コード例 #1
0
def main(argv=None):
    if (argv == None):
        argv = sys.argv
        options = options_desc.parse_args(argv)[0]

    pool = Pool()

    found_parents = [n for n in pool if n.name == options.parent_node]
    assert (len(found_parents) == 1)
    parent = found_parents[0]

    chosen_idx = np.linspace(start=0,
                             stop=parent.trajectory.n_frames - 1,
                             num=options.numnodes).astype(int)

    print "choosen_idx: ", chosen_idx

    for i in chosen_idx:
        n = Node()
        n.parent_frame_num = i
        n.parent = parent
        n.state = "created"
        n.extensions_counter = 0
        n.extensions_max = 0
        n.extensions_length = 0
        n.sampling_length = parent.sampling_length * 3
        n.internals = parent.trajectory.getframe(i)
        pool.append(n)
        n.save()
コード例 #2
0
def main(argv=None):
    if argv == None:
        argv = sys.argv
        options = options_desc.parse_args(argv)[0]

    pool = Pool()

    found_parents = [n for n in pool if n.name == options.parent_node]
    assert len(found_parents) == 1
    parent = found_parents[0]

    chosen_idx = np.linspace(start=0, stop=parent.trajectory.n_frames - 1, num=options.numnodes).astype(int)

    print "choosen_idx: ", chosen_idx

    for i in chosen_idx:
        n = Node()
        n.parent_frame_num = i
        n.parent = parent
        n.state = "created"
        n.extensions_counter = 0
        n.extensions_max = 0
        n.extensions_length = 0
        n.sampling_length = parent.sampling_length * 3
        n.internals = parent.trajectory.getframe(i)
        pool.append(n)
        n.save()
コード例 #3
0
def main(argv=None):
	if(argv==None): 
		argv = sys.argv
	options = options_desc.parse_args(argv)[0]
	
	print("Options:\n%s\n"%pformat(eval(str(options))))

	if(options.random_seed):
		# using numpy-random because python-random differs beetween 32 and 64 bit
		np.random.seed(hash(options.random_seed))
	
	pool = Pool()
	old_pool_size = len(pool)
	print "pool", pool
	
	if(options.parent_node == "root"):
		parent = pool.root
	else:
		found = [n for n in pool if n.name == options.parent_node]
		assert(len(found) == 1)
		parent = found[0]
	
	
	print "### Generate nodes: %s ###" % options.methodnodes
	if(options.methodnodes == "kmeans"):
		chosen_idx = mknodes_kmeans(parent, options.numnodes)
	elif(options.methodnodes == "equidist"):
		chosen_idx = mknodes_equidist(parent, options.numnodes)
	elif(options.methodnodes == "maxdist"):
		chosen_idx = mknodes_maxdist(parent, options.numnodes)
	elif(options.methodnodes == "all"):
		chosen_idx = mknodes_all(parent)
	else:
		raise(Exception("Method unknown: "+options.methodnodes))

	chosen_idx.sort() # makes preview-trajectory easier to understand 
	if(options.write_preview):
		write_node_preview(pool, parent, chosen_idx)
	
	for i in chosen_idx:
		n = Node()
		n.parent_frame_num = i
		n.parent = parent
		n.state = "creating-a-partition" # will be set to "created" at end of script
		n.extensions_counter = 0
		n.extensions_max = options.ext_max
		n.extensions_length = options.ext_length
		n.sampling_length = options.sampling_length	
		n.internals = parent.trajectory.getframe(i)
		pool.append(n)
		
	print "\n### Obtain alpha: %s ###" % options.methodalphas
	old_alpha = pool.alpha
	if(options.methodalphas == "theta"):
		pool.alpha = calc_alpha_theta(pool)
	elif(options.methodalphas == "user"):
		pool.alpha = userinput("Please enter a value for alpha", "float")
	else:
		raise(Exception("Method unknown: "+options.methodalphas))
	
	pool.history.append({'refined_node': (parent.name, parent.state), 'size':old_pool_size, 'alpha':old_alpha, 'timestamp':datetime.now()})
	
	pool.save() # alpha might have changed
	
	print "\n### Obtain phi fit: %s ###" % options.methodphifit
	if(options.methodphifit == "harmonic"):
		do_phifit_harmonic(pool)
	elif(options.methodphifit == "switch"):
		do_phifit_switch(pool)
	elif(options.methodphifit == "leastsq"):
		do_phifit_leastsq(pool)
	else:
		raise(Exception("Method unkown: "+options.methodphifit))

	for n in pool.where("state == 'creating-a-partition'"):
		n.state = "created"
		n.save()
		print "saving " +str(n)
		
	zgf_cleanup.main()
コード例 #4
0
def main():
	options = options_desc.parse_args(sys.argv)[0]

	pool = Pool()
	active_nodes = pool.where("isa_partition")

	if options.transition_level == "clusters":
		npz_file = np.load(pool.chi_mat_fn)
		chi_matrix = npz_file['matrix']
		n_clusters = npz_file['n_clusters']

		default_cluster_threshold = options.coreset_power

		# determine cluster
		#TODO this part is too cryptic
		# amount_phi[j] = amount of basis functions per cluster j
		amount_phi=np.ones(n_clusters,dtype=np.uint64)
		amount_phi=amount_phi*len(chi_matrix)
		amount_phi_total=len(chi_matrix)	

		# sort columns of chi and return new sorted args
		arg_sort_cluster=np.argsort(chi_matrix,axis=0)
		# sort columns of chi and return new sorted chi
		# notice that the last row has to be [1 ... 1]
		sort_cluster=np.sort(chi_matrix,axis=0)
		# show_cluster contains arrays of the type [a b] where a is the row
		# and b the column of the entry from chi matrix  where 
		# chi_sorted(a,b) > default_cluster_threshold
		show_cluster=np.argwhere(sort_cluster > 0.5 )

		# from the above it could be clear
		# that the amount of phi function
		# of cluster i is given by x where x the number so that 
		# [x i] is in show_cluster and for all 
		# [y i] in show_cluster we have x>y 
		# we define amount_phi[i]=x	
		for element in show_cluster:
			index=element[0]
			cluster=element[1]
			if amount_phi[cluster]>index:
				amount_phi[cluster]=index

		# create cluster list which contains arrays
		# each array consinst of a set of numbers corresponding to 
		# the phi function of node_number
		cluster=[]
		for i in range(0,n_clusters):
			cluster_set=[]		
			for j in range(amount_phi[i],amount_phi_total):
				#if (j < amount_phi[i] + 3):
					cluster_set.append(arg_sort_cluster[j][i])	
			cluster.append(cluster_set)

		for i in range(len(cluster)):
			counter = 0
			for node_index in cluster[i]:
				counter += 1
				# and ignore nodes which have a higher chi value then default_cluster_threshold
				if( chi_matrix[node_index][i] > default_cluster_threshold and counter>options.min_nodes):
					continue
				
				node = active_nodes[node_index]
				trajectory= node.trajectory
			
				print "-----"
				print "Generating transition nodes for node %s..."%node.name
			
				neighbour_frames = get_indices_equidist(node, options.num_tnodes)
		
				# create transition node for node_index
				for frame_number in neighbour_frames:
					print "Using frame %d as starting configuration."%frame_number
					n = Node()
					n.parent_frame_num = frame_number
					n.parent = node
					n.state = "created"
					n.extensions_counter = 0
					n.extensions_max = options.num_runs-1
					n.extensions_length = options.sampling_length
					n.sampling_length = options.sampling_length
					n.internals = trajectory.getframe(frame_number)
					n.save_mode = options.save_mode
					pool.append(n)
					n.save()
				print "%d transition nodes generated."%options.num_tnodes
				print "-----"

		zgf_setup_nodes.main()
		zgf_grompp.main()
	
		cluster_dict = {}
		for (ic,c) in enumerate(cluster):
			cluster_dict['cluster_%d'%ic] = c

		# save cluster
		np.savez(pool.analysis_dir+"core_set_cluster.npz", **cluster_dict)

	elif options.transition_level == "nodes":
		for node in active_nodes:
			trajectory= node.trajectory
			
			# TODO duplicate code... use the one above
			print "-----"
			print "Generating transition nodes for node %s..."%node.name

			neighbour_frames = get_indices_equidist(node, options.num_tnodes)

			# create transition point for node_index
			for frame_number in neighbour_frames:
				print "Using frame %d as starting configuration."%frame_number
				n = Node()
				n.parent_frame_num = frame_number
				n.parent = node
				n.state = "created"
				n.extensions_counter = 0
				n.extensions_max = options.num_runs-1
				n.extensions_length = options.sampling_length
				n.sampling_length = options.sampling_length
				n.internals = trajectory.getframe(frame_number)
				n.save_mode = options.save_mode
				pool.append(n)
				n.save()
			print "%d transition nodes generated."%options.num_tnodes
			print "-----"

		zgf_setup_nodes.main()
		zgf_grompp.main()


	instructionFile = pool.analysis_dir+"instruction.txt"

	f = open(instructionFile, "w")
	f.write("{'power': %f, 'tnodes': %d, 'level': '%s', 'min_nodes': %d}"%(options.coreset_power, options.num_tnodes, options.transition_level, options.min_nodes))
	f.close()