, self.options['gf_dim'] * 8])
        h0 = tf.nn.relu(self.g_bn0(h0, train=False))

        h1 = ops.deconv2d(
            h0,
            [self.options['batch_size'], s8, s8, self.options['gf_dim'] * 4],
            name='v_g_h1')
        h1 = tf.nn.relu(self.g_bn1(h1, train=False))

        h2 = ops.deconv2d(
            h1,
            [self.options['batch_size'], s4, s4, self.options['gf_dim'] * 2],
            name='v_g_h2')
        h2 = tf.nn.relu(self.g_bn2(h2, train=False))

        h3 = ops.deconv2d(
            h2,
            [self.options['batch_size'], s2, s2, self.options['gf_dim'] * 1],
            name='v_g_h3')
        h3 = tf.nn.relu(self.g_bn3(h3, train=False))

        h4 = ops.deconv2d(h3, [self.options['batch_size'], s, s, 3],
                          name='v_g_h4')

        return (tf.tanh(h4) / 2. + 0.5)
コード例 #20
0
ファイル: model.py プロジェクト: zhuwenxing/text-to-image
	def generator(self, t_z, t_text_embedding):
		
		s = self.options['image_size']
		s2, s4, s8, s16 = int(s/2), int(s/4), int(s/8), int(s/16)
		
		reduced_text_embedding = ops.lrelu( ops.linear(t_text_embedding, self.options['t_dim'], 'g_embedding') )
		z_concat = tf.concat(1, [t_z, reduced_text_embedding])
		z_ = ops.linear(z_concat, self.options['gf_dim']*8*s16*s16, 'g_h0_lin')
		h0 = tf.reshape(z_, [-1, s16, s16, self.options['gf_dim'] * 8])
		h0 = tf.nn.relu(self.g_bn0(h0))
		
		h1 = ops.deconv2d(h0, [self.options['batch_size'], s8, s8, self.options['gf_dim']*4], name='g_h1')
		h1 = tf.nn.relu(self.g_bn1(h1))
		
		h2 = ops.deconv2d(h1, [self.options['batch_size'], s4, s4, self.options['gf_dim']*2], name='g_h2')
		h2 = tf.nn.relu(self.g_bn2(h2))
		
		h3 = ops.deconv2d(h2, [self.options['batch_size'], s2, s2, self.options['gf_dim']*1], name='g_h3')
		h3 = tf.nn.relu(self.g_bn3(h3))
		
		h4 = ops.deconv2d(h3, [self.options['batch_size'], s, s, 3], name='g_h4')
		
		return (tf.tanh(h4)/2. + 0.5)
コード例 #21
0
ファイル: model.py プロジェクト: zhuwenxing/text-to-image
	def discriminator(self, image, t_text_embedding, reuse=False):
		if reuse:
			tf.get_variable_scope().reuse_variables()

		h0 = ops.lrelu(ops.conv2d(image, self.options['df_dim'], name = 'd_h0_conv')) #32
		h1 = ops.lrelu( self.d_bn1(ops.conv2d(h0, self.options['df_dim']*2, name = 'd_h1_conv'))) #16
		h2 = ops.lrelu( self.d_bn2(ops.conv2d(h1, self.options['df_dim']*4, name = 'd_h2_conv'))) #8
		h3 = ops.lrelu( self.d_bn3(ops.conv2d(h2, self.options['df_dim']*8, name = 'd_h3_conv'))) #4
		
		# ADD TEXT EMBEDDING TO THE NETWORK
		reduced_text_embeddings = ops.lrelu(ops.linear(t_text_embedding, self.options['t_dim'], 'd_embedding'))
		reduced_text_embeddings = tf.expand_dims(reduced_text_embeddings,1)
		reduced_text_embeddings = tf.expand_dims(reduced_text_embeddings,2)
		tiled_embeddings = tf.tile(reduced_text_embeddings, [1,4,4,1], name='tiled_embeddings')
		
		h3_concat = tf.concat( 3, [h3, tiled_embeddings], name='h3_concat')
		h3_new = ops.lrelu( self.d_bn4(ops.conv2d(h3_concat, self.options['df_dim']*8, 1,1,1,1, name = 'd_h3_conv_new'))) #4
		
		h4 = ops.linear(tf.reshape(h3_new, [self.options['batch_size'], -1]), 1, 'd_h3_lin')
		
		return tf.nn.sigmoid(h4), h4
コード例 #22
0
ファイル: model11.py プロジェクト: Jeremy8080/text2image
    def generator(self, word2vec, reuse=False):
        with tf.variable_scope("generator") as scope:
            if reuse:
                scope.reuse_variables()

            filter_sizes = [3, 4, 5]
            embedding_size = 400
            num_filters = 800
            sequence_length = 15

            embedded_chars_expanded = tf.expand_dims(word2vec, -1)          # ?xlengthxfeaturex1

            # Create a convolution + maxpool layer for each filter size
            pooled_outputs = []
            for i, filter_size in enumerate(filter_sizes):
                #with tf.name_scope("conv-maxpool-%s" % filter_size):
                # Convolution Layer
                filter_shape = [filter_size, embedding_size, 1, num_filters]
                # W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W")
                # b = tf.Variable(tf.constant(0.1, shape=[num_filters]), name="b")

                if i == 0:
                    h = tf.nn.relu(self.gbn0(
                        ops.conv2dv1(embedded_chars_expanded, num_filters, filter_shape, name='g_h%d_conv' % i)))  # 16
                elif i == 1:
                    h = tf.nn.relu(self.gbn1(
                        ops.conv2dv1(embedded_chars_expanded, num_filters, filter_shape, name='g_h%d_conv' % i)))  # 16
                else:
                    h = tf.nn.relu(self.gbn2(
                        ops.conv2dv1(embedded_chars_expanded, num_filters, filter_shape, name='g_h%d_conv' % i)))  # 16

                # conv = tf.nn.conv2d(
                #         self.embedded_chars_expanded,
                #         W,
                #         strides=[1, 1, 1, 1],
                #         padding="VALID",
                #         name="conv")
                # Apply nonlinearity
                #h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu")
                # Maxpooling over the outputs
                pooled = tf.nn.max_pool(
                    h,
                    ksize=[1, sequence_length - filter_size + 1, 1, 1],
                    strides=[1, 1, 1, 1],
                    padding='VALID',
                    name="pool")
                pooled_outputs.append(pooled)

            # Combine all the pooled features
            num_filters_total = num_filters * len(filter_sizes)
            h_pool = tf.concat(pooled_outputs, 3)
            h_pool_flat = tf.reshape(h_pool, [-1, num_filters_total])

            s = self.options['image_size']
            s2, s4, s8, s16 = int(s / 2), int(s / 4), int(s / 8), int(s / 16)

            reduced_text_embedding = ops.lrelu(ops.linear(h_pool_flat, self.options['t_dim'], 'g_embedding'))
            z_ = ops.linear(reduced_text_embedding, self.options['gf_dim'] * 8 * s16 * s16, 'g_h0_lin')
            h0 = tf.reshape(z_, [-1, s16, s16, self.options['gf_dim'] * 8])
            h0 = tf.nn.relu(self.g_bn0(h0))

            h1 = ops.deconv2d(h0, [self.options['batch_size'], s8, s8, self.options['gf_dim'] * 4], name='g_h1')
            h1 = tf.nn.relu(self.g_bn1(h1))

            h2 = ops.deconv2d(h1, [self.options['batch_size'], s4, s4, self.options['gf_dim'] * 2], name='g_h2')
            h2 = tf.nn.relu(self.g_bn2(h2))

            h3 = ops.deconv2d(h2, [self.options['batch_size'], s2, s2, self.options['gf_dim'] * 1], name='g_h3')
            h3 = tf.nn.relu(self.g_bn3(h3))

            h4 = ops.deconv2d(h3, [self.options['batch_size'], s, s, 3], name='g_h4')

            return (tf.tanh(h4) / 2. + 0.5), h_pool_flat
コード例 #23
0
    def discriminator(self,
                      image,
                      t_text_embedding,
                      n_classes,
                      t_training,
                      reuse=False):
        if reuse:
            tf.get_variable_scope().reuse_variables()

        h0 = ops.lrelu(
            ops.conv2d(image, self.options['df_dim'], name='d_h0_conv'))  # 64

        h1 = ops.lrelu(
            slim.batch_norm(ops.conv2d(h0,
                                       self.options['df_dim'] * 2,
                                       name='d_h1_conv'),
                            reuse=reuse,
                            is_training=t_training,
                            scope='d_bn1'))  # 32

        h2 = ops.lrelu(
            slim.batch_norm(ops.conv2d(h1,
                                       self.options['df_dim'] * 4,
                                       name='d_h2_conv'),
                            reuse=reuse,
                            is_training=t_training,
                            scope='d_bn2'))  # 16
        h3 = ops.lrelu(
            slim.batch_norm(ops.conv2d(h2,
                                       self.options['df_dim'] * 8,
                                       name='d_h3_conv'),
                            reuse=reuse,
                            is_training=t_training,
                            scope='d_bn3'))  # 8
        h3_shape = h3.get_shape().as_list()
        # ADD TEXT EMBEDDING TO THE NETWORK
        reduced_text_embeddings = ops.lrelu(
            ops.linear(t_text_embedding, self.options['t_dim'], 'd_embedding'))
        reduced_text_embeddings = tf.expand_dims(reduced_text_embeddings, 1)
        reduced_text_embeddings = tf.expand_dims(reduced_text_embeddings, 2)
        tiled_embeddings = tf.tile(reduced_text_embeddings,
                                   [1, h3_shape[1], h3_shape[1], 1],
                                   name='tiled_embeddings')

        h3_concat = tf.concat([h3, tiled_embeddings], 3, name='h3_concat')
        h3_new = ops.lrelu(
            slim.batch_norm(ops.conv2d(h3_concat,
                                       self.options['df_dim'] * 8,
                                       1,
                                       1,
                                       1,
                                       1,
                                       name='d_h3_conv_new'),
                            reuse=reuse,
                            is_training=t_training,
                            scope='d_bn4'))  # 4

        h3_flat = tf.reshape(h3_new, [self.options['batch_size'], -1])

        h4 = ops.linear(h3_flat, 1, 'd_h4_lin_rw')
        h4_aux = ops.linear(h3_flat, n_classes, 'd_h4_lin_ac')

        return tf.nn.sigmoid(h4), h4, tf.nn.sigmoid(h4_aux), h4_aux
コード例 #24
0
ファイル: model.py プロジェクト: harry771/MLDS2017
    def discriminator(self, image, t_text_embedding, reuse=False):
        if reuse:
            with tf.variable_scope(tf.get_variable_scope(), reuse=True):
                h0 = ops.lrelu(
                    ops.conv2d(image, self.options['df_dim'],
                               name='d_h0_conv'))  #32,48
                h1 = ops.lrelu(
                    self.d_bn1(
                        ops.conv2d(h0,
                                   self.options['df_dim'] * 2,
                                   name='d_h1_conv')))  #16,24
                h2 = ops.lrelu(
                    self.d_bn2(
                        ops.conv2d(h1,
                                   self.options['df_dim'] * 4,
                                   name='d_h2_conv')))  #8,12
                h3 = ops.lrelu(
                    self.d_bn3(
                        ops.conv2d(h2,
                                   self.options['df_dim'] * 8,
                                   name='d_h3_conv')))  #4,6

                # ADD TEXT EMBEDDING TO THE NETWORK
                reduced_text_embeddings = ops.lrelu(
                    ops.linear(t_text_embedding, self.options['t_dim'],
                               'd_embedding'))
                reduced_text_embeddings = tf.expand_dims(
                    reduced_text_embeddings, 1)
                reduced_text_embeddings = tf.expand_dims(
                    reduced_text_embeddings, 2)
                tiled_embeddings = tf.tile(reduced_text_embeddings,
                                           [1, 4, 4, 1],
                                           name='tiled_embeddings')

                # h3_concat = tf.concat([h3, tiled_embeddings], 3, name='h3_concat')
                h3_concat = tf.concat(values=[h3, tiled_embeddings],
                                      axis=3,
                                      name='h3_concat')
                h3_new = ops.lrelu(
                    self.d_bn4(
                        ops.conv2d(h3_concat,
                                   self.options['df_dim'] * 8,
                                   1,
                                   1,
                                   1,
                                   1,
                                   name='d_h3_conv_new')))  #4

                h4 = ops.linear(
                    tf.reshape(h3_new, [self.options['batch_size'], -1]), 1,
                    'd_h3_lin')

                # return tf.nn.sigmoid(h4), h4
        else:
            h0 = ops.lrelu(
                ops.conv2d(image, self.options['df_dim'],
                           name='d_h0_conv'))  #32,48
            h1 = ops.lrelu(
                self.d_bn1(
                    ops.conv2d(h0,
                               self.options['df_dim'] * 2,
                               name='d_h1_conv')))  #16,24
            h2 = ops.lrelu(
                self.d_bn2(
                    ops.conv2d(h1,
                               self.options['df_dim'] * 4,
                               name='d_h2_conv')))  #8,12
            h3 = ops.lrelu(
                self.d_bn3(
                    ops.conv2d(h2,
                               self.options['df_dim'] * 8,
                               name='d_h3_conv')))  #4,6

            # ADD TEXT EMBEDDING TO THE NETWORK
            reduced_text_embeddings = ops.lrelu(
                ops.linear(t_text_embedding, self.options['t_dim'],
                           'd_embedding'))
            reduced_text_embeddings = tf.expand_dims(reduced_text_embeddings,
                                                     1)
            reduced_text_embeddings = tf.expand_dims(reduced_text_embeddings,
                                                     2)
            tiled_embeddings = tf.tile(reduced_text_embeddings, [1, 4, 4, 1],
                                       name='tiled_embeddings')

            # h3_concat = tf.concat([h3, tiled_embeddings], 3, name='h3_concat')
            h3_concat = tf.concat(values=[h3, tiled_embeddings],
                                  axis=3,
                                  name='h3_concat')
            h3_new = ops.lrelu(
                self.d_bn4(
                    ops.conv2d(h3_concat,
                               self.options['df_dim'] * 8,
                               1,
                               1,
                               1,
                               1,
                               name='d_h3_conv_new')))  #4

            h4 = ops.linear(
                tf.reshape(h3_new, [self.options['batch_size'], -1]), 1,
                'd_h3_lin')

            # return tf.nn.sigmoid(h4), h4
        return tf.nn.sigmoid(h4), h4

        # if reuse:
        # 	tf.get_variable_scope().reuse_variables()

        # h0 = ops.lrelu(ops.conv2d(image, self.options['df_dim'], name = 'd_h0_conv')) #32,48
        # h1 = ops.lrelu( self.d_bn1(ops.conv2d(h0, self.options['df_dim']*2, name = 'd_h1_conv'))) #16,24
        # h2 = ops.lrelu( self.d_bn2(ops.conv2d(h1, self.options['df_dim']*4, name = 'd_h2_conv'))) #8,12
        # h3 = ops.lrelu( self.d_bn3(ops.conv2d(h2, self.options['df_dim']*8, name = 'd_h3_conv'))) #4,6

        # # ADD TEXT EMBEDDING TO THE NETWORK
        # reduced_text_embeddings = ops.lrelu(ops.linear(t_text_embedding, self.options['t_dim'], 'd_embedding'))
        # reduced_text_embeddings = tf.expand_dims(reduced_text_embeddings,1)
        # reduced_text_embeddings = tf.expand_dims(reduced_text_embeddings,2)
        # tiled_embeddings = tf.tile(reduced_text_embeddings, [1,6,6,1], name='tiled_embeddings')

        # # h3_concat = tf.concat([h3, tiled_embeddings], 3, name='h3_concat')
        # h3_concat = tf.concat(values=[h3, tiled_embeddings], axis=3, name='h3_concat')
        # h3_new = ops.lrelu( self.d_bn4(ops.conv2d(h3_concat, self.options['df_dim']*8, 1,1,1,1, name = 'd_h3_conv_new'))) #4

        # h4 = ops.linear(tf.reshape(h3_new, [self.options['batch_size'], -1]), 1, 'd_h3_lin')

        # return tf.nn.sigmoid(h4), h4
コード例 #25
0
    def discriminator(self, image, t_text_embedding):
        with tf.variable_scope("discriminator", reuse=tf.AUTO_REUSE):

            if self.options['vgg']:
                h0 = ops.lrelu(
                    ops.conv2d(image, 3, stride=1, name='d_h0a_conv'))
                h0 = ops.lrelu(ops.conv2d(h0, 3, stride=2, name='d_h0_conv'))

                h1 = ops.lrelu(
                    self.d_bn1a(
                        ops.conv2d(h0,
                                   self.options['df_dim'] * 2,
                                   stride=1,
                                   name='d_h1a_conv')))
                h1 = ops.lrelu(
                    self.d_bn1(
                        ops.conv2d(h0,
                                   self.options['df_dim'] * 2,
                                   stride=2,
                                   name='d_h1_conv')))

                h2 = ops.lrelu(
                    self.d_bn2a(
                        ops.conv2d(h1,
                                   self.options['df_dim'] * 4,
                                   stride=1,
                                   name='d_h2a_conv')))
                h2 = ops.lrelu(
                    self.d_bn2(
                        ops.conv2d(h2,
                                   self.options['df_dim'] * 4,
                                   stride=2,
                                   name='d_h2_conv')))

                h3 = ops.lrelu(
                    self.d_bn3a(
                        ops.conv2d(h2,
                                   self.options['df_dim'] * 8,
                                   stride=1,
                                   name='d_h3a_conv')))
                h3 = ops.lrelu(
                    self.d_bn3(
                        ops.conv2d(h3,
                                   self.options['df_dim'] * 8,
                                   stride=2,
                                   name='d_h3_conv')))

            else:
                if self.options['extra_64']:
                    image = ops.lrelu(
                        ops.conv2d(image, 3, stride=1, name='d_h0a_conv'))

                h0 = ops.lrelu(
                    ops.conv2d(image, self.options['df_dim'],
                               name='d_h0_conv'))  # 32

                if self.options['extra_32']:
                    h0 = ops.lrelu(
                        self.d_bn1a(
                            ops.conv2d(h0,
                                       self.options['df_dim'],
                                       stride=1,
                                       name='d_h1a_conv')))
                h1 = ops.lrelu(
                    self.d_bn1(
                        ops.conv2d(h0,
                                   self.options['df_dim'] * 2,
                                   name='d_h1_conv')))  # 16
                h2 = ops.lrelu(
                    self.d_bn2(
                        ops.conv2d(h1,
                                   self.options['df_dim'] * 4,
                                   name='d_h2_conv')))  # 8
                h3 = ops.lrelu(
                    self.d_bn3(
                        ops.conv2d(h2,
                                   self.options['df_dim'] * 8,
                                   name='d_h3_conv')))  # 4

            # ADD TEXT EMBEDDING TO THE NETWORK
            reduced_text_embeddings = ops.lrelu(
                ops.linear(t_text_embedding, self.options['t_dim'],
                           'd_embedding'))
            reduced_text_embeddings = tf.expand_dims(reduced_text_embeddings,
                                                     1)
            reduced_text_embeddings = tf.expand_dims(reduced_text_embeddings,
                                                     2)
            tiled_embeddings = tf.tile(reduced_text_embeddings, [1, 4, 4, 1],
                                       name='tiled_embeddings')
            h3_concat = tf.concat([h3, tiled_embeddings], 3, name='h3_concat')
            h3_new = ops.lrelu(
                self.d_bn4(
                    ops.conv2d(h3_concat,
                               self.options['df_dim'] * 8,
                               1,
                               1,
                               1,
                               1,
                               name='d_h3_conv_new')))  # 4
            h4 = ops.linear(
                tf.reshape(h3_new, [self.options['batch_size'], -1]), 1,
                'd_h3_lin')
            return tf.nn.sigmoid(h4), h4
コード例 #26
0
    def generator(self, t_z, t_text_embedding):
        s = self.options['image_size']  #64 x 64
        s2, s4, s8, s16 = int(s / 2), int(s / 4), int(s / 8), int(s / 16)

        reduced_text_embedding = ops.lrelu(
            ops.linear(t_text_embedding, self.options['t_dim'],
                       'g_embedding'))  #self.options['t_dim', 256]
        z_concat = tf.concat([t_z, reduced_text_embedding],
                             1)  #t_z is batch_size, z_dim, which is 100
        z_ = ops.linear(z_concat, self.options['gf_dim'] * 8 * s16 * s16,
                        'g_h0_lin')
        h0 = tf.reshape(z_, [
            -1, s16, s16, self.options['gf_dim'] * 8
        ])  #[-1, 4, 4, 64 * 8] gf_dim is number of filters in the first layer
        h0 = tf.nn.relu(self.g_bn0(h0))

        if self.options['vgg']:
            h1 = ops.deconv2d(h0, [
                self.options['batch_size'], s8, s8, self.options['gf_dim'] * 4
            ],
                              stride=2,
                              name='g_h1')  #8
            h1 = tf.nn.relu(self.g_bn1(h1))
            h1 = ops.deconv2d(h1, [
                self.options['batch_size'], s8, s8, self.options['gf_dim'] * 4
            ],
                              stride=1,
                              name='g_h1b')
            h1 = tf.nn.relu(self.g_bn1b(h1))

            h2 = ops.deconv2d(h1, [
                self.options['batch_size'], s4, s4, self.options['gf_dim'] * 2
            ],
                              stride=2,
                              name='g_h2')  #16
            h2 = tf.nn.relu(self.g_bn2(h2))
            h2 = ops.deconv2d(h2, [
                self.options['batch_size'], s4, s4, self.options['gf_dim'] * 2
            ],
                              stride=1,
                              name='g_h2b')
            h2 = tf.nn.relu(self.g_bn2b(h2))

            h3 = ops.deconv2d(h2, [
                self.options['batch_size'], s2, s2, self.options['gf_dim'] * 1
            ],
                              stride=2,
                              name='g_h3')  #32
            h3 = tf.nn.relu(self.g_bn3(h3))
            h3 = ops.deconv2d(h3, [
                self.options['batch_size'], s2, s2, self.options['gf_dim'] * 1
            ],
                              stride=1,
                              name='g_h3b')
            h3 = tf.nn.relu(self.g_bn3b(h3))

            h4 = ops.deconv2d(h3, [self.options['batch_size'], s, s, 3],
                              stride=2,
                              name='g_h4')  #64
            h4 = ops.deconv2d(h4, [self.options['batch_size'], s, s, 3],
                              stride=1,
                              name='g_h4b')

            return (tf.tanh(h4) / 2. + 0.5)

        else:
            h1 = ops.deconv2d(h0, [
                self.options['batch_size'], s8, s8, self.options['gf_dim'] * 4
            ],
                              name='g_h1')
            h1 = tf.nn.relu(self.g_bn1(h1))

            h2 = ops.deconv2d(h1, [
                self.options['batch_size'], s4, s4, self.options['gf_dim'] * 2
            ],
                              name='g_h2')
            h2 = tf.nn.relu(self.g_bn2(h2))

            h3 = ops.deconv2d(h2, [
                self.options['batch_size'], s2, s2, self.options['gf_dim'] * 1
            ],
                              name='g_h3')
            h3 = tf.nn.relu(self.g_bn3(h3))
            if self.options['extra_32']:
                h3 = ops.deconv2d(h3, [
                    self.options['batch_size'], s2, s2,
                    self.options['gf_dim'] * 1
                ],
                                  stride=1,
                                  name='g_h3b')
                h3 = tf.nn.relu(self.g_bn3b(h3))

            h4 = ops.deconv2d(h3, [self.options['batch_size'], s, s, 3],
                              name='g_h4')

            if self.options['extra_64']:
                h4 = ops.deconv2d(h4, [self.options['batch_size'], s, s, 3],
                                  stride=1,
                                  name='g_h4b')

            return (tf.tanh(h4) / 2. + 0.5)