def model_DenseNet(): model_dense = RGCSA.ResneXt_IN((1, img_rows, img_cols, img_channels), cardinality=8, classes=9) RMS = RMSprop(lr=0.0003) # Let's train the model using RMSprop def mycrossentropy(y_true, y_pred, e=0.1): loss1 = K.categorical_crossentropy(y_true, y_pred) loss2 = K.categorical_crossentropy(K.ones_like(y_pred) / nb_classes, y_pred) # K.ones_like(y_pred) / nb_classes return (1 - e) * loss1 + e * loss2 model_dense.compile(loss=mycrossentropy, optimizer=RMS, metrics=['accuracy']) return model_dense
def model_DenseNet(): model_dense = RGCSA.ResneXt_IN((1, img_rows, img_cols, img_channels), classes=16) RMS = RMSprop(lr=0.0003) def mycrossentropy(y_true, y_pred, e=0.1): loss1 = K.categorical_crossentropy(y_true, y_pred) loss2 = K.categorical_crossentropy(K.ones_like(y_pred) / nb_classes, y_pred) # K.ones_like(y_pred) / nb_classes return (1 - e) * loss1 + e * loss2 model_dense.compile(loss=mycrossentropy, optimizer=RMS, metrics=['accuracy']) # categorical_crossentropy model_dense.summary() # plot_model(model_dense, show_shapes=True, to_file='./model_ResNeXt_GroupChannel_Space_Attention.png') return model_dense