コード例 #1
0
def main():

    keyword = None
    # keyword = "プログラミング言語"

    for i, arg in enumerate(sys.argv):
        if i is 0:
            continue
        if i > 1:
            break
        keyword = arg

    reader = WikiReader(keyword)
    content = reader.get_content()
    print(content)
コード例 #2
0
def split_wiki(pages_per_part, input_file, output_folder, output_file_suffix):
    click.echo("The wikipedia file '{}' will now be split into "
               "several files each of '{}' pages.".format(
                   input_file, pages_per_part))
    click.echo("This process might take a while!")

    wiki_reader = WikiReader(input_file)
    index = {}

    # Write the site info to its own file
    write_to_json_file(wiki_reader.site_info, output_folder,
                       SITEINFO_FILE_NAME)

    # Go over all pages and write them into files of about split_size_kb
    current_pages = []
    current_count = 0
    for page in wiki_reader:
        current_pages.append(page)
        index[page['title']] = current_count
        if len(current_pages) > pages_per_part:
            write_to_json_file(
                current_pages, output_folder,
                FILE_NAME_FORMAT.format(current_count, output_file_suffix))
            current_pages = []
            current_count += 1
            print("Processed {} articles!".format(current_count *
                                                  pages_per_part))

    if len(current_pages) != 0:
        write_to_json_file(
            current_pages, output_folder,
            FILE_NAME_FORMAT.format(current_count, output_file_suffix))

    write_to_json_file(index, output_folder, INDEX_FILE_NAME)
コード例 #3
0
ファイル: main.py プロジェクト: cenh/Wikipedia-Heavy-Hitters
        description='Main program to get heavy-hitters from Wikipedia.')
    parser.add_argument(
        '--skip', type=int, help='number of articles to skip from start (Default: 0)', default=0)
    parser.add_argument(
        '--parse', type=int, help='total number of articles to parse (Default: 10,000)', default=10000)
    parser.add_argument(
        '--print', type=int, help='number of articles after which every time a log is printed (Default: 100)', default=100)
    parser.add_argument(
        '--result', type=int, help='number of articles after which every time partial results are printed (Default: 100)', default=100)
    parser.add_argument(
        '--input', type=str, help='input .xml file (Default: articles/sample.xml)', default="articles/sample.xml")
    parser.add_argument(
        '--output', type=str, help='output file that contains all the logging (Default: logs.txt)', default="logs.txt")
    args = parser.parse_args()

    wiki_reader = WikiReader(args.input)
    macroCMS = {}
    mapping_distribution = {}
    log_file = open(args.output, 'w', encoding='utf-8')

    for cat in macro_categories:
        macroCMS[cat] = CountMinSketch(
            fraction=0.0005, tolerance=0.0001, allowed_failure_probability=0.01)
        mapping_distribution[cat] = 0

    cnt = 0
    time_start = time.time()
    mrJob = WordCount.WikiWordCount(args=[article_list])
    for page_dict in wiki_reader:
        with open(tmp_file, 'w', encoding='utf-8') as f:
            if page_dict['revision']['text'].startswith('#REDIRECT'):
コード例 #4
0
if __name__ == '__main__':
    # read the Wiki
    language = "FI"
    corpus_dir = "Wikiextractor/" + language

    re_tok = RegexpTokenizer(r'\w+')

    toktok_tok = ToktokTokenizer()

    special_chars = re.compile('[.,:;!?'  # punctuation
                               '\[({})\]\"\''  # parentheses
                               '@#\$&%§+~_]')  # rest

    special_char_remover = lambda s: special_chars.sub('', s)

    w = WikiReader(corpus_dir, toktok_tok, special_char_remover)

    wiki_iter_func = w.article_iter

    #################################
    # inspect first article
    first_title, first_t = next(wiki_iter_func())

    print(first_title)
    print(first_t)
    print(len(first_t))
    print([len(par) for par in first_t])

    print('\n\n\n')

    # calling zip(*wiki_iter) is not okay (takes too long)
コード例 #5
0
    t0 = time()

    # parameters
    current_split_lvl = ArticleSplitter
    current_tokeniser = ToktokTokenizer
    language = "ALS"
    print("Processing ", language, " on splitting level ",
          current_split_lvl.__name__)

    #alphanum_tok = RegexpTokenizer(r'\w+')
    special_chars = get_special_char_regexp()
    special_char_remover = lambda s: special_chars.sub(' ', s)

    corpus_dir = "Wikiextractor/" + language
    wiki = WikiReader(corpus_dir,
                      tokeniser=current_tokeniser(),
                      char_cleaner=special_char_remover)

    print('reader set up')

    splitter = current_split_lvl(wiki.article_iter)

    wiki_iter1, wiki_iter2 = splitter.get_iterators()

    print('corpus split', '\t(current memory: ',
          proc.memory_full_info().rss / mem0, ')', '\t(time elapsed: ',
          time() - t0, ')')

    wiki_counter1 = CorpusCounter(wiki_iter1)

    print('part 1 counted', '\t(current memory: ',
コード例 #6
0
    # pipeline:
    # 0. split sentences
    # 1. remove special characters
    # 2. tokenise
    # 3. lemmatise

    language = "VI"
    corpus_dir = "Wikiextractor/" + language

    special_chars = re.compile('[.,:;!?'  # punctuation
                               '\[({})\]'  # parentheses
                               '@#\$&%§+~_"]')  # rest

    char_cleaner = lambda s: special_chars.sub('', s)

    w = WikiReader(corpus_dir)

    w_iter = w.article_iter()

    titles, articles = list(zip(*head(w.article_iter())))

    print(titles)

    print()

    re_tok = RegexpTokenizer(r'\w+')

    toktok = ToktokTokenizer()

    for i in range(5):
コード例 #7
0
    special_chars = get_special_char_regexp()
    special_char_remover = lambda s: special_chars.sub(' ', s)

    for language in ["EO", "EU", "FI", "ID", "NO", "TR", "VI"]:
        for current_split_lvl in [
                ArticleSplitter, ParagraphSplitter, WordSplitter
        ]:

            tracker = TimeAndMemoryTracker()
            stats_keeper = StatsWriter()
            print("### Processing ", language, " on splitting level ",
                  current_split_lvl.__name__)

            wiki = WikiReader(corpus_dir + language,
                              tokeniser=current_tokeniser(),
                              char_cleaner=special_char_remover,
                              count_elements=True)
            tracker.current_relative_info('reader set up')

            splitter = current_split_lvl(wiki.article_iter)
            wiki_iter1, wiki_iter2 = splitter.get_iterators()

            tracker.current_relative_info('corpus split')

            wiki_counter1 = CorpusCounter(wiki_iter1)
            tracker.current_relative_info('part 1 counted')

            wiki_counter2 = CorpusCounter(wiki_iter2)
            tracker.current_relative_info('part 2 counted')

            wiki_words, wiki_ranks, wiki_counts = wiki_counter1.align_words_ranks_counts(
コード例 #8
0
 def __init__(self, wiki_name, wiki_dir, wiki_file, debug_flag=False):
     self.wiki_name = wiki_name
     self.wiki_dir = wiki_dir
     self.wiki_file = wiki_file
     # wkb will have an WikiReader object as private variable
     self.wikir = WikiReader(wiki_name, debug_flag=debug_flag)
コード例 #9
0
class WikiCorpusBuilder(object):
    ALL_CATEGORIES_FILE = "all_categories.pkl"
    PARENT_CATEGORIES_FILE = "parent_categories.pkl"
    USE_CATEGORIES_FILE = "use_categories.pkl"
    PAGES_IN_CATEGORIES_FILE = "pages_in_categories.pkl"
    COMMON_WORDS_FILE = "common_words.pkl"
    UNCOMMON_WORDS_FILE = "uncommon_words.pkl"
    STOP_WORDS_FILE = "stop_words.pkl"
    EXAMS_WORDS_FILE = "exams_words.pkl"
    POSITIVE_WORDS_FILE = "positive_words.pkl"
    ANSWERS_FILE = "all_answers.pkl"
    CORPUS_FILE = "corpus.txt"

    def __init__(self, wiki_name, wiki_dir, wiki_file, debug_flag=False):
        self.wiki_name = wiki_name
        self.wiki_dir = wiki_dir
        self.wiki_file = wiki_file
        # wkb will have an WikiReader object as private variable
        self.wikir = WikiReader(wiki_name, debug_flag=debug_flag)

    # Create 2 files all_categories.pkl and parent_categories.pkl, if exist, will just load,
    # They are stored in wkb.all_categories and wkb.parent_categories
    # we scan the wiki file find all categories that has <title>Categories:xxx</title> and their parent Catetories
    # details can be found in read_categories method in WikiReader.py
    def read_categories(self, reread=False):
        # this function create 'all_categories.pkl' and 'parent_categories.pkl'
        # there are 29586 categories and 27923 parent categories
        print "=> Reading categories for %s" % self.wiki_name
        categories_file = "%s/%s_%s" % (self.wiki_dir, self.wiki_name, WikiCorpusBuilder.ALL_CATEGORIES_FILE)
        parents_file = "%s/%s_%s" % (self.wiki_dir, self.wiki_name, WikiCorpusBuilder.PARENT_CATEGORIES_FILE)
        gc.collect()
        if reread or (not os.path.exists(categories_file)) or (not os.path.exists(parents_file)):
            # if it is the 1st time run this code, will end up in this block and create this 2 category files
            # it will call the WikiReader to get all the category names from wiki file by scanning through it and match category regex
            self.wikir.read_sub_categories(
                wikifile="%s/%s" % (self.wiki_dir, self.wiki_file), max_read_lines=99900000000
            )
            save_to_pkl(categories_file, self.wikir.all_categories)
            save_to_pkl(parents_file, self.wikir.parent_categories)
        else:
            self.wikir.all_categories = load_from_pkl(categories_file)
            self.wikir.parent_categories = load_from_pkl(parents_file)
        print "There are a total of %d categories" % len(self.wikir.all_categories)

    # Create 2 files 'use_categories.pkl' and 'pages_in_categories.pkl'
    # for all singlewiki corpus, target_categories = None, important_categories=['Earth', 'Cellular respiration', 'DNA', 'Units of length', 'History of science',
    #                                                           'Evolutionary biology', 'Nonmetals', 'Health', 'Charles Darwin']
    # important_categories are science-related categories, if not found in target_catefories, which is generated from above method, will give an alert
    # it will all read_pages_in_categories in Cardal_WikiReader.py
    def read_pages_in_categories(self, target_categories, max_cat_depth, important_categories, reread=False):
        print "=> Reading pages in target categories for %s" % self.wiki_name
        self.target_categories = target_categories
        self.max_cat_depth = max_cat_depth
        use_categories_file = "%s/%s_%s" % (self.wiki_dir, self.wiki_name, WikiCorpusBuilder.USE_CATEGORIES_FILE)
        pages_in_categories_file = "%s/%s_%s" % (
            self.wiki_dir,
            self.wiki_name,
            WikiCorpusBuilder.PAGES_IN_CATEGORIES_FILE,
        )
        if reread or (not os.path.exists(use_categories_file)) or (not os.path.exists(pages_in_categories_file)):
            if self.target_categories is None:
                # generated from the above method
                self.use_categories = self.wikir.all_categories
            else:
                # this block check that target categories(which we think are very relevant) are all included in our search category
                self.use_categories = set(
                    [
                        cat
                        for cat in self.wikir.all_categories
                        if self.wikir.search_categories(cat, self.target_categories, max_depth=self.max_cat_depth) >= 0
                    ]
                )
            save_to_pkl(use_categories_file, self.use_categories)

            self.pages_in_categories = self.wikir.read_pages_in_categories(
                wikifile="%s/%s" % (self.wiki_dir, self.wiki_file),
                use_categories=self.use_categories,
                max_read_lines=99900000000,
            )
            save_to_pkl(pages_in_categories_file, self.pages_in_categories)
        else:
            self.use_categories = load_from_pkl(use_categories_file)
            self.pages_in_categories = load_from_pkl(pages_in_categories_file)

        print "Using %d categories related to %s target categories with depth <= %d" % (
            len(self.use_categories),
            "x" if self.target_categories is None else len(self.target_categories),
            self.max_cat_depth,
        )
        print "Missing important categories: %s" % str(
            [cat for cat in important_categories if cat not in self.use_categories]
        )
        print "There are %d pages in the %d categories" % (len(self.pages_in_categories), len(self.use_categories))

    # this will read all the text from wiki file
    # parse useful pure text and build a dict of words
    # depends on the common words and uncommon words fraction, we pick up common words and uncommon words
    # we also add common words to stop words
    # we finally save common_words.pkl, uncommon_words.pkl and stop_words.pkl to corpus dir
    def find_common_words(
        self,
        wiki_common_words_min_frac=0.2,
        wiki_uncommon_words_max_frac=0.01,
        use_wiki_stop_words=True,
        max_read_lines=100000000,
        reread=False,
    ):
        print "=> Finding common/uncommon words"
        self.wiki_common_words_min_frac = wiki_common_words_min_frac
        self.wiki_uncommon_words_max_frac = wiki_uncommon_words_max_frac
        self.use_wiki_stop_words = use_wiki_stop_words
        # the 3 files not exist at begining, need to create once
        common_words_file = "%s/%s_%.4f_%s" % (
            self.wiki_dir,
            self.wiki_name,
            self.wiki_common_words_min_frac,
            WikiCorpusBuilder.COMMON_WORDS_FILE,
        )
        uncommon_words_file = "%s/%s_%.4f_%s" % (
            self.wiki_dir,
            self.wiki_name,
            self.wiki_uncommon_words_max_frac,
            WikiCorpusBuilder.UNCOMMON_WORDS_FILE,
        )
        stop_words_file = "%s/%s_%.4f_%s%s" % (
            self.wiki_dir,
            self.wiki_name,
            self.wiki_common_words_min_frac,
            "wsw_" if self.use_wiki_stop_words else "",
            WikiCorpusBuilder.STOP_WORDS_FILE,
        )
        # Read first X lines from Wiki corpus, and get the set of Wiki stop-words (words that appear in many documents),
        # as well as the "uncommon" words (words that appear in a small fraction of the documents)
        if (
            reread
            or (not os.path.exists(common_words_file))
            or (not os.path.exists(uncommon_words_file))
            or (not os.path.exists(stop_words_file))
        ):
            # this line creates a locdic variable (Cardal_LocationDict object)
            # by calling the read function, it actually read the wiki file with action = 'locdic', this will create a location dict
            # for each page, and for each section in each page, we read all its section text, and perform the add_words function in Cardal_LocationDict
            # the input for this function are have page_name, section_name, section_number, section_text
            # the add_words function: 1st arg is page_name + page_id, 2nd arg is section_name + section_id, 3rd arg is the section_text
            # this will also compute the count of all parsed words
            wiki_locdic = self.wikir.read(
                wikifile="%s/%s" % (self.wiki_dir, self.wiki_file),
                outfile="%s/%s_locdic1.txt" % (self.wiki_dir, self.wiki_name),  # ignored...
                # only_first_section_per_page=True, max_read_lines=max_read_lines,
                only_first_section_per_page=False,
                max_sections_per_page=1,
                max_read_lines=max_read_lines,
                stop_words=SpecialWords.ignore_words,
                pos_words=set(),
                min_pos_words_in_page_name=0,
                min_pos_words_in_section=0,
                action="locdic",
            )
            # there are 2 fraction thresholds for common words and uncommon words
            # depends on the threshold, these 2 values could be different
            self.wiki_common_words = set(
                [
                    word
                    for dc, word in wiki_locdic.sort_words_by_num_docs()
                    if dc > (self.wiki_common_words_min_frac * wiki_locdic.get_num_docs())
                ]
            )
            self.wiki_uncommon_words = set(
                [
                    word
                    for dc, word in wiki_locdic.sort_words_by_num_docs()
                    if dc < (self.wiki_uncommon_words_max_frac * wiki_locdic.get_num_docs())
                ]
            )
            # we add common words to stopwords
            self.stop_words = set(SpecialWords.ignore_words).union(self.wiki_common_words)
            if self.use_wiki_stop_words:
                self.stop_words.update(WikiReader.WIKI_STOP_WORDS)
            wiki_locdic = None
            gc.collect()
            save_to_pkl(common_words_file, self.wiki_common_words)
            save_to_pkl(uncommon_words_file, self.wiki_uncommon_words)
            save_to_pkl(stop_words_file, self.stop_words)
        else:
            self.wiki_common_words = load_from_pkl(common_words_file)
            self.wiki_uncommon_words = load_from_pkl(uncommon_words_file)
            self.stop_words = load_from_pkl(stop_words_file)

        print "There are %d common words (>%.4f docs)" % (len(self.wiki_common_words), self.wiki_common_words_min_frac)
        print "There are %d uncommon words (<%.4f docs)" % (
            len(self.wiki_uncommon_words),
            self.wiki_uncommon_words_max_frac,
        )
        print "Using %d stop words (%s wiki stop words)" % (
            len(self.stop_words),
            "with" if self.use_wiki_stop_words else "without",
        )

    def create_corpus(
        self,
        train_b,
        valid_b,
        min_pos_words_in_page_name,
        min_pos_words_in_section,
        only_first_section_per_page=False,
        max_sections_per_page=99999999,
        use_all_pages_match_pos_word=True,
        use_all_pages_match_answer=True,
        pages_to_use=None,
        always_use_first_section=False,
        max_read_lines=99900000000,
        reread=False,
    ):
        print "=> Creating corpus"
        self.min_pos_words_in_page_name = min_pos_words_in_page_name
        self.min_pos_words_in_section = min_pos_words_in_section
        self.only_first_section_per_page = only_first_section_per_page
        self.max_sections_per_page = max_sections_per_page
        self.use_all_pages_match_pos_word = use_all_pages_match_pos_word
        self.use_all_pages_match_answer = use_all_pages_match_answer
        self.always_use_first_section = always_use_first_section
        exams_words_file = "%s/%s_%s" % (self.wiki_dir, self.wiki_name, WikiCorpusBuilder.EXAMS_WORDS_FILE)
        pos_words_file = "%s/%s_%.4f_%s%s" % (
            self.wiki_dir,
            self.wiki_name,
            self.wiki_common_words_min_frac,
            "wsw_" if self.use_wiki_stop_words else "",
            WikiCorpusBuilder.POSITIVE_WORDS_FILE,
        )
        answers_file = "%s/%s_%s" % (self.wiki_dir, self.wiki_name, WikiCorpusBuilder.ANSWERS_FILE)
        corpus_file = "%s/%s_%.4f_%s%.4f_%d_%d_%s_%s_%s" % (
            self.wiki_dir,
            self.wiki_name,
            self.wiki_common_words_min_frac,
            "wsw_" if self.use_wiki_stop_words else "",
            self.wiki_uncommon_words_max_frac,
            self.min_pos_words_in_page_name,
            self.min_pos_words_in_section,
            self.use_all_pages_match_pos_word,
            self.use_all_pages_match_answer,
            self.always_use_first_section,
        )
        if pages_to_use is not None:
            corpus_file = "%s_pn%d" % (corpus_file, len(pages_to_use))
        corpus_file = "%s_%s" % (corpus_file, WikiCorpusBuilder.CORPUS_FILE)
        print "Corpus file: %s" % corpus_file
        gc.collect()

        # Get the corpus of the train+validation sets
        if reread or (not os.path.exists(pos_words_file)) or (not os.path.exists(answers_file)):
            # Get all the words that appear in the exams
            if valid_b is None:
                all_exams = train_b[["ID", "question", "answer"]]
            else:
                all_exams = pd.concat([train_b[["ID", "question", "answer"]], valid_b[["ID", "question", "answer"]]])
            parser = SimpleWordParser()
            exams_locdic = build_training_location_dictionary(
                all_exams,
                parser=parser,
                use_answers=True,
                min_word_docs_frac=0,
                max_word_docs_frac=1.0,
                min_word_count_frac=0,
                max_word_count_frac=1.0,
                ascii_conversion=True,
            )
            self.exams_words = exams_locdic.word_ids.keys()
            # Set the "positive_words" as all the words from the train(+validation) files that are uncommon in Wiki
            self.pos_words = set(self.exams_words).intersection(self.wiki_uncommon_words)
            # Get all the answers (each answer = a set of words)
            self.all_answers = set()
            for answer in all_exams["answer"]:
                self.all_answers.add(tuple(sorted(parser.parse(answer))))
            save_to_pkl(exams_words_file, self.exams_words)
            save_to_pkl(pos_words_file, self.pos_words)
            save_to_pkl(answers_file, self.all_answers)
        else:
            self.exams_words = load_from_pkl(exams_words_file)
            self.pos_words = load_from_pkl(pos_words_file)
            self.all_answers = load_from_pkl(answers_file)

        print "There are %d positive words (%d wiki uncommon words, %d words from exams)" % (
            len(self.pos_words),
            len(self.wiki_uncommon_words),
            len(self.exams_words),
        )
        print "There are a total of %d unique answers" % len(self.all_answers)
        print "Using %d stop words" % (len(self.stop_words))
        if pages_to_use is None:
            use_pages = self.pages_in_categories
        else:
            use_pages = pages_to_use
        print "Considering %d pages" % len(use_pages)

        if reread or (not os.path.exists(corpus_file)):
            print "Writing %s corpus to %s" % (self.wiki_name, corpus_file)
            ld = self.wikir.read(
                wikifile="%s/%s" % (self.wiki_dir, self.wiki_file),
                outfile=corpus_file,
                only_first_section_per_page=self.only_first_section_per_page,
                max_sections_per_page=self.max_sections_per_page,
                use_pages=use_pages,
                max_read_lines=max_read_lines,
                stop_words=self.stop_words,
                pos_words=self.pos_words,
                page_name_word_sets=self.all_answers,
                corpus_words=None,  ##set(exams_locdic.word_ids.keys()),
                min_pos_words_in_page_name=self.min_pos_words_in_page_name,
                min_pos_words_in_section=self.min_pos_words_in_section,
                use_all_pages_match_pos_word=self.use_all_pages_match_pos_word,
                use_all_pages_match_sets=self.use_all_pages_match_answer,
                always_use_first_section=self.always_use_first_section,
                action="write",
            )
            print "Done writing corpus"

        gc.collect()
        return corpus_file