コード例 #1
0
ファイル: DSI_demo.py プロジェクト: lbusoni/MEDIS
    ref_SDI = pca.pca(np.mean(simple_hypercube_2, axis=0) / ap.exposure_time,
                      angle_list=np.zeros((len(diff_cube[0]))),
                      scale_list=scale_list,
                      mask_center_px=None)

    # quicklook_im(tar_SDI, logAmp=True)
    # quicklook_im(ref_SDI, logAmp=True)
    # quicklook_im(tar_SDI-ref_SDI, logAmp=True)
    cube.append(Lmap)
    cube.append(BBmap)
    cube.append(SDI)
    # cube.append(tar_SDI-ref_SDI)

    indep_images(cube,
                 logAmp=True,
                 vmins=[0.01, 1, 10],
                 vmaxs=[6, 6, 1e3],
                 annos=['BB DSI', 'BB Sim DSI', 'SDI'],
                 titles=['$I_\mathrm{L}$', '$I_\mathrm{L}$', '$I$'])

    iop.hyperFile = iop.datadir + '/noWnoRollHyperWcomp1000cont_Aug_1st.pkl'  #5
    simple_hypercube = read.get_integ_hypercube(plot=False)  #/ap.numframes
    wsamples = np.linspace(tp.band[0], tp.band[1], tp.nwsamp)
    # scale_list = tp.band[0] / wsamples
    scale_list = wsamples / tp.band[0]

    angle_list = np.zeros((tp.nwsamp))
    print np.mean(simple_hypercube, axis=0).shape
    static_psf = pca.pca(np.mean(simple_hypercube, axis=0),
                         angle_list=angle_list,
                         scale_list=scale_list,
                         mask_center_px=None,
コード例 #2
0
ファイル: postproc_compare.py プロジェクト: lbusoni/MEDIS
    # iop.hyperFile = iop.datadir + 'noWnoRollHyperWcomp1000cont_Aug_2ndMKIDs2.pkl'#5
    simple_hypercube_2 = read.get_integ_hypercube(plot=False)  #/ap.numframes

    loop_frames(simple_hypercube_1[::10, 0], logAmp=True)
    loop_frames(simple_hypercube_2[:, 0], logAmp=True)
    diff_cube = simple_hypercube_1[2:] - simple_hypercube_2[2:]
    loop_frames(diff_cube[:, 0], logAmp=False)
    # quicklook_im(np.mean(diff_cube[:,0],axis=0), logAmp=False)
    quicklook_im(np.mean(diff_cube[:, 0], axis=0), logAmp=True)
    quicklook_im(np.median(diff_cube[:, 0], axis=0), logAmp=True)
    #
    LCcube = np.transpose(diff_cube, (2, 3, 0, 1))
    algo_dict = {'thresh': 0}
    Dmap = Analysis.stats.get_Dmap(LCcube, algo_dict['thresh'])
    # DSI
    indep_images([Dmap], vmins=[0.01], vmaxs=[0.5], logAmp=True)

    #SDI +DSI
    iop.hyperFile = iop.datadir + '/noWnoRollHyperWcomp1000cont_Aug_1st.pkl'  #5
    simple_hypercube = read.get_integ_hypercube(plot=False)  #/ap.numframes
    wsamples = np.linspace(tp.band[0], tp.band[1], tp.nwsamp)
    # scale_list = tp.band[0] / wsamples
    scale_list = wsamples / tp.band[0]

    angle_list = np.zeros((tp.nwsamp))
    print np.mean(simple_hypercube, axis=0).shape
    static_psf = pca.pca(np.mean(simple_hypercube, axis=0),
                         angle_list=angle_list,
                         scale_list=scale_list,
                         mask_center_px=None,
                         full_output=True)
コード例 #3
0
ファイル: bunching.py プロジェクト: lbusoni/MEDIS
    # print binned
    # hist, bins = np.histogram(binned, bins=range(0, int(np.max(binned)) + 1))
    # plt.plot(bins[:-1], hist)
    # plt.show()

    LCmap = np.transpose(bunch_hypercube[:, 0])
    SSD_maps = Analysis.stats.get_Iratio(LCmap, xlocs, ylocs, None, None, None)
    SSD_maps = np.array(SSD_maps)[:-1]
    # # SSD_maps[:2] /= star_phot
    # # SSD_maps[2] /= SSD_starphot
    # SSD_maps #/= star_phot

    #vmins = [2e-11, 2e-8, 1e-12], vmaxs = [5e-7, 1.5e-7, 1e-6]
    indep_images(
        SSD_maps,
        logAmp=True,
        titles=[r'  $I_C / I^{*}$', r'  $I_S / I^{*}$', r'  $I_r / I^{*}$'],
        annos=['Deterministic', 'Random', 'Beam Ratio'])

    print 'here'
    # quicklook_im(bunch_hypercube[0,0])
    ap.exposure_time = 1
    stacked = read.take_exposure(bunch_hypercube)
    quicklook_im(stacked[0, 0])

    from statsmodels.tsa.stattools import acovf, acf, ccf

    mask = Analysis.phot.aperture(64, 64, 1)
    aper_idx = np.where(mask)
    print aper_idx
    # quicklook_im(mask)
コード例 #4
0
ファイル: MKID_HCI_demo.py プロジェクト: lbusoni/MEDIS
        axes[0].plot(rad_samp,thruput)
    for noise in plotdata[:,1]:
        axes[1].plot(rad_samp,noise)
    for cont in plotdata[:,2]:
        axes[2].plot(rad_samp,cont)
    for ax in axes:
        ax.set_yscale('log')
        ax.set_xlabel('Radial Separation')
        ax.tick_params(direction='in',which='both', right=True, top=True)
    axes[0].set_ylabel('Throughput')
    axes[1].set_ylabel('Noise')
    axes[2].set_ylabel('5$\sigma$ Contrast')
    axes[2].legend(['Fast','Med','Slow'])

    # plt.show()
    indep_images(maps, logAmp=True)
    plt.show()

    # Plot just contrast curves
    # rad_samp = np.linspace(0, tp.platescale / 1000. * (plotdata.shape[2]-6), plotdata.shape[2]-6)
    rad_samp = np.linspace(0, tp.platescale / 1000. * 100, plotdata.shape[2])
    fig, axes = plt.subplots(nrows=1, ncols=1, figsize=(6, 6))
    for cont in plotdata[:, 2]:
        # dprint((len(cont[:-6]), plotdata.shape[2]-6))
        axes.plot(rad_samp, cont, '-')
        # axes.plot(rad_samp[:-3], cont[:-9], '-o')
        # axes.plot(rad_samp[-4:-2], cont[-10:-8], '--')
    axes.plot([0.4, 0.65, 0.9], [1e-4,1e-4,1e-4], 'o')
    axes.set_yscale('log')
    axes.set_xlabel('Radial Separation')
    axes.tick_params(direction='in',which='both', right=True, top=True)