コード例 #1
0
    def forward(self, feats, last_rnn_state, pred_poly):
        pred_poly = pred_poly.detach().cpu().numpy()  #[bs, time]
        # we will use numpy functions to get pred_mask and pred_vertex_mask

        pred_mask = np.zeros(
            (pred_poly.shape[0], 1, self.grid_size, self.grid_size),
            dtype=np.uint8)
        pred_vertex_mask = np.zeros(
            (pred_poly.shape[0], 1, self.grid_size, self.grid_size),
            dtype=np.uint8)

        # Draw Vertex mask and full polygon mask
        for b in range(pred_poly.shape[0]):
            masked_poly = utils.get_masked_poly(pred_poly[b], self.grid_size)
            xy_poly = utils.class_to_xy(masked_poly, self.grid_size)

            utils.get_vertices_mask(xy_poly, pred_vertex_mask[b, 0])
            utils.draw_poly(pred_mask[b, 0], xy_poly)

        pred_mask = torch.from_numpy(pred_mask).to(device).to(torch.float32)
        pred_vertex_mask = torch.from_numpy(pred_vertex_mask).to(device).to(
            torch.float32)

        inp = torch.cat([
            feats, last_rnn_state[0][0], last_rnn_state[1][0], pred_mask,
            pred_vertex_mask
        ],
                        dim=1)

        conv1 = self.conv1(inp)
        conv2 = self.conv2(conv1)
        conv2 = conv2.view(conv2.size(0), -1)
        pred_iou = self.fc(conv2)

        return pred_iou.view(-1)
コード例 #2
0
def iou_from_poly(pred, gt, width, height):
    """
    Compute IoU from poly. The polygons should
    already be in the final output size

    pred: list of np arrays of predicted polygons
    gt: list of np arrays of gt polygons
    grid_size: grid_size that the polygons are in

    """
    masks = np.zeros((2, height, width), dtype=np.uint8)
    if not isinstance(pred, list):
        pred = [pred]
    if not isinstance(gt, list):
        gt = [gt]
    for p in pred:
        masks[0] = utils.draw_poly(masks[0], p)
    for g in gt:
        masks[1] = utils.draw_poly(masks[1], g)
    return iou_from_mask(masks[0], masks[1]), masks
コード例 #3
0
def iou_from_gt_mask_and_pred_poly(gt, pred, width, height):
    """
    Compute IoU from poly. The polygons should
    already be in the final output size

    pred: list of np arrays of predicted polygons
    gt: list of np arrays of gt polygons
    grid_size: grid_size that the polygons are in

    """
    masks = np.zeros((height, width), dtype=np.uint8)
    if not isinstance(pred, list):
        pred = [pred]
    for g in pred:
        masks = utils.draw_poly(masks, g)
    return iou_from_mask(masks, gt), masks
    def process_outputs(self, data, output, save=True):
        """
        Process outputs to get final outputs for the whole image
        Optionally saves the outputs to a folder for evaluation
        """
        instances = data['instance']

        pred_spline = output['pred_polys']  # (16, 40, 2)
        pred_gcn = output['gcn_layer']  # (16, 40, 2)

        ## overlay pred_spline to 224*224 image

        # origin_img = output['origin_img']
        # img = torch.squeeze(origin_img)
        # img = data['img']
        # img = torch.squeeze(img)
        # img = img.cpu().numpy().transpose(1, 2, 0)  # (224, 224, 3)
        # img = (img-img.min())/(img.max()-img.min()) # normalize to 0~1
        # img_save = np.uint8(255 * img)
        # import os
        # # len_th = len(os.listdir(""))
        # imsave("" + str(instances[0]['img_path'][-17:-4]) + '.png', img_save, 'PNG')
        # len_th = len(os.listdir(""))
        #
        # instance_id = instances[0]['img_path'][-17:-4]
        #
        # for i in range(len(output['pred_polys_all'])):
        #     pred_spline_numpy = torch.squeeze(output['pred_polys_all'][i]).cpu().numpy() # (cp_num,2)
        #     to_axis = (pred_spline_numpy * 224).astype(np.int32)
        #     CAM = np.zeros((224, 224))
        #     for index, item in enumerate(to_axis):
        #         CAM[item[1] - 2, item[0] - 2] = 1
        #         CAM[item[1] - 2, item[0] - 1] = 1
        #         CAM[item[1] - 1, item[0] - 2] = 1
        #         CAM[item[1] - 1, item[0] - 1] = 1  # top-left
        #         CAM[item[1] - 2, item[0]] = 1
        #         CAM[item[1] - 1, item[0]] = 1  # top
        #         CAM[item[1] - 2, item[0] + 1] = 1
        #         CAM[item[1] - 2, item[0] + 2] = 1
        #         CAM[item[1] - 1, item[0] + 2] = 1
        #         CAM[item[1] - 1, item[0] + 1] = 1  # top-right
        #         CAM[item[1], item[0] - 2] = 1
        #         CAM[item[1], item[0] - 1] = 1  # left
        #         CAM[item[1], item[0] + 2] = 1
        #         CAM[item[1], item[0] + 1] = 1  # right
        #         CAM[item[1] + 1, item[0] - 2] = 1
        #         CAM[item[1] + 2, item[0] - 1] = 1
        #         CAM[item[1] + 2, item[0] - 2] = 1
        #         CAM[item[1] + 1, item[0] - 1] = 1  # bottom-left
        #         CAM[item[1] + 2, item[0]] = 1
        #         CAM[item[1] + 1, item[0]] = 1  # bottom
        #         CAM[item[1] + 1, item[0] + 2] = 1
        #         CAM[item[1] + 2, item[0] + 2] = 1
        #         CAM[item[1] + 2, item[0] + 1] = 1
        #         CAM[item[1] + 1, item[0] + 1] = 1
        #         CAM[item[1], item[0]] = 1
        #     import cv2
        #     heatmap = cv2.applyColorMap(np.uint8(255 * CAM), cv2.COLORMAP_JET)
        #     heatmap = np.float32(heatmap) / 255
        #     # cam = heatmap + np.float32(torch.squeeze(img).permute(1,2,0).detach().numpy())
        #     # cam = heatmap + np.float32(torch.squeeze(img).permute(1,2,0).detach().numpy())
        #     cam = 0.7*heatmap + np.float32(img) * 0.4   #0.5 should be smaller
        #     cam = cam / np.max(cam)
        #     import os
        #
        #     cv2.imwrite("" + str(instance_id) + "_" + str(i) + ".jpg", np.uint8(255 * cam))
        #     #cv2.imwrite("" + str(i) + "gray_pre" + str(len_th) + ".jpg", np.uint8(255 * CAM))

        # preds = self.spline.sample_point(pred_spline) # (16, 1280, 2)
        preds = pred_spline
        preds_numpy = preds.cpu().numpy()
        torch.cuda.synchronize()
        preds = preds.cpu().numpy()

        pred_spline = pred_spline.cpu()
        pred_spline = pred_spline.numpy()

        ## overlay pre_polygons on croped img
        # img_save = np.uint8(img)
        # pil_img = Image.fromarray(img_save, mode='RGB')
        # img_draw = ImageDraw.Draw(pil_img, 'RGBA')
        # # img_draw.polygon(polys_pred, outline='red') #pred polygons
        # # img_draw.polygon(polys_gt, outline='blue')  #GT polygons
        # predicted_poly = []
        # poly = preds[0]
        # poly = poly * 224#data['patch_w'][0] #to (224, 224)
        # # poly[:, 0] += data['starting_point'][0][0]
        # # poly[:, 1] += data['starting_point'][0][1]
        # predicted_poly.append(poly.tolist())
        # polys_pre = predicted_poly[0]
        # polys_pre_final = [tuple(item) for item in polys_pre]
        # polys_gt = instances[0]['components'][0]['poly']
        # polys_gt_final = [tuple(((item[0]-data['starting_point'][0][0])*224/data['patch_w'][0],(item[1]-data['starting_point'][0][1])*224/data['patch_w'][0])) for item in polys_gt]
        #
        # # draw circle
        # #img_draw = ImageDraw.Draw(img_ob, 'RGBA')
        # img_draw.polygon(polys_pre_final, outline=(255, 0, 0))  # pred polygons
        # #img_draw.polygon(polys_gt_final, outline=(0, 0, 255))
        #
        # ## width be bigger
        # polys_pre_final = [tuple((item[0]-1, item[1]-1)) for item in polys_pre]
        # polys_gt = instances[0]['components'][0]['poly']
        # polys_gt_final = [tuple(((item[0] - data['starting_point'][0][0]) * 224 / data['patch_w'][0]-1,
        #                          (item[1] - data['starting_point'][0][1]) * 224 / data['patch_w'][0]-1)) for item in
        #                   polys_gt]
        # img_draw.polygon(polys_pre_final, outline=(255, 0, 0))  # pred polygons
        # #img_draw.polygon(polys_gt_final, outline=(0, 0, 255))
        #
        # polys_pre_final = [tuple((item[0] + 1, item[1] + 1)) for item in polys_pre]
        # polys_gt = instances[0]['components'][0]['poly']
        # polys_gt_final = [tuple(((item[0] - data['starting_point'][0][0]) * 224 / data['patch_w'][0] + 1,
        #                          (item[1] - data['starting_point'][0][1]) * 224 / data['patch_w'][0] + 1)) for item in
        #                   polys_gt]
        # img_draw.polygon(polys_pre_final, outline=(255, 0, 0))  # pred polygons
        # #img_draw.polygon(polys_gt_final, outline=(0, 0, 255))
        # ##top
        # polys_pre_final = [tuple((item[0], item[1]- 1)) for item in polys_pre]
        # polys_gt = instances[0]['components'][0]['poly']
        # polys_gt_final = [tuple(((item[0] - data['starting_point'][0][0]) * 224 / data['patch_w'][0],
        #                          (item[1] - data['starting_point'][0][1]) * 224 / data['patch_w'][0] - 1)) for item in
        #                   polys_gt]
        # img_draw.polygon(polys_pre_final, outline=(255, 0, 0))  # pred polygons
        # #img_draw.polygon(polys_gt_final, outline=(0, 0, 255))
        # ##bottom
        # polys_pre_final = [tuple((item[0], item[1]+ 1)) for item in polys_pre]
        # polys_gt = instances[0]['components'][0]['poly']
        # polys_gt_final = [tuple(((item[0] - data['starting_point'][0][0]) * 224 / data['patch_w'][0],
        #                          (item[1] - data['starting_point'][0][1]) * 224 / data['patch_w'][0] + 1)) for item in
        #                   polys_gt]
        # img_draw.polygon(polys_pre_final, outline=(255, 0, 0))  # pred polygons
        # #img_draw.polygon(polys_gt_final, outline=(0, 0, 255))
        # ## top-right
        # polys_pre_final = [tuple((item[0]+1, item[1] - 1)) for item in polys_pre]
        # polys_gt = instances[0]['components'][0]['poly']
        # polys_gt_final = [tuple(((item[0] - data['starting_point'][0][0]) * 224 / data['patch_w'][0]+1,
        #                          (item[1] - data['starting_point'][0][1]) * 224 / data['patch_w'][0] - 1)) for item in
        #                   polys_gt]
        # img_draw.polygon(polys_pre_final, outline=(255, 0, 0))  # pred polygons
        # #img_draw.polygon(polys_gt_final, outline=(0, 0, 255))
        # ## bottom-left
        # polys_pre_final = [tuple((item[0] - 1, item[1] + 1)) for item in polys_pre]
        # polys_gt = instances[0]['components'][0]['poly']
        # polys_gt_final = [tuple(((item[0] - data['starting_point'][0][0]) * 224 / data['patch_w'][0] - 1,
        #                          (item[1] - data['starting_point'][0][1]) * 224 / data['patch_w'][0] + 1)) for item in
        #                   polys_gt]
        # img_draw.polygon(polys_pre_final, outline=(255, 0, 0))  # pred polygons
        # #img_draw.polygon(polys_gt_final, outline=(0, 0, 255))
        # ## left
        # polys_pre_final = [tuple((item[0] - 1, item[1])) for item in polys_pre]
        # polys_gt = instances[0]['components'][0]['poly']
        # polys_gt_final = [tuple(((item[0] - data['starting_point'][0][0]) * 224 / data['patch_w'][0] - 1,
        #                          (item[1] - data['starting_point'][0][1]) * 224 / data['patch_w'][0])) for item in
        #                   polys_gt]
        # img_draw.polygon(polys_pre_final, outline=(255, 0, 0))  # pred polygons
        # #img_draw.polygon(polys_gt_final, outline=(0, 0, 255))
        # ## right
        # polys_pre_final = [tuple((item[0] + 1, item[1])) for item in polys_pre]
        # polys_gt = instances[0]['components'][0]['poly']
        # polys_gt_final = [tuple(((item[0] - data['starting_point'][0][0]) * 224 / data['patch_w'][0] + 1,
        #                          (item[1] - data['starting_point'][0][1]) * 224 / data['patch_w'][0])) for item in
        #                   polys_gt]
        # img_draw.polygon(polys_pre_final, outline=(255, 0, 0))  # pred polygons

        ## bellow code for draw vertexPoly on croped img
        # img_draw.polygon(polys_pre_final, outline=(255, 193, 37))
        # imsave_ob = np.array(pil_img).astype(np.uint8)
        # for index, item in enumerate(polys_pre_final):
        #     if index % 32 == 0:
        #         #cv2.circle(imsave_ob, (int(item[0]),int(item[1])),2,(0,255,255),-1)
        #         rr,cc = draw.circle(item[1],item[0],2)
        #         draw.set_color(imsave_ob, [rr,cc], [0,255,255])
        # pil_img = Image.fromarray(imsave_ob, mode='RGB')
        # pil_img.save(''+str(instances[0]['img_path'][-17:-4])+'.png', 'PNG')

        # img_ob.save(imgpath[:-56] + '' + imgpath[-17:-4] + '_overlay_pre_gt.png','PNG')
        # pil_img.save(imgpath[:-56] + "es" + '/pre_overlay/' + imgpath[-29:-4] + '_overlay_pre_gt.png','PNG')

        polys = []
        for i, instance in enumerate(instances):
            poly = preds[i]
            poly = poly * data['patch_w'][i]  # to (224 224)
            poly[:, 0] += data['starting_point'][i][0]
            poly[:, 1] += data['starting_point'][i][1]

            pred_sp = pred_spline[i]
            pred_sp = pred_sp * data['patch_w'][i]
            pred_sp[:, 0] += data['starting_point'][i][0]
            pred_sp[:, 1] += data['starting_point'][i][1]

            instance['spline_pos'] = pred_sp.tolist()

            polys.append(poly)

            if save:
                img_h, img_w = instance['img_height'], instance['img_width']
                predicted_poly = []

                pred_mask = np.zeros((img_h, img_w), dtype=np.uint8)
                utils.draw_poly(pred_mask, poly.astype(np.int))
                predicted_poly.append(poly.tolist())

                ## overlap pred_poly with original image
                img_path = str(instance['img_path'])
                # get gt_polys
                # polys_gt = data['instance'][0]['components'][0]['poly']
                polys_gt = instance['components'][0]['poly']
                # get polys_pre
                polys_pre = predicted_poly[0]
                polys_gt_final = [tuple(item) for item in polys_gt]
                polys_pre_final = [tuple(item) for item in polys_pre]
                if len(polys_pre_final) == 1:
                    print('error!! ', img_path[10:])
                    print('before optimize is: ', output['pred_polys'][i])
                ## <<overlay gt_pre>>
                else:
                    pass
                    ##for 30 test volumes
                    #utils.overlap_pre_gt('/home/lxj/work_station/' + img_path[10:], polys_pre_final, polys_gt_final)
                    ## for 5-cross-val experiments
                    #utils.overlap_pre_gt('/home/lxj/work_station/' + img_path[25:], polys_pre_final, polys_gt_final)
                    # utils.overlap_pre_gt('/home/lxj/' + img_path[10:], polys_pre_final, polys_gt_final) # only for citiscapse

                gt_mask = utils.get_full_mask_from_instance(
                    self.opts['dataset']['train_val']['min_area'],
                    instance)

                instance['my_predicted_poly'] = predicted_poly
                instance_id = instance['img_path'][-17:-4]
                # image_id = instance['image_id']

                pred_mask_fname = os.path.join(self.output_dir, '{}_pred.png'.format(instance_id))
                instance['pred_mask_fname'] = os.path.relpath(pred_mask_fname, self.output_dir)

                gt_mask_fname = os.path.join(self.output_dir, '{}_gt.png'.format(instance_id))
                instance['gt_mask_fname'] = os.path.relpath(gt_mask_fname, self.output_dir)

                instance['n_corrections'] = 0

                info_fname = os.path.join(self.output_dir, '{}_info.json'.format(instance_id))

                with warnings.catch_warnings():
                    warnings.simplefilter("ignore")
                    sio.imsave(pred_mask_fname, pred_mask)
                    sio.imsave(gt_mask_fname, gt_mask)

                # print '==> dumping json'
                with open(info_fname, 'w') as f:
                    json.dump(instance, f, indent=2)

        return polys
コード例 #5
0
    def process_outputs(self, data, output, save=True):
        """
        Process outputs to get final outputs for the whole image
        Optionally saves the outputs to a folder for evaluation
        """

        #pred_spline = output['pred_polys']
        pred_spline = output['pred_polys']
        preds = self.spline.sample_point(pred_spline)
        torch.cuda.synchronize()
        preds = preds.cpu().numpy()

        pred_spline = pred_spline.cpu()
        pred_spline = pred_spline.numpy()

        instances = data['instance']
        polys = []
        for i, instance in enumerate(instances):
            poly = preds[i]
            poly = poly * data['patch_w'][i]
            poly[:, 0] += data['starting_point'][i][0]
            poly[:, 1] += data['starting_point'][i][1]


            pred_sp = pred_spline[i]
            pred_sp = pred_sp * data['patch_w'][i]
            pred_sp[:, 0] += data['starting_point'][i][0]
            pred_sp[:, 1] += data['starting_point'][i][1]

            instance['spline_pos'] = pred_sp.tolist()

            polys.append(poly)

            if save:
                img_h, img_w = instance['img_height'], instance['img_width']
                predicted_poly = []

                pred_mask = np.zeros((img_h, img_w), dtype=np.uint8)
                utils.draw_poly(pred_mask, poly.astype(np.int))
                #utils.get_edge_mask(poly.astype(np.int),pred_mask)
                #utils.get_vertices_mask(poly.astype(np.int),pred_mask)
                predicted_poly.append(poly.tolist())

                gt_mask = utils.get_full_mask_from_instance(
                    self.opts['dataset']['train_val']['min_area'],
                    instance)

                instance['my_predicted_poly'] = predicted_poly
                instance_id = instance['instance_id']
                image_id = instance['image_id']

                pred_mask_fname = os.path.join(self.output_dir, '{}_pred.png'.format(instance_id))
                instance['pred_mask_fname'] = os.path.relpath(pred_mask_fname, self.output_dir)

                gt_mask_fname = os.path.join(self.output_dir, '{}_gt.png'.format(instance_id))
                instance['gt_mask_fname'] = os.path.relpath(gt_mask_fname, self.output_dir)

                instance['n_corrections'] = 0

                info_fname = os.path.join(self.output_dir, '{}_info.json'.format(instance_id))

                with warnings.catch_warnings():
                    warnings.simplefilter("ignore")
                    sio.imsave(pred_mask_fname, pred_mask)
                    sio.imsave(gt_mask_fname, gt_mask)

                # print '==> dumping json'
                with open(info_fname, 'w') as f:
                    json.dump(instance, f, indent=2)

        return polys
コード例 #6
0
    def train(self, epoch):
        print 'Starting training'
        self.model.train()
        accum = defaultdict(float)
        #loss_loc = WHD_losses.WeightedHausdorffDistance(resized_height=self.opts['p_num'],resized_width=self.opts['p_num'],
        #                                                return_2_terms=True,
        #                                                device=device)
        #loss_loc = WHD_losses.AveragedHausdorffLoss()
        loss_loc = losses.WeightedHausdorffDistance(resized_height=224,
                                                    resized_width=224,
                                                    return_2_terms=True,
                                                    device=device)
        # focalloss = focal.FocalLoss(None,None,None,'mean')
        focalloss = focal.FocalLoss()
        # To accumulate stats for printing
        for step, data in enumerate(self.train_loader):
            if len(data['img']) == 1:
                continue
            if self.opts['get_point_annotation']:
                img = data['img'].to(device)
                annotation = data['annotation_prior'].to(device).unsqueeze(1)
                img = torch.cat([img, annotation], 1)
            else:
                img = data['img'].to(device)
            self.optimizer.zero_grad()
            if self.global_step % self.opts['val_freq'] == 0 and not self.opts[
                    'debug']:
                self.validate()
                self.save_checkpoint(epoch)
            output = self.model.forward(img, data['fwd_poly'])
            loss_sum = 0
            pred_cps = output['pred_polys'][-1]
            pred_polys = self.spline.sample_point(pred_cps)
            # print(pred_polys.shape)
            # print(output['vertex_logits'].shape)
            gt_right_order, poly_mathcing_loss_sum = losses.poly_mathcing_loss(
                self.opts['p_num'],
                pred_polys,
                data['gt_poly'].to(device),
                loss_type=self.opts['loss_type'])
            # add by dzh contour refine
            ## Initializing Contour Box
            level_set_config_dict = {
                'step_ckpts': [50],
                'lambda_': 0.0,
                'alpha': 1,
                'smoothing': 1,
                'render_radius': -1,
                'is_gt_semantic': True,
                'method': 'MLS',
                'balloon': 1,
                'threshold': 0.99,
                'merge_weight': 0.5
            }
            cbox = ContourBox.LevelSetAlignment(n_workers=1,
                                                fn_post_process_callback=None,
                                                config=level_set_config_dict)
            # print('-------------shape--------------------')
            output_contour, _ = cbox(
                {
                    'seg': np.expand_dims(data['edge_mask'], 0),
                    'bdry': None
                },
                np.expand_dims(
                    output['edge_logits'].view(
                        data['edge_mask'].shape).cpu().detach().numpy(), 0))
            masks_step = output_contour[0, :, 0, :, :]
            #--------add by dzh 7.18
            edge_annotation_loss = 0
            curr_fp_edge_loss = losses.fp_edge_loss(
                torch.from_numpy(masks_step).to(
                    device
                ),  #self.opts['fp_weight'] * losses.fp_edge_loss(torch.from_numpy(masks_step).to(device),
                output['edge_logits']
            )  #data['edge_mask'] torch.from_numpy(masks_step)
            edge_annotation_loss += curr_fp_edge_loss
            tt = []
            #pred_poly_mask = np.zeros((36, 36), np.float32)
            for i in range(pred_polys.shape[0]):
                pred_poly_mask = np.zeros((224, 224), dtype=np.float32)
                ff = np.floor(pred_polys[i].detach().cpu().numpy() *
                              36).astype(np.int32)

                if not isinstance(ff, list):
                    ff = [ff]
                for p in ff:
                    pred_poly_mask = utils.draw_poly(pred_poly_mask, p)
                #ff=utils.poly01_to_poly0g(pred_polys[i].detach().cpu().numpy(), 35)
                # pred_poly_mask = utils.get_vertices_mask_36(ff, pred_poly_mask)
                tt.append(pred_poly_mask)
            tt1 = np.array(tt, dtype=np.float32)
            pred_poly_mask11 = torch.from_numpy(tt1).cuda()
            ll1 = pred_poly_mask11
            #ll1 = output['vertex_logits'].view(output['vertex_logits'].shape[0],28,28)
            jjj = []
            for tt in range(ll1.shape[0]):
                jjj.append([224, 224])
            #jjj = [[28,28],[28,28],[28,28],[28,28],[28,28],[28,28],[28,28],[28,28],[28,28],[28,28],[28,28],[28,28],[28,28],[28,28],[28,28],[28,28]]
            # print(data['poly_mask'].shape)
            kk = []
            poly_mask_ori = data['poly_mask']
            for hh in range(ll1.shape[0]):
                zzz = torch.FloatTensor(poly_mask_ori[hh].astype(
                    np.float32)).cuda()
                #zzz = torch.FloatTensor(data['gt_orig_poly'][hh]).cuda()
                kk.append(zzz)
            #zzz = torch.from_numpy(data['gt_orig_poly'][0])
            # print(ll1.shape)
            # print(kk.shape)
            #ll1,kk
            term1, term2 = loss_loc.forward(
                ll1, kk,
                torch.FloatTensor(np.array(jjj, dtype=np.float32)).cuda())
            #fp_vertex_loss = self.opts['fp_weight'] * (term1+term2)
            fp_vertex_loss = 0.1 * (term1 + term2) + poly_mathcing_loss_sum
            #fp_vertex_loss = poly_mathcing_loss_sum + self.opts['fp_weight']* 0.1 * (term1+term2)
            loss_sum += fp_vertex_loss
            loss_sum += edge_annotation_loss  # + self.opts['fp_weight'] * (term1+term2)
            ################iou loss function#################
            #preds= pred_polys.detach().data.cpu().numpy()
            #iou_loss = 0
            #orig_poly = data['orig_poly']

            #for i in range(preds.shape[0]):
            #    curr_pred_poly = np.floor(preds[i] * 224).astype(np.int32)
            #    curr_gt_poly = np.floor(orig_poly[i] * 224).astype(np.int32)
            #    cur_iou, masks = metrics.iou_from_poly(np.array(curr_pred_poly, dtype=np.int32),
            #                                                    np.array(curr_gt_poly, dtype=np.int32),
            #                                                    224, 224)
            #    iou_loss += cur_iou
            #iou_loss = -iou_loss / preds.shape[0]
            #loss_sum += 0.1 * iou_loss
            ################iou loss function#################
            with torch.no_grad():
                iou = 0
                gt_mask_0 = []
                pred_mask_0 = []
                orig_poly = data['orig_poly']
                preds = pred_polys.detach().data.cpu().numpy()
                # iou_filter = []
                for i in range(preds.shape[0]):
                    curr_pred_poly = np.floor(preds[i] * 224).astype(np.int32)
                    curr_gt_poly = np.floor(orig_poly[i] * 224).astype(
                        np.int32)
                    cur_iou, masks = metrics.iou_from_poly(
                        np.array(curr_pred_poly, dtype=np.int32),
                        np.array(curr_gt_poly, dtype=np.int32), 224, 224)
                    gt_mask_0.append(masks[1])
                    pred_mask_0.append(masks[0])
            gt_mask_1 = torch.from_numpy(
                np.array(gt_mask_0)).to(device).float()
            pred_mask_1 = torch.from_numpy(
                np.array(pred_mask_0)).to(device).float()
            # mask_loss = focalloss(pred_mask_1, gt_mask_1)
            # mask_loss = losses.class_balanced_cross_entropy_loss(pred_mask_1, gt_mask_1)
            # pred111=pred_mask_1.view(pred_mask_1.shape[0],1,224,224)
            #mask_loss = 100 * focalloss((pred_mask_1/255), (gt_mask_1/255))
            mask_loss = torch.sum(
                torch.abs(gt_mask_1 / 250 - pred_mask_1 / 250))
            loss_sum += torch.mean(mask_loss)
            #         # iou_filter.append(1 if cur_iou>self.opts['iou_filter'] else 0)
            #         iou += cur_iou
            # iou = iou / preds.shape[0]
            # # iou_filter = np.array(iou_filter)
            # # iou_filter = torch.from_numpy(iou_filter).to(device).float()

            # loss_sum += (-iou)
            # if self.opts['iou_filter']>0:
            #     loss_sum = (loss_sum + (1-iou)) * iou_filter

            # loss_sum = torch.mean(loss_sum)
            loss_sum.backward()
            if 'grad_clip' in self.opts.keys():
                nn.utils.clip_grad_norm_(self.model.parameters(),
                                         self.opts['grad_clip'])
            self.optimizer.step()
            preds = pred_polys.detach().data.cpu().numpy()
            with torch.no_grad():
                # Get IoU
                iou = 0
                orig_poly = data['orig_poly']

                for i in range(preds.shape[0]):
                    curr_pred_poly = np.floor(preds[i] * 224).astype(np.int32)
                    curr_gt_poly = np.floor(orig_poly[i] * 224).astype(
                        np.int32)

                    cur_iou, masks = metrics.iou_from_poly(
                        np.array(curr_pred_poly, dtype=np.int32),
                        np.array(curr_gt_poly, dtype=np.int32), 224, 224)
                    iou += cur_iou
                iou = iou / preds.shape[0]
                accum['loss'] += float(loss_sum.item())
                accum['iou'] += iou
                accum['length'] += 1
                if self.opts['edge_loss']:
                    accum['edge_annotation_loss'] += float(
                        edge_annotation_loss.item())
                print(
                    "[%s] Epoch: %d, Step: %d, Polygon Loss: %f,  IOU: %f" \
                    % (str(datetime.now()), epoch, self.global_step, accum['loss'] / accum['length'], accum['iou'] / accum['length']))
                if step % self.opts['print_freq'] == 0:
                    # Mean of accumulated values
                    for k in accum.keys():
                        if k == 'length':
                            continue
                        accum[k] /= accum['length']

                    # Add summaries
                    masks = np.expand_dims(masks, -1).astype(
                        np.uint8)  # Add a channel dimension
                    #print(masks.shape)
                    masks = np.tile(masks, [1, 1, 1, 3])  # Make [2, H, W, 3]
                    img = (data['img'].cpu().numpy()[-1, ...] * 255).astype(
                        np.uint8)
                    img = np.transpose(img, [1, 2, 0])  # Make [H, W, 3]
                    self.writer.add_image('pred_mask', masks[0],
                                          self.global_step)
                    self.writer.add_image('gt_mask', masks[1],
                                          self.global_step)
                    self.writer.add_image('image', img, self.global_step)
                    self.writer.add_image(
                        'edge_acm_gt',
                        np.tile(
                            np.expand_dims(masks_step[preds.shape[0] - 1],
                                           axis=-1).astype(np.uint8),
                            [1, 1, 3]), self.global_step)
                    #self.writer.add_image('ori_GT',
                    pred_edge_mask = np.tile(
                        np.expand_dims(
                            output['edge_logits'].cpu().numpy()[preds.shape[0]
                                                                - 1] * 255,
                            axis=-1).astype(np.uint8),
                        [1, 1, 3]).reshape(28, 28, 3)
                    #print(pred_edge_mask.shape)
                    self.writer.add_image('pred_edge', pred_edge_mask,
                                          self.global_step)
                    for k in accum.keys():
                        if k == 'length':
                            continue
                        self.writer.add_scalar(k, accum[k], self.global_step)
                    print(
                    "[%s] Epoch: %d, Step: %d, Polygon Loss: %f,  IOU: %f" \
                    % (str(datetime.now()), epoch, self.global_step, accum['loss'], accum['iou']))

                    accum = defaultdict(float)

            del (output, masks, pred_polys, preds, loss_sum)
            self.global_step += 1
コード例 #7
0
    def process_outputs(self, data, output, save=True):
        """
        Process outputs to get final outputs for the whole image
        Optionally saves the outputs to a folder for evaluation
        """
        instances = data['instance']
        polys = []
        for i, instance in enumerate(instances):
            # Postprocess polygon
            poly = output['pred_polys'][i]

            _, poly = utils.get_full_mask_from_xy(poly, self.grid_size,
                                                  data['patch_w'][i],
                                                  data['starting_point'][i],
                                                  instance['img_height'],
                                                  instance['img_width'])

            polys.append(poly)

            if save:
                img_h, img_w = instance['img_height'], instance['img_width']
                predicted_poly = []

                # Paint pred mask
                pred_mask = np.zeros((img_h, img_w), dtype=np.uint8)
                poly = poly.astype(np.int)
                utils.draw_poly(pred_mask, poly)
                predicted_poly.append(poly.tolist())

                # Paint GT mask
                gt_mask = utils.get_full_mask_from_instance(
                    self.opts['dataset']['train_val']['min_area'], instance)

                instance['my_predicted_poly'] = predicted_poly
                instance_id = instance['instance_id']
                image_id = instance['image_id']

                pred_mask_fname = os.path.join(
                    self.output_dir, '{}_pred.png'.format(instance_id))
                instance['pred_mask_fname'] = os.path.relpath(
                    pred_mask_fname, self.output_dir)

                gt_mask_fname = os.path.join(self.output_dir,
                                             '{}_gt.png'.format(instance_id))
                instance['gt_mask_fname'] = os.path.relpath(
                    gt_mask_fname, self.output_dir)

                instance['n_corrections'] = 0

                info_fname = os.path.join(self.output_dir,
                                          '{}_info.json'.format(instance_id))

                with warnings.catch_warnings():
                    warnings.simplefilter("ignore")
                    sio.imsave(pred_mask_fname, pred_mask)
                    sio.imsave(gt_mask_fname, gt_mask)

                with open(info_fname, 'w') as f:
                    json.dump(instance, f, indent=2)

        return polys