def aposteriori_spawning(fin, fout, pin, pout, save_canonical=False): """ :param f: An ``IOManager`` instance providing the simulation data. :param datablock: The data block where the results are. """ # Number of time steps we saved timesteps = fin.load_wavepacket_timegrid() nrtimesteps = timesteps.shape[0] params = fin.load_wavepacket_parameters() coeffs = fin.load_wavepacket_coefficients() # A data transformation needed by API specification coeffs = [ [ coeffs[i,j,:] for j in xrange(pin["ncomponents"]) ] for i in xrange(nrtimesteps) ] # The potential Potential = PotentialFactory().create_potential(pin) # Initialize a mother Hagedorn wavepacket with the data from another simulation HAWP = HagedornWavepacket(pin) HAWP.set_quadrature(None) # Initialize an empty wavepacket for spawning SWP = HagedornWavepacket(pout) SWP.set_quadrature(None) # Initialize a Spawner NAS = NonAdiabaticSpawnerKF(pout) # Try spawning for these components, if none is given, try it for all. if not "spawn_components" in parametersout: components = range(pin["ncomponents"]) else: components = parametersout["spawn_components"] # Iterate over all timesteps and spawn for i, step in enumerate(timesteps): print(" Try spawning at timestep "+str(step)) # Configure the wave packet and project to the eigenbasis. HAWP.set_parameters(params[i]) HAWP.set_coefficients(coeffs[i]) # Project to the eigenbasis as the parameter estimation # has to happen there because of coupling. T = HAWP.clone() T.project_to_eigen(Potential) # Try spawning a new packet for each component estps = [ NAS.estimate_parameters(T, component=acomp) for acomp in components ] # The quadrature quadrature = InhomogeneousQuadrature() # Quadrature, assume same quadrature order for both packets # Assure the "right" quadrature is choosen if mother and child have # different basis sizes if max(HAWP.get_basis_size()) > max(SWP.get_basis_size()): quadrature.set_qr(HAWP.get_quadrature().get_qr()) else: quadrature.set_qr(SWP.get_quadrature().get_qr()) for index, ps in enumerate(estps): if ps is not None: # One choice of the sign U = SWP.clone() U.set_parameters(ps) # Project the coefficients to the spawned packet tmp = T.clone() NAS.project_coefficients(tmp, U, component=components[index]) # Other choice of the sign V = SWP.clone() # Transform parameters psm = list(ps) B = ps[0] Bm = -np.real(B)+1.0j*np.imag(B) psm[0] = Bm V.set_parameters(psm) # Project the coefficients to the spawned packet tmp = T.clone() NAS.project_coefficients(tmp, V, component=components[index]) # Compute some inner products to finally determine which parameter set we use ou = abs(quadrature.quadrature(T,U, component=components[index])) ov = abs(quadrature.quadrature(T,V, component=components[index])) # Choose the packet which maximizes the inner product. This is the main point! if ou >= ov: U = U else: U = V # Finally do the spawning, this is essentially to get the remainder T right # The packet U is already ok by now. NAS.project_coefficients(T, U, component=components[index]) # Transform back if save_canonical is True: T.project_to_canonical(Potential) U.project_to_canonical(Potential) # Save the mother packet rest fout.save_wavepacket_parameters(T.get_parameters(), timestep=step, blockid=2*index) fout.save_wavepacket_coefficients(T.get_coefficients(), timestep=step, blockid=2*index) # Save the spawned packet fout.save_wavepacket_parameters(U.get_parameters(), timestep=step, blockid=2*index+1) fout.save_wavepacket_coefficients(U.get_coefficients(), timestep=step, blockid=2*index+1)
quads1 = [] quads2 = [] quads12 = [] for index, pos in enumerate(positions): print(pos) # Moving Gaussian WP2.set_parameters((1.0j, 1.0, 0.0, 0.0, pos)) # Transform the nodes nodes1 = squeeze(HQ1.transform_nodes(WP1.get_parameters(), WP1.eps)) nodes2 = squeeze(HQ2.transform_nodes(WP2.get_parameters(), WP2.eps)) nodes12 = squeeze(IHQ.transform_nodes(Pibra, WP2.get_parameters(), WP1.eps)) # Compute inner products Q1 = IHQ.quadrature(WP1, WP1, summed=True) Q2 = IHQ.quadrature(WP2, WP2, summed=True) Q12 = IHQ.quadrature(WP1, WP2, summed=True) quads1.append(Q1) quads2.append(Q2) quads12.append(Q12) # Evaluate the packets y = WP1.evaluate_at(x, prefactor=True, component=0) z = WP2.evaluate_at(x, prefactor=True, component=0) figure() plot(x, conj(y) * y, "b") plot(x, conj(z) * z, "g") plot(x, conj(y) * z, "r")