コード例 #1
0
    def GetOutPreFromRoc(self, Name):

        train, test = self.DataSet.GetInput(Name)

        if "Even" in Name:
            OutPreOther, OutPreSame = self.RocEven.MaxPre[0].ravel(
            ), self.RocEven.MaxPre[1].ravel()

        elif "Odd" in Name:
            OutPreOther, OutPreSame = self.RocOdd.MaxPre[0].ravel(
            ), self.RocOdd.MaxPre[1].ravel()

        np.save(self.SavePath + Name + "_OutPreOther.npy", OutPreOther)
        np.save(self.SavePath + Name + "_OutPreSame.npy", OutPreSame)

        Auctest = roc_auc_score(test.OutTrue,
                                OutPreOther,
                                sample_weight=test.Weights)
        Auctrain = roc_auc_score(train.OutTrue,
                                 OutPreSame,
                                 sample_weight=train.Weights)

        print(Name)
        print("AUC train: " + str(Auctrain))
        print("AUC test: " + str(Auctest))

        return OutPreOther, OutPreSame
コード例 #2
0
def RocCurve(path, OutPre, DataSet, ModelNames):

    c1 = ROOT.TCanvas("c1", "Canvas", 800, 600)
    leg = ROOT.TLegend(0.1, 0.1, 0.3, 0.3)
    mg = ROOT.TMultiGraph()
    c1.SetGrid()
    if (not isinstance(OutPre, list)):
        OutPre = [OutPre]
    for i, Name in enumerate(ModelNames):
        train, test = DataSet.GetInput(Name)
        OutTrue = test.OutTrue
        weights = test.Weights
        fpr, tpr, threshold = roc_curve(OutTrue,
                                        OutPre[i],
                                        sample_weight=weights)
        modelAuc = roc_auc_score(OutTrue, OutPre[i], sample_weight=weights)

        gr1 = ROOT.TGraph(len(tpr), 1 - fpr, tpr)
        gr1.SetLineColor(1 + i)
        gr1.SetLineWidth(2)
        mg.Add(gr1, "L")
        leg.AddEntry(gr1, ModelNames[i] + " (Auc={:05.3f})".format(modelAuc))

    mg.Draw("A")
    leg.Draw()
    mg.GetXaxis().SetTitle("Signal efficiency")
    mg.GetYaxis().SetTitle("Background rejection")
    mg.GetHistogram().GetXaxis().SetRangeUser(0.2, 1)
    mg.GetHistogram().GetYaxis().SetRangeUser(0.2, 1)

    c1.SaveAs(path + "RocCurve.png")
コード例 #3
0
    def on_epoch_end(self, epoch, logs={}):
        if (epoch == 64 or epoch == 59):
            y_pred = self.model.predict(self.model.X_test)
            self.TestAucs.append(
                roc_auc_score(self.model.Y_test,
                              y_pred,
                              sample_weight=self.model.W_test))

            y_pred_Train = self.model.predict(self.model.X_train)
            self.TrainAucs.append(
                roc_auc_score(self.model.Y_train,
                              y_pred_Train,
                              sample_weight=self.model.W_train))

            #Save the Score if the Auc is the current highest
            if (self.TestAucs[-1] == max(self.TestAucs)):
                self.MaxPre = [y_pred, y_pred_Train]

        return
コード例 #4
0
    def GetOutPreFromModel(self, Name):

        train, test = self.DataSet.GetInput(Name)
        vali = self.DataSet.vali

        if "Even" in Name:
            OutPreOther, OutPreSame = self.ModelEven.predict(
                test.Events).ravel(), self.ModelEven.predict(
                    train.Events).ravel()
            OutPreVali = self.ModelEven.predict(vali.Events).ravel()

        elif "Odd" in Name:
            OutPreOther, OutPreSame = self.ModelOdd.predict(
                test.Events).ravel(), self.ModelOdd.predict(
                    train.Events).ravel()
            OutPreVali = self.ModelOdd.predict(vali.Events).ravel()

        np.save(self.SavePath + Name + "_OutPreOther.npy", OutPreOther)
        np.save(self.SavePath + Name + "_OutPreSame.npy", OutPreSame)

        Auctest = roc_auc_score(test.OutTrue,
                                OutPreOther,
                                sample_weight=test.Weights)
        Auctrain = roc_auc_score(train.OutTrue,
                                 OutPreSame,
                                 sample_weight=train.Weights)
        Aucvali = roc_auc_score(vali.OutTrue,
                                OutPreVali,
                                sample_weight=vali.Weights)

        print(Name)
        print("AUC train: " + str(Auctrain))
        print("AUC test: " + str(Auctest))
        # print("AUC vali: "+str(Aucvali))
        # with open("SearchOut.txt","a+") as Out:
        #     Out.write(Name+"\n")
        #     Out.write("AUC train: "+str(Auctrain)+"\n")
        #     Out.write("AUC test: "+str(Auctest)+"\n")
        #     Out.close()
        return OutPreOther, OutPreSame
コード例 #5
0
    def on_epoch_end(self, epoch, logs={}):
        # # Evalute Loss and Auc for test
        # self.TestLosses.append(logs.get('val_loss'))
        y_pred = self.model.predict(self.model.X_test)
        if (y_pred.shape[1] == 1):
            y_pred = y_pred.flatten()
            self.TestAucs.append(
                roc_auc_score(self.model.Y_test,
                              y_pred,
                              sample_weight=self.model.W_test))
        else:
            self.TestAucs.append(
                roc_auc_score(self.model.Y_test,
                              y_pred[:, 0],
                              sample_weight=self.model.W_test))

    # # Evalute Loss and Auc for train
    # self.TrainLosses.append(logs.get('loss'))
        y_pred_Train = self.model.predict(self.model.X_train)
        if (y_pred_Train.shape[1] == 1):
            y_pred_Train = y_pred_Train.flatten()
            self.TrainAucs.append(
                roc_auc_score(self.model.Y_train,
                              y_pred_Train,
                              sample_weight=self.model.W_train))
        else:
            self.TrainAucs.append(
                roc_auc_score(self.model.Y_train,
                              y_pred_Train[:, 0],
                              sample_weight=self.model.W_train))

        #Save the Score if the Auc is the current highest
        if (self.TestAucs[-1] == max(self.TestAucs)):
            self.MaxPre = [y_pred, y_pred_Train]

        return
コード例 #6
0
def MultiScore(path, OutPreOther, OutPreSame, DataSet, Name, ClassNum):

    train, test = DataSet.GetInput(Name)
    AucOther = roc_auc_score(GetTrueLabels(test, ClassNum),
                             OutPreOther,
                             sample_weight=test.Weights)
    AucSame = roc_auc_score(GetTrueLabels(train, ClassNum),
                            OutPreSame,
                            sample_weight=train.Weights)
    maxValue, minValue = np.max(OutPreOther), np.min(OutPreOther)
    if (np.max(OutPreSame) > maxValue):
        maxValue = np.max(OutPreSame)
    if (np.min(OutPreSame) < minValue):
        minValue = np.min(OutPreSame)

    c1 = ROOT.TCanvas("c1", "Canvas", 800, 600)
    ROOT.gStyle.SetOptStat(0)

    LClass = [0, 10, 11, 13]
    # Names = {0:r't\bar{t}t\bar{t}',13:r't\bar{t}W',12:r't\bar{t}WW',11:r't\bar{t}Z',10:r't\bar{t}H',2:'V+jets'
    #     ,3:'VV',4:r't(\bar{t})X',1:'others',9:r't\bar{t} QmisID',8:r't\bar{t} CO',
    #     7:r't\bar{t} HF',6:r't\bar{t} light',5:r't\bar{t} other'}
    # Color = {13:3,12:ROOT.kBlack,11:6,10:4,                                  #Colorcoding
    #         2:ROOT.kAzure+1,3:ROOT.kYellow-7,4:ROOT.kGreen-5,1:ROOT.kGreen-1,
    #         9:ROOT.kGreen-10,8:ROOT.kPink-9,7:ROOT.kViolet-4,
    #         6:ROOT.kBlue-7,5:ROOT.kBlue-10,0:ROOT.kRed+1}
    Names = {0: r't\bar{t}t\bar{t}', 1: r't\bar{t}V', 2: 'rest'}
    Color = {0: ROOT.kRed + 1, 1: ROOT.kBlack, 2: ROOT.kGreen}
    LHists = []
    for Class in LClass:
        hist = GetScoreTH(Class, OutPreOther, test.Weights, test.MultiClass,
                          minValue, maxValue)
        hist.SetLineColor(Color[Class])
        hist.SetLineWidth(2)
        LHists.append(hist)

    Pre = OutPreOther[GetTrueLabels(test, ClassNum) == 0]
    Weight = test.Weights[GetTrueLabels(test, ClassNum) == 0]
    histAll = ROOT.TH1F("hAll", "", 20, minValue, maxValue)
    fill_hist(histAll, Pre, weights=Weight)
    histAll.Scale(1 / histAll.GetSumOfWeights() / Getdx(histAll))
    histAll.SetLineColor(1)
    histAll.SetLineWidth(2)

    LHists[0].GetXaxis().SetTitle('Score')
    Lmax = [hist.GetMaximum() for hist in LHists]
    LHists[0].GetYaxis().SetRangeUser(0, max(Lmax) * 1.4)
    LHists[0].Draw("Hist")
    histAll.Draw("HistSame")
    for i in range(1, len(LHists)):
        LHists[i].Draw("HistSame")

    T1 = ROOT.TText()
    T2 = ROOT.TText()
    T1.SetTextSize(0.03)
    T2.SetTextSize(0.03)
    T1.SetTextAlign(21)
    T2.SetTextAlign(21)
    T1.DrawTextNDC(.23, .87,
                   r"AUC = " + str(round(AucOther, 3)) + "  (on test)")
    T2.DrawTextNDC(.23, .84,
                   r"AUC = " + str(round(AucSame, 3)) + " (on train)")

    leg = ROOT.TLegend(0.6, 0.75, 0.9, 0.9)
    for i, hist in enumerate(LHists):
        leg.AddEntry(hist, Names[LClass[i]])
    leg.AddEntry(histAll, "all backgrounds")
    leg.Draw()

    c1.SaveAs(path + "Score" + Name + '_' + str(ClassNum) + ".png")

    return AucOther, AucSame
コード例 #7
0
def Score(path, OutPreOther, OutPreSame, DataSet, Name):

    train, test = DataSet.GetInput(Name)
    AucOther = roc_auc_score(test.OutTrue,
                             OutPreOther,
                             sample_weight=test.Weights)
    AucSame = roc_auc_score(train.OutTrue,
                            OutPreSame,
                            sample_weight=train.Weights)

    maxValue, minValue = np.max(OutPreOther), np.min(OutPreOther)
    if (np.max(OutPreSame) > maxValue):
        maxValue = np.max(OutPreSame)
    if (np.min(OutPreSame) < minValue):
        minValue = np.min(OutPreSame)
    PreSigOther = OutPreOther[test.OutTrue == 1]
    SigWOther = test.Weights[test.OutTrue == 1]
    PreBkgOther = OutPreOther[test.OutTrue == 0]
    BkgWOther = test.Weights[test.OutTrue == 0]
    PreSigSame = OutPreSame[train.OutTrue == 1]
    SigWSame = train.Weights[train.OutTrue == 1]
    PreBkgSame = OutPreSame[train.OutTrue == 0]
    BkgWSame = train.Weights[train.OutTrue == 0]

    c1 = ROOT.TCanvas("c1", "Canvas", 800, 600)
    ROOT.gStyle.SetOptStat(0)

    hSigOther = ROOT.TH1F("h1", "", 40, minValue, maxValue)
    hBkgOther = ROOT.TH1F("h2", "", 40, minValue, maxValue)
    hSigSame = ROOT.TH1F("h3", "", 40, minValue, maxValue)
    hBkgSame = ROOT.TH1F("h4", "", 40, minValue, maxValue)

    fill_hist(hSigOther, PreSigOther, weights=SigWOther)
    fill_hist(hBkgOther, PreBkgOther, weights=BkgWOther)
    fill_hist(hSigSame, PreSigSame, weights=SigWSame)
    fill_hist(hBkgSame, PreBkgSame, weights=BkgWSame)

    hSigOther.Scale(1 / hSigOther.GetSumOfWeights() / Getdx(hSigOther))
    hBkgOther.Scale(1 / hBkgOther.GetSumOfWeights() / Getdx(hBkgOther))
    hSigSame.Scale(1 / hSigSame.GetSumOfWeights() / Getdx(hSigSame))
    hBkgSame.Scale(1 / hBkgSame.GetSumOfWeights() / Getdx(hBkgSame))

    hBkgSame.SetMarkerColor(2)
    hBkgSame.SetLineColor(2)
    hBkgSame.SetMarkerSize(0.7)
    hBkgSame.SetMarkerStyle(21)
    hSigSame.SetMarkerColor(4)
    hSigSame.SetMarkerSize(0.7)
    hSigSame.SetMarkerStyle(21)

    hSigOther.GetXaxis().SetTitle('Score')
    hBkgOther.SetLineColor(ROOT.kRed)
    if (hSigOther.GetMaximum() > hBkgSame.GetMaximum()):
        hSigOther.GetYaxis().SetRangeUser(0, hSigOther.GetMaximum() * 1.4)
    else:
        hSigOther.GetYaxis().SetRangeUser(0, hBkgOther.GetMaximum() * 1.4)
    hSigOther.Draw("Hist")
    hBkgOther.Draw("HistSame")
    hSigSame.Draw("E1 Same")
    hBkgSame.Draw("E1 Same")

    T1 = ROOT.TText()
    T2 = ROOT.TText()
    T1.SetTextSize(0.03)
    T2.SetTextSize(0.03)
    T1.SetTextAlign(21)
    T2.SetTextAlign(21)
    T1.DrawTextNDC(.23, .87,
                   r"AUC = " + str(round(AucOther, 3)) + "  (on test)")
    T2.DrawTextNDC(.23, .84,
                   r"AUC = " + str(round(AucSame, 3)) + " (on train)")

    leg = ROOT.TLegend(0.6, 0.75, 0.9, 0.9)
    leg.AddEntry(hSigSame, "Signal (on train sample)")
    leg.AddEntry(hBkgSame, "Background (on train sample)")
    leg.AddEntry(hSigOther, "Signal (on test sample)")
    leg.AddEntry(hBkgOther, "Background (on test sample)")
    leg.Draw()

    c1.SaveAs(path + "Score" + Name + ".png")

    return AucOther, AucSame