def eval(self, env: Env.Values) -> V.String: "" v = self.expr.eval(env) if isinstance(v, V.Null): if "default" in self.options: return V.String(self.options["default"]) return V.String("") if isinstance(v, V.String): return v if isinstance(v, V.Array): return V.String(self.options["sep"].join( str(item.value) for item in v.value)) if v == V.Boolean(True) and "true" in self.options: return V.String(self.options["true"]) if v == V.Boolean(False) and "false" in self.options: return V.String(self.options["false"]) return V.String(str(v))
def eval(self, env: Env.Values) -> V.Boolean: "" return V.Boolean(self.value)
def __call__(self, expr: E.Apply, env: Env.Values, stdlib: Base) -> V.Base: lhs = expr.arguments[0].eval(env, stdlib=stdlib).expect(T.Boolean()).value if lhs: return V.Boolean(True) return expr.arguments[1].eval(env, stdlib=stdlib).expect(T.Boolean())
def _call_eager(self, expr: E.Apply, arguments: List[V.Base]) -> V.Base: assert len(arguments) == 2 return V.Boolean(self.op(arguments[0].value, arguments[1].value))
def __init__(self): # language built-ins self._at = _At() self._land = _And() self._lor = _Or() self._negate = StaticFunction( "_negate", [T.Boolean()], T.Boolean(), lambda x: V.Boolean(not x.value) ) self._add = _AddOperator() self._sub = _ArithmeticOperator("-", lambda l, r: l - r) self._mul = _ArithmeticOperator("*", lambda l, r: l * r) self._div = _ArithmeticOperator("/", lambda l, r: l // r) self._rem = StaticFunction( "_rem", [T.Int(), T.Int()], T.Int(), lambda l, r: V.Int(l.value % r.value) ) self._eqeq = _ComparisonOperator("==", lambda l, r: l == r) self._neq = _ComparisonOperator("!=", lambda l, r: l != r) self._lt = _ComparisonOperator("<", lambda l, r: l < r) self._lte = _ComparisonOperator("<=", lambda l, r: l <= r) self._gt = _ComparisonOperator(">", lambda l, r: l > r) self._gte = _ComparisonOperator(">=", lambda l, r: l >= r) # static stdlib functions for (name, argument_types, return_type, F) in [ ("floor", [T.Float()], T.Int(), lambda v: V.Int(math.floor(v.value))), ("ceil", [T.Float()], T.Int(), lambda v: V.Int(math.ceil(v.value))), ("round", [T.Float()], T.Int(), lambda v: V.Int(round(v.value))), ("length", [T.Array(T.Any())], T.Int(), lambda v: V.Int(len(v.value))), ("sub", [T.String(), T.String(), T.String()], T.String(), _sub), ("basename", [T.String(), T.String(optional=True)], T.String(), _basename), ( "defined", [T.Any(optional=True)], T.Boolean(), lambda v: V.Boolean(not isinstance(v, V.Null)), ), # context-dependent: ("write_lines", [T.Array(T.String())], T.File(), _notimpl), ("write_tsv", [T.Array(T.Array(T.String()))], T.File(), _notimpl), ("write_map", [T.Map((T.Any(), T.Any()))], T.File(), _notimpl), ("write_json", [T.Any()], T.File(), _notimpl), ("stdout", [], T.File(), _notimpl), ("stderr", [], T.File(), _notimpl), ("glob", [T.String()], T.Array(T.File()), _notimpl), ("read_int", [T.File()], T.Int(), _notimpl), ("read_boolean", [T.File()], T.Boolean(), _notimpl), ("read_string", [T.File()], T.String(), _notimpl), ("read_float", [T.File()], T.Float(), _notimpl), ("read_array", [T.File()], T.Array(T.Any()), _notimpl), ("read_map", [T.File()], T.Map((T.Any(), T.Any())), _notimpl), ("read_lines", [T.File()], T.Array(T.Any()), _notimpl), ("read_tsv", [T.File()], T.Array(T.Array(T.String())), _notimpl), ("read_json", [T.File()], T.Any(), _notimpl), ]: setattr(self, name, StaticFunction(name, argument_types, return_type, F)) # polymorphically typed stdlib functions which require specialized # infer_type logic self.range = _Range() self.prefix = _Prefix() self.size = _Size() self.select_first = _SelectFirst() self.select_all = _SelectAll() self.zip = _Zip() self.cross = _Zip() # FIXME self.flatten = _Flatten() self.transpose = _Transpose()
def __call__(self, expr: E.Apply, env: Env.Values) -> V.Base: if isinstance(expr.arguments[0].eval(env), V.Null): return V.Boolean(False) return V.Boolean(True)
def __call__(self, expr: E.Apply, env: E.Env) -> V.Base: assert len(expr.arguments) == 2 return V.Boolean( # pyre-fixme self.op(expr.arguments[0].eval(env).value, expr.arguments[1].eval(env).value))
def __call__(self, expr: E.Apply, env: E.Env) -> V.Base: lhs = expr.arguments[0].eval(env).expect(T.Boolean()).value if lhs: return V.Boolean(True) return expr.arguments[1].eval(env).expect(T.Boolean())
assert len(expr.arguments) == len(self.argument_types) argument_values = [ arg.eval(env).coerce(ty) for arg, ty in zip(expr.arguments, self.argument_types) ] ans: V.Base = self.F(*argument_values) return ans.coerce(self.return_type) def _notimpl(one: Any = None, two: Any = None) -> None: exec("raise NotImplementedError()") _static_functions: List[Tuple[str, List[T.Base], T.Base, Any]] = [ ("_negate", [T.Boolean()], T.Boolean(), lambda x: V.Boolean(not x.value)), # pyre-fixme ("_rem", [T.Int(), T.Int()], T.Int(), lambda l, r: V.Int(l.value % r.value)), # pyre-fixme ("stdout", [], T.File(), _notimpl), ("basename", [T.String(), T.String(optional=True)], T.String(), _notimpl), # note: size() can take an empty value and probably returns 0 in that case. # e.g. https://github.com/DataBiosphere/topmed-workflows/blob/31ba8a714b36ada929044f2ba3d130936e6c740e/CRAM-no-header-md5sum/md5sum/CRAM_md5sum.wdl#L39 ("size", [T.File(optional=True), T.String(optional=True)], T.Float(), _notimpl), ("ceil", [T.Float()], T.Int(), _notimpl), ("round", [T.Float()], T.Int(), _notimpl), ("glob", [T.String()], T.Array(T.File()), _notimpl), ("read_int", [T.String()], T.Int(), _notimpl), ("read_boolean", [T.String()], T.Boolean(), _notimpl), ("read_string", [T.String()], T.String(), _notimpl), ("read_float", [T.String()], T.Float(), _notimpl),