def main(argv=None): if(argv==None): argv = sys.argv options = options_desc.parse_args(argv)[0] assert(not(options.refine_all and options.extend_all)) pool = Pool() needy_nodes = pool.where("isa_partition and is_sampled").multilock() # 1. Trying to detect fake convergence for n in pool.where("state == 'converged'"): means = kmeans(n.trajectory, k=2) d = (means[0] - means[1]).norm2() if(d > 2.0 and (options.refine_all or userinput("%s has converged but appears to have a bimodal distribution.\nDo you want to refine?"%n.name, "bool"))): #TODO decide upon threshold (per coordinate?) refine(n, options) # 2. Dealing with not-converged nodes for n in pool.where("state == 'not-converged'"): if(not(options.refine_all or options.extend_all)): choice = userchoice("%s has not converged. What do you want to do?"%n.name, ['_refine', '_extend', '_ignore']) if(options.refine_all or choice=="r"): refine(n, options) elif(options.extend_all or choice=="e"): extend(n) elif(choice=="i"): continue for n in needy_nodes: n.save() n.unlock() zgf_setup_nodes.main() zgf_grompp.main() zgf_cleanup.main()
def main(argv=None): if argv == None: argv = sys.argv options = options_desc.parse_args(argv)[0] pool = Pool() found_parents = [n for n in pool if n.name == options.parent_node] assert len(found_parents) == 1 parent = found_parents[0] chosen_idx = np.linspace(start=0, stop=parent.trajectory.n_frames - 1, num=options.numnodes).astype(int) print "choosen_idx: ", chosen_idx for i in chosen_idx: n = Node() n.parent_frame_num = i n.parent = parent n.state = "created" n.extensions_counter = 0 n.extensions_max = 0 n.extensions_length = 0 n.sampling_length = parent.sampling_length * 3 n.internals = parent.trajectory.getframe(i) pool.append(n) n.save()
def main(argv=None): if (argv == None): argv = sys.argv options = options_desc.parse_args(argv)[0] pool = Pool() found_parents = [n for n in pool if n.name == options.parent_node] assert (len(found_parents) == 1) parent = found_parents[0] chosen_idx = np.linspace(start=0, stop=parent.trajectory.n_frames - 1, num=options.numnodes).astype(int) print "choosen_idx: ", chosen_idx for i in chosen_idx: n = Node() n.parent_frame_num = i n.parent = parent n.state = "created" n.extensions_counter = 0 n.extensions_max = 0 n.extensions_length = 0 n.sampling_length = parent.sampling_length * 3 n.internals = parent.trajectory.getframe(i) pool.append(n) n.save()
def main(): options = options_desc.parse_args(sys.argv)[0] pool = Pool() choice = "state in ('converged', 'refined')" if(options.ignore_convergence): choice = "state in ('converged', 'not-converged', 'refined')" needy_nodes = NodeList([n for n in pool.where(choice) if not n == pool.root]) # we won't touch the root if not(len(needy_nodes)): sys.exit("Nothing to do.") if not(userinput("Once the solvent has been removed, further refinement of the pool is not possible. This includes the generation of unrestrained transition nodes! Continue?", "bool")): sys.exit("Quit by user.") assert(len(needy_nodes) == len(needy_nodes.multilock())) # make sure we lock ALL nodes try: for n in needy_nodes: discard_solvent(n, "pdb") discard_solvent(n, "trr") for n in needy_nodes: n.unlock() except: traceback.print_exc()
def main(): options = options_desc.parse_args(sys.argv)[0] pool = Pool() needy_nodes = pool.where("state == 'merge-able'").multilock() if(len(needy_nodes) == 0): return # find out about trr time step dt = 0 nodeDir = needy_nodes[0].dir.split('/')[-1] for fn in os.listdir(needy_nodes[0].dir): if re.match("^"+nodeDir+".+run\d+\.trr", fn): trr = TrrFile(needy_nodes[0].dir+"/"+fn) dt = trr.first_frame.next().t - trr.first_frame.t trr.close() break # dt is sometimes noisy in the final digits (three digits is femtosecond step = enough) dt = np.around(dt, decimals=3) for n in needy_nodes: if(options.trr): # merge sampling trajectories trr_fns = sorted([ fn for fn in os.listdir(n.dir) if re.match("[^#].+run\d+.trr", fn) ]) cmd = ["trjcat", "-f"] cmd += trr_fns cmd += ["-o", "../../"+n.trr_fn, "-cat"] print("Calling: %s"%" ".join(cmd)) check_call(cmd, cwd=n.dir) if(options.edr): # merge edr files # get list of edr-files edr_fnames = sorted([n.dir+"/"+fn for fn in os.listdir(n.dir) if re.match("[^#].+run\d+.edr", fn)]) assert( len(edr_fnames) == n.extensions_counter+1 ) assert( len(edr_fnames) == n.extensions_max+1 ) time_offset = n.sampling_length+dt for edr_fn in edr_fnames[1:]: # adapt edr starting times cmd = ["eneconv", "-f", edr_fn, "-o", edr_fn, "-settime"] print("Calling: "+(" ".join(cmd))) p = Popen(cmd, stdin=PIPE) p.communicate(input=(str(time_offset)+"\n")) assert(p.wait() == 0) time_offset += n.extensions_length+dt # concatenate edr files with adapted starting times cmd = ["eneconv", "-f"] + edr_fnames + ["-o", n.dir+"/ener.edr"] print("Calling: "+(" ".join(cmd))) p = Popen(cmd) retcode = p.wait() assert(retcode == 0) needy_nodes.unlock()
def main(): options = options_desc.parse_args(sys.argv)[0] pool = Pool() choice = "state in ('converged', 'refined')" if (options.ignore_convergence): choice = "state in ('converged', 'not-converged', 'refined')" needy_nodes = NodeList([ n for n in pool.where(choice) if not n == pool.root ]) # we won't touch the root if not (len(needy_nodes)): sys.exit("Nothing to do.") if not (userinput( "Once the solvent has been removed, further refinement of the pool is not possible. This includes the generation of unrestrained transition nodes! Continue?", "bool")): sys.exit("Quit by user.") assert (len(needy_nodes) == len(needy_nodes.multilock()) ) # make sure we lock ALL nodes try: for n in needy_nodes: discard_solvent(n, "pdb") discard_solvent(n, "trr") for n in needy_nodes: n.unlock() except: traceback.print_exc()
def main(): pool = Pool() if(len(pool.where("state == 'grompp-able'")) > 0): call_grompp(pool) if(len(pool.where("state == 'em-grompp-able'")) > 0): assert(path.exists("em.mdp")) #TODO that's not super nice yet call_grompp(pool, mode='em')
def main(): options = options_desc.parse_args(sys.argv)[0] zgf_cleanup.main() pool = Pool() not_reweightable = "isa_partition and state not in ('converged'" if (options.ignore_convergence): not_reweightable += ",'not-converged'" if (options.ignore_failed): not_reweightable += ",'mdrun-failed'" not_reweightable += ")" if pool.where(not_reweightable): print "Pool can not be reweighted due to the following nodes:" for bad_guy in pool.where(not_reweightable): print "Node %s with state %s." % (bad_guy.name, bad_guy.state) sys.exit("Aborting.") active_nodes = pool.where("isa_partition and state != 'mdrun-failed'") assert (len(active_nodes) == len(active_nodes.multilock()) ) # make sure we lock ALL nodes if (options.check_restraint): for n in active_nodes: check_restraint_energy(n) if (options.method == "direct"): reweight_direct(active_nodes, options) elif (options.method == "entropy"): reweight_entropy(active_nodes, options) elif (options.method == "presampling"): reweight_presampling(active_nodes, options) else: raise (Exception("Method unkown: " + options.method)) weight_sum = np.sum([n.tmp['weight'] for n in active_nodes]) print "Thermodynamic weights calculated by method '%s':" % options.method for n in active_nodes: n.obs.weight_direct = n.tmp['weight'] / weight_sum if (options.method == "direct"): print( " %s with mean_V: %f [kJ/mol], %d refpoints and weight: %f" % (n.name, n.obs.mean_V, n.tmp['n_refpoints'], n.obs.weight_direct)) else: print(" %s with A: %f [kJ/mol] and weight: %f" % (n.name, n.obs.A, n.obs.weight_direct)) print "The above weighting uses bonded energies='%s' and nonbonded energies='%s'." % ( options.e_bonded, options.e_nonbonded) for n in active_nodes: n.save() active_nodes.unlock()
def main(): options = options_desc.parse_args(sys.argv)[0] zgf_cleanup.main() pool = Pool() #not_reweightable = "state not in ('refined','converged')" not_reweightable = "isa_partition and state!='converged'" if options.ignore_convergence: not_reweightable = "isa_partition and state not in ('converged','not-converged')" if pool.where(not_reweightable): print "Pool can not be reweighted due to the following nodes:" for bad_guy in pool.where(not_reweightable): print "Node %s with state %s."%(bad_guy.name, bad_guy.state) sys.exit("Aborting.") active_nodes = pool.where("isa_partition") assert(len(active_nodes) == len(active_nodes.multilock())) # make sure we lock ALL nodes for n in active_nodes: check_restraint_energy(n) # find out about number of energygrps mdp_file = gromacs.read_mdp_file(pool.mdp_fn) energygrps = [str(egrp) for egrp in re.findall('[\S]+', mdp_file["energygrps"])] moi_energies = True if len(energygrps) < 2: moi_energies = False # Gromacs energies are named differently when there are less than two energygrps :( if(options.method == "direct"): reweight_direct(active_nodes, moi_energies, options.sol_energy, options.save_refpoints) elif(options.method == "entropy"): reweight_entropy(active_nodes, moi_energies, options.sol_energy, options.save_refpoints) elif(options.method == "presampling"): reweight_presampling(active_nodes, options.presamp_temp, moi_energies, options.sol_energy) else: raise(Exception("Method unkown: "+options.method)) weight_sum = np.sum([n.tmp['weight'] for n in active_nodes]) print "Thermodynamic weights calculated by method '%s' (sol-energy=%s):"%(options.method, options.sol_energy) for n in active_nodes: n.obs.weight_direct = n.tmp['weight'] / weight_sum if(options.method == "direct"): print(" %s with mean_V: %f [kJ/mol], %d refpoints and weight: %f" % (n.name, n.obs.mean_V, n.tmp['n_refpoints'], n.obs.weight_direct)) else: print(" %s with A: %f [kJ/mol] and weight: %f" % (n.name, n.obs.A, n.obs.weight_direct)) for n in active_nodes: n.save() active_nodes.unlock()
def main(): pool = Pool() needy_nodes = pool.where("state == 'grompp-able'").multilock() try: for n in needy_nodes: call_grompp(n) except: traceback.print_exc() for n in needy_nodes: n.unlock()
def main(): options = options_desc.parse_args(sys.argv)[0] pool = Pool() needy_nodes = pool.where("state == 'grompp-able'") assert (len(needy_nodes) == len(needy_nodes.multilock()) ) # make sure we lock ALL nodes if (options.solv_model == "tip3p"): solv_box = "spc216.gro" solv_fn = "tip3p.itp" elif (options.solv_model == "tip4p"): solv_box = "tip4p.gro" solv_fn = "tip4p.itp" elif (options.solv_model == "tip4pew"): solv_box = "tip4p.gro" solv_fn = "tip4pew.itp" elif (options.solv_model == "tip5"): solv_box = "tip5p.gro" solv_fn = "tip5p.itp" elif (options.solv_model == "spc"): solv_box = "spc216.gro" solv_fn = "spc.itp" elif (options.solv_model == "spce"): solv_box = "spc216.gro" solv_fn = "spce.itp" elif ( options.solv_model == "acetonitrile" ): # TODO one might change this one to "custom" and let user enter name of template box solv_box = "acetonitrile.pdb" msg = "Topology update for acetonitrile is not supported. Proceed?" if not (userinput(msg, "bool")): for n in needy_nodes: n.unlock() return ("Quit by user.") # determine maximum length of linears, if any max_linear = query_linear_length(pool) # make box and fill with solvent genbox(pool, max_linear, options.bt, (options.box_x, options.box_y, options.box_z), solv_box) # update topology files (add solvent model and ions includes) if not (options.solv_model == "acetonitrile"): update_tops(pool, solv_fn) for n in needy_nodes: n.state = "em-grompp-able" zgf_grompp.call_grompp( n, mdp_file=options.grompp, final_state="em-mdrun-able" ) # re-grompp to get a tpr for energy minimization n.unlock()
def main(): options = options_desc.parse_args(sys.argv)[0] zgf_cleanup.main() pool = Pool() not_reweightable = "isa_partition and state not in ('converged'" if(options.ignore_convergence): not_reweightable += ",'not-converged'" if(options.ignore_failed): not_reweightable += ",'mdrun-failed'" not_reweightable += ")" if pool.where(not_reweightable): print "Pool can not be reweighted due to the following nodes:" for bad_guy in pool.where(not_reweightable): print "Node %s with state %s."%(bad_guy.name, bad_guy.state) sys.exit("Aborting.") active_nodes = pool.where("isa_partition and state != 'mdrun-failed'") assert(len(active_nodes) == len(active_nodes.multilock())) # make sure we lock ALL nodes if(options.check_restraint): for n in active_nodes: check_restraint_energy(n) if(options.method == "direct"): reweight_direct(active_nodes, options) elif(options.method == "entropy"): reweight_entropy(active_nodes, options) elif(options.method == "presampling"): reweight_presampling(active_nodes, options) else: raise(Exception("Method unkown: "+options.method)) weight_sum = np.sum([n.tmp['weight'] for n in active_nodes]) print "Thermodynamic weights calculated by method '%s':"%options.method for n in active_nodes: n.obs.weight_direct = n.tmp['weight'] / weight_sum if(options.method == "direct"): print(" %s with mean_V: %f [kJ/mol], %d refpoints and weight: %f" % (n.name, n.obs.mean_V, n.tmp['n_refpoints'], n.obs.weight_direct)) else: print(" %s with A: %f [kJ/mol] and weight: %f" % (n.name, n.obs.A, n.obs.weight_direct)) print "The above weighting uses bonded energies='%s' and nonbonded energies='%s'."%(options.e_bonded, options.e_nonbonded) for n in active_nodes: n.save() active_nodes.unlock()
def main(): options = options_desc.parse_args(sys.argv)[0] #TODO put somehow into Options, e.g. min_value=1 or required=True if(not options.doomed_nodes): sys.exit("Option --doomed_nodes is required.") pool = Pool() old_pool_size = len(pool) old_alpha = pool.alpha doomed_nodes = NodeList() #TODO: maybe this code should go into ZIBMolPy.ui for name in options.doomed_nodes.split(","): found = [n for n in pool if n.name == name] if(len(found) != 1): sys.exit("Coult not find node '%s'"%(name)) doomed_nodes.append(found[0]) for n in doomed_nodes: if(n == pool.root): sys.exit("Node %s is the root. Removal not allowed."%(n.name)) #if(len(n.children) > 0): # sys.exit("Node %s has children. Removal not allowed."%(n.name)) #TODO why should we forbid this? if not(userinput("The selected node(s) will be removed permanently. Continue?", "bool")): sys.exit("Quit by user.") assert(len(doomed_nodes) == len(doomed_nodes.multilock())) for n in doomed_nodes: print("Removing directory: "+n.dir) shutil.rmtree(n.dir) pool.reload_nodes() #TODO: this code-block also exists in zgf_create_node if(len(pool.where("isa_partition")) < 2): pool.alpha = None elif(options.methodalphas == "theta"): pool.alpha = zgf_create_nodes.calc_alpha_theta(pool) elif(options.methodalphas == "user"): pool.alpha = userinput("Please enter a value for alpha", "float") else: raise(Exception("Method unkown: "+options.methodalphas)) pool.history.append({'removed_nodes': [(n.name, n.state) for n in doomed_nodes], 'size':old_pool_size, 'alpha':old_alpha, 'timestamp':datetime.now()}) pool.save() #TODO: deal with analysis dir and dependencies zgf_cleanup.main()
def main(): pool = Pool() needy_nodes = pool.where("state == 'created'") assert(len(needy_nodes) == len(needy_nodes.multilock())) # make sure we lock ALL nodes extract_frames(pool) generate_topology(pool) generate_mdp(pool) for n in needy_nodes: n.state = "grompp-able" n.save() n.unlock()
def main(): options = options_desc.parse_args(sys.argv)[0] zgf_cleanup.main() pool = Pool() needy_nodes = pool.where("state == '%s'"%options.current_state).multilock() for n in needy_nodes: print "Recovering node %s with state %s to state %s ..."%(n.name, n.state, options.recover_state) n.state = options.recover_state n.save() n.unlock()
def main(): pool = Pool() needy_nodes = pool.where("state == 'created'") assert (len(needy_nodes) == len(needy_nodes.multilock()) ) # make sure we lock ALL nodes extract_frames(pool) generate_topology(pool) generate_mdp(pool) for n in needy_nodes: n.state = "grompp-able" n.save() n.unlock()
def main(): print("Cleaning up.") #check locks pool = Pool() for n in pool: sys.stdout.write("Node %s is %s and " % (n.name, n.state)) if (not n.is_locked): print("not locked.") elif (n.is_lock_valid): print("is locked and valid.") else: print("its lock is stale - removing it.") os.remove(n.lock_fn) #check zgf-dep files files = [] for root, _, names in os.walk(os.getcwd()): for n in names: if (not n.endswith(".zgf-dep")): continue dep = path.join(root, n) fn = dep2fn(dep) if (not path.exists(fn)): print("Removing lonely dep-file: " + dep) os.remove(dep) continue files.append( fn ) #in extra loop - otherwise check_files and remove(dep) collide for fn in files: check_file(fn)
def main(): options = options_desc.parse_args(sys.argv)[0] pool = Pool() needy_nodes = pool.where("state == 'em-mdrun-able'") assert(len(needy_nodes) == len(needy_nodes.multilock())) # make sure we lock ALL nodes # add ions to simulation boxes call_genion(pool, options.np, options.pname, options.nn, options.nname, options.random_seed) for n in needy_nodes: n.state = "em-grompp-able" zgf_grompp.call_grompp(n, mdp_file=options.grompp, final_state="em-mdrun-able") # re-grompp to get a tpr for energy minimization n.unlock()
def __new__(cls, name=None): """ Instanciates a node from a file, and (name=None) creates a new node Caution: Filenames are always given relative to the root-dir When no name is given, a new node is created. """ if (name != None and cls._instances.has_key(name)): return (cls._instances[name]) if (name == None): # a new node, lets find a name for i in itertools.count(0): name = "node%.4d" % i if (cls._instances.has_key(name)): continue # new nodes might not been saved, yet if (path.exists("./nodes/" + name)): continue break self = object.__new__(cls) cls._instances[name] = self #actuall init-code from ZIBMolPy.pool import Pool #avoids circular imports self._pool = Pool() #Pool is a singleton self._name = name self._tmp = Store() #for thing that need to be stored temporarly self._obs = Store() self.parent = None if (path.exists(self.dir)): self.reload() #self.pool.append(self) #register with pool return (self)
def main(): options = options_desc.parse_args(sys.argv)[0] outfile = open(options.outfile,"w") pool = Pool() needy_nodes = pool.where("isa_partition and state not in ('refined','mdrun-failed')") for n in needy_nodes: outfile.write("%s, state: '%s':\n"%(n.name,n.state)) outfile.write(str(n.internals.array)+"\n") outfile.write("mean pot.: %f, std pot.: %f, free energy estimate: %f\n"%(n.obs.mean_V,n.obs.std_V,n.obs.A)) outfile.write("#========================================================================#\n") outfile.close() print "Pool info was written to %s."%options.outfile
def main(): options = options_desc.parse_args(sys.argv)[0] zgf_cleanup.main() pool = Pool() needy_nodes = pool.where("state == '%s'" % options.current_state).multilock() for n in needy_nodes: print "Recovering node %s with state %s to state %s ..." % ( n.name, n.state, options.recover_state) n.state = options.recover_state n.save() n.unlock()
def main(): options = options_desc.parse_args(sys.argv)[0] pool = Pool() needy_nodes = pool.where("state == 'grompp-able'") assert(len(needy_nodes) == len(needy_nodes.multilock())) # make sure we lock ALL nodes if(options.solv_model == "tip3p"): solv_box = "spc216.gro" solv_fn = "tip3p.itp" elif(options.solv_model == "tip4p"): solv_box = "tip4p.gro" solv_fn = "tip4p.itp" elif(options.solv_model == "tip4pew"): solv_box = "tip4p.gro" solv_fn = "tip4pew.itp" elif(options.solv_model == "tip5"): solv_box = "tip5p.gro" solv_fn = "tip5p.itp" elif(options.solv_model == "spc"): solv_box = "spc216.gro" solv_fn = "spc.itp" elif(options.solv_model == "spce"): solv_box = "spc216.gro" solv_fn = "spce.itp" elif(options.solv_model == "acetonitrile"): # TODO one might change this one to "custom" and let user enter name of template box solv_box = "acetonitrile.pdb" msg = "Topology update for acetonitrile is not supported. Proceed?" if not(userinput(msg, "bool")): for n in needy_nodes: n.unlock() return("Quit by user.") # determine maximum length of linears, if any max_linear = query_linear_length(pool) # make box and fill with solvent genbox(pool, max_linear, options.bt, (options.box_x, options.box_y, options.box_z), solv_box) # update topology files (add solvent model and ions includes) if not(options.solv_model == "acetonitrile"): update_tops(pool, solv_fn) for n in needy_nodes: n.state = "em-grompp-able" zgf_grompp.call_grompp(n, mdp_file=options.grompp, final_state="em-mdrun-able") # re-grompp to get a tpr for energy minimization n.unlock()
def main(): options = options_desc.parse_args(sys.argv)[0] pool = Pool() needy_nodes = pool.where("state == 'em-mdrun-able'") assert (len(needy_nodes) == len(needy_nodes.multilock()) ) # make sure we lock ALL nodes # add ions to simulation boxes call_genion(pool, options.np, options.pname, options.nn, options.nname, options.random_seed) for n in needy_nodes: n.state = "em-grompp-able" zgf_grompp.call_grompp( n, mdp_file=options.grompp, final_state="em-mdrun-able" ) # re-grompp to get a tpr for energy minimization n.unlock()
def main(): options = options_desc.parse_args(sys.argv)[0] pool = Pool() needy_nodes = pool.where("state == 'em-mdrun-able'") assert(len(needy_nodes) == len(needy_nodes.multilock())) # make sure we lock ALL nodes # add ions to simulation boxes call_genion(pool, options.np, options.pname, options.nn, options.nname, options.random_seed) for n in needy_nodes: n.state = "em-grompp-able" n.save() n.unlock() zgf_grompp.main()
def main(): options = options_desc.parse_args(sys.argv)[0] outfile = open(options.outfile, "w") pool = Pool() needy_nodes = pool.where( "isa_partition and state not in ('refined','mdrun-failed')") for n in needy_nodes: outfile.write("%s, state: '%s':\n" % (n.name, n.state)) outfile.write(str(n.internals.array) + "\n") outfile.write( "mean pot.: %f, std pot.: %f, free energy estimate: %f\n" % (n.obs.mean_V, n.obs.std_V, n.obs.A)) outfile.write( "#========================================================================#\n" ) outfile.close() print "Pool info was written to %s." % options.outfile
def main(argv=None): if (argv == None): argv = sys.argv options = options_desc.parse_args(argv)[0] assert (not (options.refine_all and options.extend_all)) pool = Pool() needy_nodes = pool.where("isa_partition and is_sampled").multilock() # 1. Trying to detect fake convergence for n in pool.where("state == 'converged'"): means = kmeans(n.trajectory, k=2) d = (means[0] - means[1]).norm2() if (d > 2.0 and (options.refine_all or userinput( "%s has converged but appears to have a bimodal distribution.\nDo you want to refine?" % n.name, "bool"))): #TODO decide upon threshold (per coordinate?) refine(n, options) # 2. Dealing with not-converged nodes for n in pool.where("state == 'not-converged'"): if (not (options.refine_all or options.extend_all)): choice = userchoice( "%s has not converged. What do you want to do?" % n.name, ['_refine', '_extend', '_ignore']) if (options.refine_all or choice == "r"): refine(n, options) elif (options.extend_all or choice == "e"): extend(n) elif (choice == "i"): continue for n in needy_nodes: n.save() n.unlock() zgf_setup_nodes.main() zgf_grompp.main() zgf_cleanup.main()
def main(): options = options_desc.parse_args(sys.argv)[0] pool = Pool() needy_nodes = pool.where("state == 'grompp-able'") assert(len(needy_nodes) == len(needy_nodes.multilock())) # make sure we lock ALL nodes if(options.solv_model == "tip3p"): solv_box = "spc216.gro" solv_fn = "tip3p.itp" elif(options.solv_model == "tip4p"): solv_box = "tip4p.gro" solv_fn = "tip4p.itp" elif(options.solv_model == "tip4pew"): solv_box = "tip4p.gro" solv_fn = "tip4pew.itp" elif(options.solv_model == "tip5"): solv_box = "tip5p.gro" solv_fn = "tip5p.itp" elif(options.solv_model == "spc"): solv_box = "spc216.gro" solv_fn = "spc.itp" elif(options.solv_model == "spce"): solv_box = "spc216.gro" solv_fn = "spce.itp" # determine maximum length of linears, if any max_linear = query_linear_length(pool) # make box and fill with solvent genbox(pool, max_linear, options.bt, (options.box_x, options.box_y, options.box_z), solv_box) # update topology files (add solvent model and ions includes) update_tops(pool, solv_fn) for n in needy_nodes: n.state = "em-grompp-able" n.save() n.unlock()
def main(): options = options_desc.parse_args(sys.argv)[0] pool = Pool() if(options.convtest): for n in pool.where("state in ('converged', 'not-converged')"): print("\n\nRunning Gelman-Rubin on %s"%n) conv_check_gelman_rubin(n) return # exit auto_refines_counter = 0 while(True): pool.reload() pool.reload_nodes() for n in pool: n.reload() active_node = None for n in pool.where("state in ('em-mdrun-able', 'mdrun-able', 'rerun-able-converged', 'rerun-able-not-converged')"): if(n.lock()): active_node = n break if(active_node == None): if(auto_refines_counter < options.auto_refines): auto_refines_counter += 1 print("\n\nRunning 'zgf_refine --refine-all' for the %d time..."%auto_refines_counter) zgf_refine.main(["--refine-all"]) continue else: break # we're done - exit try: process(active_node, options) active_node.save() active_node.unlock() except: print "MDRUN FAILED" active_node.state = "mdrun-failed" active_node.save() active_node.unlock() traceback.print_exc() continue
def main(): pool = Pool() for n in pool.where("isa_partition"): for cn in n.children.where("is_sampled"): print cn.trajectory
def main(): options = options_desc.parse_args(sys.argv)[0] if options.common_filename: options.molecule = options.common_filename + ".pdb" options.presampling = options.common_filename + ".trr" options.internals = options.common_filename + ".int" options.grompp = options.common_filename + ".mdp" options.topology = options.common_filename + ".top" options.index = options.common_filename + ".ndx" print("Options:\n%s\n" % pformat(eval(str(options)))) assert path.exists(options.molecule) assert path.exists(options.presampling) assert path.exists(options.internals) assert path.exists(options.grompp) assert path.exists(options.topology) # TODO: what if there is no index-file? (make_ndx) assert path.exists(options.index) assert "MOI" in gromacs.read_index_file(options.index), "group MOI should be defined in index file" # checks e.g. if the mdp-file looks good mdp_options = gromacs.read_mdp_file(options.grompp) # options we cannot fix for ref_t in re.findall("[0-9]+", mdp_options["ref_t"]): assert int(ref_t) == options.temperature, "temperature in mdp file does not match ZIBgridfree temperature" # TODO drop options.temperature and get temperature directly from mdp file... ask again if temperature is above 310K # options we can fix mdp_options_dirty = False # if set, a new mdp-file will be written required_mdp_options = {"dihre": "yes", "dihre_fc": "1", "disre": "simple", "disre_fc": "1"} for (k, v) in required_mdp_options.items(): if mdp_options.has_key(k): assert mdp_options[k] == v # check, if we would overwrite something else: mdp_options[k] = v mdp_options_dirty = True if mdp_options.has_key("energygrps"): assert "MOI" in [ str(egrp) for egrp in re.findall("[\S]+", mdp_options["energygrps"]) ], "group MOI should be among energygrps in mdp file" else: mdp_options["energygrps"] = "MOI" mdp_options_dirty = True a, b = mdp_options.has_key("nstxout"), mdp_options.has_key("nstenergy") if a and not b: mdp_options["nstenergy"] = mdp_options["nstxout"] mdp_options_dirty = True elif b and not a: mdp_options["nstxout"] = mdp_options["nstenergy"] mdp_options_dirty = True elif b and a: assert mdp_options["nstxout"] == mdp_options["nstenergy"], "nstxout should equal nstenergy" if int(mdp_options["nsteps"]) > 1e6: msg = "Number of MD-steps?" mdp_options["nsteps"] = str(userinput(msg, "int", default=int(mdp_options["nsteps"]))) # create a fixed mdp-file if mdp_options_dirty: print("Creating copy of mdp-file and adding missing options.") out_fn = options.grompp.rsplit(".", 1)[0] + "_fixed.mdp" f = open(out_fn, "w") # append f.write("; Generated by zgf_create_pool\n") for i in mdp_options.items(): f.write("%s = %s\n" % i) f.write("; EOF\n") f.close() options.grompp = out_fn # check if subsampling is reasonable if os.path.getsize(options.presampling) > 100e6: # 100MB print("Presampling trajectory is large") trr = TrrFile(options.presampling) dt = trr.first_frame.next().t - trr.first_frame.t trr.close() print("Presampling timestep is %.2f ps" % dt) if dt < 10: # picoseconds # TODO: maybe calculate subsampling factor individually, or ask? msg = "Subsample presampling trajectory by a tenth?" if userinput(msg, "bool"): out_fn = options.presampling.rsplit(".", 1)[0] + "_tenth.trr" cmd = ["trjconv", "-f", options.presampling, "-o", out_fn, "-skip", "10"] check_call(cmd) options.presampling = out_fn # balance linears if options.balance_linears: print("Balance Linears") old_converter = Converter(options.internals) print("Loading presampling....") frames = old_converter.read_trajectory(options.presampling) new_coord_list = [] for c in old_converter: if not isinstance(c, LinearCoordinate): new_coord_list.append(c) continue # we do not work on other Coordinate-Types # TODO: is this a good way to determine new_weight and new_offset??? new_weight = c.weight / sqrt(2 * frames.var().getcoord(c)) new_offset = c.offset + frames.mean().getcoord(c) new_coord = LinearCoordinate(*c.atoms, label=c.label, weight=new_weight, offset=new_offset) new_coord_list.append(new_coord) new_converter = Converter(coord_list=new_coord_list) assert old_converter.filename.endswith(".int") options.internals = old_converter.filename[:-4] + "_balanced.int" print("Writing balanced Converter to: " + options.internals) f = open(options.internals, "w") f.write(new_converter.serialize()) f.close() assert len(Converter(options.internals)) == len(new_coord_list) # try parsing # Finally: Create root-node and pool pool = Pool() if len(pool) != 0: print("ERROR: A pool already exists here.") sys.exit(1) pool.int_fn = options.internals pool.mdp_fn = options.grompp pool.top_fn = options.topology pool.ndx_fn = options.index pool.temperature = options.temperature pool.gr_threshold = options.gr_threshold pool.gr_chains = options.gr_chains pool.alpha = None pool.save() # save pool for the first time... # ... then we can save the first node... node0 = Node() node0.state = "refined" node0.save() # also creates the node directory ... needed for symlink os.symlink(os.path.relpath(options.presampling, node0.dir), node0.trr_fn) os.symlink(os.path.relpath(options.molecule, node0.dir), node0.pdb_fn) pool.root_name = node0.name pool.save() # ... now we have to save the pool again. if not path.exists("analysis"): os.mkdir("analysis")
def is_applicable(): pool = Pool() return(len(pool.where("state == 'created'")) > 0)
def main(argv=None): if(argv==None): argv = sys.argv options = options_desc.parse_args(argv)[0] print("Options:\n%s\n"%pformat(eval(str(options)))) if(options.random_seed): # using numpy-random because python-random differs beetween 32 and 64 bit np.random.seed(hash(options.random_seed)) pool = Pool() old_pool_size = len(pool) print "pool", pool if(options.parent_node == "root"): parent = pool.root else: found = [n for n in pool if n.name == options.parent_node] assert(len(found) == 1) parent = found[0] print "### Generate nodes: %s ###" % options.methodnodes if(options.methodnodes == "kmeans"): chosen_idx = mknodes_kmeans(parent, options.numnodes) elif(options.methodnodes == "equidist"): chosen_idx = mknodes_equidist(parent, options.numnodes) elif(options.methodnodes == "maxdist"): chosen_idx = mknodes_maxdist(parent, options.numnodes) elif(options.methodnodes == "all"): chosen_idx = mknodes_all(parent) else: raise(Exception("Method unknown: "+options.methodnodes)) chosen_idx.sort() # makes preview-trajectory easier to understand if(options.write_preview): write_node_preview(pool, parent, chosen_idx) for i in chosen_idx: n = Node() n.parent_frame_num = i n.parent = parent n.state = "creating-a-partition" # will be set to "created" at end of script n.extensions_counter = 0 n.extensions_max = options.ext_max n.extensions_length = options.ext_length n.sampling_length = options.sampling_length n.internals = parent.trajectory.getframe(i) pool.append(n) print "\n### Obtain alpha: %s ###" % options.methodalphas old_alpha = pool.alpha if(options.methodalphas == "theta"): pool.alpha = calc_alpha_theta(pool) elif(options.methodalphas == "user"): pool.alpha = userinput("Please enter a value for alpha", "float") else: raise(Exception("Method unknown: "+options.methodalphas)) pool.history.append({'refined_node': (parent.name, parent.state), 'size':old_pool_size, 'alpha':old_alpha, 'timestamp':datetime.now()}) pool.save() # alpha might have changed print "\n### Obtain phi fit: %s ###" % options.methodphifit if(options.methodphifit == "harmonic"): do_phifit_harmonic(pool) elif(options.methodphifit == "switch"): do_phifit_switch(pool) elif(options.methodphifit == "leastsq"): do_phifit_leastsq(pool) else: raise(Exception("Method unkown: "+options.methodphifit)) for n in pool.where("state == 'creating-a-partition'"): n.state = "created" n.save() print "saving " +str(n) zgf_cleanup.main()
def main(): options = options_desc.parse_args(sys.argv)[0] zgf_cleanup.main() pool = Pool() npz_file = np.load(pool.chi_mat_fn) chi_matrix = npz_file['matrix'] node_names = npz_file['node_names'] n_clusters = npz_file['n_clusters'] active_nodes = [Node(nn) for nn in node_names] # create and open dest_files, intialize counters for statistics dest_filenames = [ pool.analysis_dir + "cluster%d.trr" % (c + 1) for c in range(n_clusters) ] dest_files = [open(fn, "wb") for fn in dest_filenames] dest_frame_counters = np.zeros(n_clusters) # For each active node... for (i, n) in enumerate(active_nodes): # ... find the clusters to which it belongs (might be more than one)... belonging_clusters = np.argwhere( chi_matrix[i] > options.node_threshold) # ... and find all typical frames of this node. #TODO not an optimal solution... discuss # per default, we take every frame with above average weight frame_threshold = options.frame_threshold * 2 * np.mean(n.frameweights) typical_frame_nums = np.argwhere(n.frameweights > frame_threshold) # Go through the node's trajectory ... trr_in = TrrFile(n.trr_fn) curr_frame = trr_in.first_frame for i in typical_frame_nums: # ...stop at each typical frame... while (i != curr_frame.number): curr_frame = curr_frame.next() assert (curr_frame.number == i) #... and copy it into the dest_file of each belonging cluster. for c in belonging_clusters: dest_files[c].write(curr_frame.raw_data) dest_frame_counters[c] += 1 trr_in.close() # close source file # close dest_files for f in dest_files: f.close() del (dest_files) # desolvate cluster-trajectories 'in-place' if (not options.write_sol): for dest_fn in dest_filenames: tmp_fn = mktemp(suffix='.trr', dir=pool.analysis_dir) os.rename(dest_fn, tmp_fn) # works as both files are in same dir cmd = ["trjconv", "-f", tmp_fn, "-o", dest_fn, "-n", pool.ndx_fn] p = Popen(cmd, stdin=PIPE) p.communicate(input="MOI\n") assert (p.wait() == 0) os.remove(tmp_fn) # register dependencies for fn in dest_filenames: register_file_dependency(fn, pool.chi_mat_fn) # check number of written frames sys.stdout.write("Checking lenghts of written trajectories... ") for i in range(n_clusters): f = TrrFile(dest_filenames[i]) assert (f.count_frames() == dest_frame_counters[i]) f.close() print("done.") #output statistics print "\n### Extraction summary ###\nnode threshold: %1.1f, frame threshold: %1.1f" % ( options.node_threshold, options.frame_threshold) print "Cluster trajectories were written to %s:" % pool.analysis_dir for (c, f) in enumerate(dest_frame_counters): print "cluster%d.trr [%d frames] from node(s):" % (c + 1, f) print list(np.argwhere(chi_matrix[:, c] > options.node_threshold).flat)
def is_applicable(): pool = Pool() return( len(pool.where("'weight_direct' in obs")) > 0 and len(pool.where("isa_partition and 'weight_direct' not in obs")) == 0 )
def is_applicable(): pool = Pool() return( len(pool.where("state in ('converged', 'not-converged', 'refined')")) > 1 )
def is_applicable(): pool = Pool() return(len(pool.where("state=='mdrun-able'")) > 0)
def is_applicable(): pool = Pool() return(len(pool.where("state in ('em-mdrun-able', 'mdrun-able', 'converged', 'not-converged', 'rerun-able-converged', 'rerun-able-not-converged')")) > 0)
def main(): options = options_desc.parse_args(sys.argv)[0] pool = Pool() if options.ignore_convergence: needy_nodes = pool.where("state in ('converged','not-converged')") else: needy_nodes = pool.where("state == 'converged'") assert(len(needy_nodes) == len(needy_nodes.multilock())) # make sure we lock ALL nodes for node in needy_nodes: if ( path.exists(node.dir+"/rerun_me.trr") and path.exists(node.dir+"/rerun_me.pdb") and path.exists(node.dir+"/rerun_me.top") and path.exists(node.dir+"/rerun_me.tpr") ): print("All four rerun files (rerun_me.*) already existing in " + node.dir + ".") print("Be sure you want to keep them!") continue # if "none", assume that sim is implicit or in vacuum. thus, trjconv not required. if options.pbc_removal != "none": # desolvate trr if not( path.exists(node.dir+"/rerun_me.trr")): cmd = ["trjconv", "-f", node.trr_fn, "-o", node.dir+"/rerun_me.trr", "-s", node.tpr_fn, "-n", node.pool.ndx_fn, "-pbc", options.pbc_removal] print("Calling: "+(" ".join(cmd))) p = Popen(cmd, stdin=PIPE) p.communicate(input=("MOI\n")) assert(p.wait() == 0) else: print("Rerun trajectory file (rerun_me.trr) already existing in " + node.dir + ".") print("Be sure you want to keep it!") #sys.exit(0) #continue # desolvate pdb if not( path.exists(node.dir+"/rerun_me.pdb") ): cmd = ["trjconv", "-f", node.pdb_fn, "-o", node.dir+"/rerun_me.pdb", "-s", node.tpr_fn, "-n", node.pool.ndx_fn, "-pbc", options.pbc_removal] print("Calling: "+(" ".join(cmd))) p = Popen(cmd, stdin=PIPE) p.communicate(input=("MOI\n")) assert(p.wait() == 0) # desolvate topology infile = open(node.top_fn, "r").readlines() mol_section = False out_top = [] for line in infile: if( re.match("\s*\[\s*(molecules)\s*\]\s*", line.lower()) ): # we are past the "molecules" section mol_section = True if(mol_section): # comment out lines that belong to solvent (SOL, CL, NA)... add more if necessary if( re.match("\s*(sol|cl|na|tsl|tcm|mth)\s*\d+", line.lower()) ): line = ";"+line out_top.append(line) outfile = open(node.dir+"/rerun_me.top","w").writelines(out_top) else: if not( path.exists(node.dir+"/rerun_me.trr") ): symlink(node.name+".trr", node.dir+"/rerun_me.trr") else: print("Rerun trajectory file (rerun_me.trr) already existing in " + node.dir + ".") print("Be sure you want to keep it!") #continue if not( path.exists(node.dir+"/rerun_me.pdb") ): symlink(node.name+"_conf.pdb", node.dir+"/rerun_me.pdb") if not( path.exists(node.dir+"/rerun_me.top") ): symlink(node.name+".top", node.dir+"/rerun_me.top") grompp2state = "rerun-able-"+node.state # get rid of old checkpoint file (it might mess up the rerun) if( path.exists(node.dir+"/state.cpt") ): remove(node.dir+"/state.cpt") #zgf_grompp.call_grompp(node, mdp_file=options.grompp, final_state=grompp2state) #TODO code borrowed from zgf_grompp #TODO make the original method fit for grompping reruns if not( path.exists(node.dir+"/rerun_me.trr") ): cmd = ["grompp"] cmd += ["-f", "../../"+options.grompp] cmd += ["-n", "../../"+node.pool.ndx_fn] cmd += ["-c", "../../"+node.dir+"/rerun_me.pdb"] cmd += ["-p", "../../"+node.dir+"/rerun_me.top"] cmd += ["-o", "../../"+node.dir+"/rerun_me.tpr"] print("Calling: %s"%" ".join(cmd)) p = Popen(cmd, cwd=node.dir) retcode = p.wait() assert(retcode == 0) # grompp should never fail node.state = grompp2state node.save() node.unlock()
def is_applicable(): pool = Pool() return (len(pool.where("state == 'created'")) > 0)
def is_applicable(): pool = Pool() return (len(pool) > 1 and len( pool.where( "isa_partition and state in ('converged','not-converged','mdrun-failed')" )) == len(pool.where("isa_partition")))
def main(): options = options_desc.parse_args(sys.argv)[0] pool = Pool() if options.ignore_convergence: needy_nodes = pool.where("state in ('converged','not-converged')") else: needy_nodes = pool.where("state == 'converged'") assert (len(needy_nodes) == len(needy_nodes.multilock()) ) # make sure we lock ALL nodes for node in needy_nodes: if (path.exists(node.dir + "/rerun_me.trr") and path.exists(node.dir + "/rerun_me.pdb") and path.exists(node.dir + "/rerun_me.top") and path.exists(node.dir + "/rerun_me.tpr")): print("All four rerun files (rerun_me.*) already existing in " + node.dir + ".") print("Be sure you want to keep them!") continue # if "none", assume that sim is implicit or in vacuum. thus, trjconv not required. if options.pbc_removal != "none": # desolvate trr if not (path.exists(node.dir + "/rerun_me.trr")): cmd = [ "trjconv", "-f", node.trr_fn, "-o", node.dir + "/rerun_me.trr", "-s", node.tpr_fn, "-n", node.pool.ndx_fn, "-pbc", options.pbc_removal ] print("Calling: " + (" ".join(cmd))) p = Popen(cmd, stdin=PIPE) p.communicate(input=("MOI\n")) assert (p.wait() == 0) else: print( "Rerun trajectory file (rerun_me.trr) already existing in " + node.dir + ".") print("Be sure you want to keep it!") #sys.exit(0) #continue # desolvate pdb if not (path.exists(node.dir + "/rerun_me.pdb")): cmd = [ "trjconv", "-f", node.pdb_fn, "-o", node.dir + "/rerun_me.pdb", "-s", node.tpr_fn, "-n", node.pool.ndx_fn, "-pbc", options.pbc_removal ] print("Calling: " + (" ".join(cmd))) p = Popen(cmd, stdin=PIPE) p.communicate(input=("MOI\n")) assert (p.wait() == 0) # desolvate topology infile = open(node.top_fn, "r").readlines() mol_section = False out_top = [] for line in infile: if (re.match("\s*\[\s*(molecules)\s*\]\s*", line.lower())): # we are past the "molecules" section mol_section = True if (mol_section): # comment out lines that belong to solvent (SOL, CL, NA)... add more if necessary if (re.match("\s*(sol|cl|na|tsl|tcm|mth)\s*\d+", line.lower())): line = ";" + line out_top.append(line) outfile = open(node.dir + "/rerun_me.top", "w").writelines(out_top) else: if not (path.exists(node.dir + "/rerun_me.trr")): symlink(node.name + ".trr", node.dir + "/rerun_me.trr") else: print( "Rerun trajectory file (rerun_me.trr) already existing in " + node.dir + ".") print("Be sure you want to keep it!") #continue if not (path.exists(node.dir + "/rerun_me.pdb")): symlink(node.name + "_conf.pdb", node.dir + "/rerun_me.pdb") if not (path.exists(node.dir + "/rerun_me.top")): symlink(node.name + ".top", node.dir + "/rerun_me.top") grompp2state = "rerun-able-" + node.state # get rid of old checkpoint file (it might mess up the rerun) if (path.exists(node.dir + "/state.cpt")): remove(node.dir + "/state.cpt") #zgf_grompp.call_grompp(node, mdp_file=options.grompp, final_state=grompp2state) #TODO code borrowed from zgf_grompp #TODO make the original method fit for grompping reruns if not (path.exists(node.dir + "/rerun_me.trr")): cmd = ["grompp"] cmd += ["-f", "../../" + options.grompp] cmd += ["-n", "../../" + node.pool.ndx_fn] cmd += ["-c", "../../" + node.dir + "/rerun_me.pdb"] cmd += ["-p", "../../" + node.dir + "/rerun_me.top"] cmd += ["-o", "../../" + node.dir + "/rerun_me.tpr"] print("Calling: %s" % " ".join(cmd)) p = Popen(cmd, cwd=node.dir) retcode = p.wait() assert (retcode == 0) # grompp should never fail node.state = grompp2state node.save() node.unlock()
def main(): options = options_desc.parse_args(sys.argv)[0] zgf_cleanup.main() print("Options:\n%s\n"%pformat(eval(str(options)))) pool = Pool() parent = pool.root active_nodes = pool.where("isa_partition") assert(len(active_nodes) == len(active_nodes.multilock())) # make sure we lock ALL nodes if active_nodes.where("'weight_direct' not in obs"): sys.exit("Q-Matrix calculation not possible: Not all of the nodes have been reweighted.") node_weights = np.array([node.obs.weight_direct for node in active_nodes]) print "### Generate bins: equidist ###" result = q_equidist(parent, options.numnodes) chosen_idx=result['chosen_idx'] frames_chosen=result['frames_chosen'] theta=result['theta'] chosen_idx.sort() # makes preview-trajectory easier to understand dimension=len(chosen_idx) print "chosen_idx" print chosen_idx print "### Generate bin weights ###" bin_weights=np.zeros(dimension) for (i,n) in enumerate(active_nodes): w_denom = np.sum(n.frameweights) for t in range(len(n.trajectory)): diffs = (frames_chosen - n.trajectory.getframe(t)).norm() j = np.argmin(diffs) bin_weights[j] = bin_weights[j] + node_weights[i] * n.frameweights[t] / w_denom print "bin_weights" print bin_weights print "### Generate q_all (entries only for neighboring bins) ###" q_all = np.empty((dimension, dimension), dtype=np.float) for i in range(dimension): sum_row = 0.0 diffs = (frames_chosen - frames_chosen.getframe(i)).norm() print "diffs" print diffs for j in range(dimension): if (diffs[j] < 2.0 * theta) and (bin_weights[i] > 0.0): q_all[i,j] = np.sqrt(bin_weights[j]) / np.sqrt(bin_weights[i]) sum_row = sum_row + q_all[i , j] else: q_all[i,j] = 0 q_all[i, i] = q_all[i, i]- sum_row print "Q_All" print q_all if options.export_matlab: savemat(pool.analysis_dir+"q_all.mat", {"q_all":q_all}) active_nodes.unlock() zgf_cleanup.main()
def is_applicable(): pool = Pool() return (len(pool.where("state == 'grompp-able'")) > 0)
def is_applicable(): pool = Pool() return (len(pool.where("state == 'em-mdrun-able'")) > 0)
def main(): options = options_desc.parse_args(sys.argv)[0] if (options.common_filename): options.molecule = options.common_filename + ".pdb" options.presampling = options.common_filename + ".trr" options.internals = options.common_filename + ".int" options.grompp = options.common_filename + ".mdp" options.topology = options.common_filename + ".top" options.index = options.common_filename + ".ndx" print("Options:\n%s\n" % pformat(eval(str(options)))) assert (path.exists(options.molecule)) assert (path.exists(options.presampling)) assert (path.exists(options.internals)) assert (path.exists(options.grompp)) assert (path.exists(options.topology)) #TODO: what if there is no index-file? (make_ndx) assert (path.exists(options.index)) assert ('moi' in gromacs.read_index_file( options.index)), "group 'MOI' should be defined in index file" # checks e.g. if the mdp-file looks good mdp_options = gromacs.read_mdp_file(options.grompp) temperatures = [ ref_t for ref_t in re.findall("[0-9]+", mdp_options["ref_t"]) ] assert (len(set(temperatures)) == 1 ), "temperature definition in mdp file is ambiguous" temperature = temperatures[0] # get sampling temperature from mdp file if (int(temperature) > 310): if not (userinput( "Your sampling temperature is set to %s K. Continue?" % temperature, "bool")): sys.exit("Quit by user.") # options we can fix mdp_options_dirty = False #if set, a new mdp-file will be written # the value of the following options need to be fixed critical_mdp_options = { "dihre": "yes", "dihre_fc": "1", "disre": "simple", "disre_fc": "1", "gen_temp": temperature } for (k, v) in critical_mdp_options.items(): if (mdp_options.has_key(k) and mdp_options[k].strip() != v): print "Error. I do not want to use '%s' for option '%s' ('%s' required). Please fix your mdp file." % ( mdp_options[k].strip(), k, v) sys.exit("Quitting.") else: mdp_options[k] = v mdp_options_dirty = True # the value of the following options does not matter, but they should be there noncritical_mdp_options = { "tcoupl": "no", "pcoupl": "no", "gen_vel": "no", "gen_seed": "-1" } for (k, v) in noncritical_mdp_options.items(): if not (mdp_options.has_key(k)): mdp_options[k] = v mdp_options_dirty = True a = mdp_options.has_key("energygrps") and "moi" not in [ str(egrp) for egrp in re.findall('[\S]+', mdp_options["energygrps"]) ] b = not (mdp_options.has_key("energygrps")) if (a or b): if not (userinput( "'MOI' is not defined as an energy group in your mdp file. Maybe you have forgotten to define proper 'energygrps'. Continue?", "bool")): sys.exit("Quit by user.") a, b = mdp_options.has_key("nstxout"), mdp_options.has_key("nstenergy") if (a and not b): mdp_options["nstenergy"] = mdp_options["nstxout"] mdp_options_dirty = True elif (b and not a): mdp_options["nstxout"] = mdp_options["nstenergy"] mdp_options_dirty = True elif (b and a): assert (mdp_options["nstxout"] == mdp_options["nstenergy"] ), "nstxout should equal nstenergy" if (int(mdp_options["nsteps"]) > 1e6): msg = "Number of MD-steps?" mdp_options["nsteps"] = str( userinput(msg, "int", default=int(mdp_options["nsteps"]))) # create a fixed mdp-file if (mdp_options_dirty): print("Creating copy of mdp-file and adding missing options.") out_fn = options.grompp.rsplit(".", 1)[0] + "_fixed.mdp" f = open(out_fn, "w") # append f.write("; Generated by zgf_create_pool\n") for i in sorted(mdp_options.items()): f.write("%s = %s\n" % i) f.write("; EOF\n") f.close() options.grompp = out_fn # check if subsampling is reasonable if (os.path.getsize(options.presampling) > 100e6): # 100MB print("Presampling trajectory is large") trr = TrrFile(options.presampling) dt = trr.first_frame.next().t - trr.first_frame.t trr.close() print("Presampling timestep is %.2f ps" % dt) if (dt < 10): # picoseconds #TODO: maybe calculate subsampling factor individually, or ask? msg = "Subsample presampling trajectory by a tenth?" if (userinput(msg, "bool")): out_fn = options.presampling.rsplit(".", 1)[0] + "_tenth.trr" cmd = [ "trjconv", "-f", options.presampling, "-o", out_fn, "-skip", "10" ] check_call(cmd) options.presampling = out_fn # balance linears if (options.balance_linears): print("Balance Linears") old_converter = Converter(options.internals) print("Loading presampling....") frames = old_converter.read_trajectory(options.presampling) new_coord_list = [] for c in old_converter: if (not isinstance(c, LinearCoordinate)): new_coord_list.append(c) continue # we do not work on other Coordinate-Types #TODO: is this a good way to determine new_weight and new_offset??? new_weight = c.weight / sqrt(2 * frames.var().getcoord(c)) new_offset = c.offset + frames.mean().getcoord(c) new_coord = LinearCoordinate(*c.atoms, label=c.label, weight=new_weight, offset=new_offset) new_coord_list.append(new_coord) new_converter = Converter(coord_list=new_coord_list) assert (old_converter.filename.endswith(".int")) options.internals = old_converter.filename[:-4] + "_balanced.int" print("Writing balanced Converter to: " + options.internals) f = open(options.internals, "w") f.write(new_converter.serialize()) f.close() assert (len(Converter(options.internals)) == len(new_coord_list) ) #try parsing # Finally: Create root-node and pool pool = Pool() if (len(pool) != 0): print("ERROR: A pool already exists here.") sys.exit(1) pool.int_fn = options.internals pool.mdp_fn = options.grompp pool.top_fn = options.topology pool.ndx_fn = options.index pool.temperature = int(temperature) pool.gr_threshold = options.gr_threshold pool.gr_chains = options.gr_chains pool.alpha = None pool.save() # save pool for the first time... # ... then we can save the first node... node0 = Node() node0.state = "refined" node0.save() # also creates the node directory ... needed for symlink os.symlink(os.path.relpath(options.presampling, node0.dir), node0.trr_fn) os.symlink(os.path.relpath(options.molecule, node0.dir), node0.pdb_fn) pool.root_name = node0.name pool.save() #... now we have to save the pool again. if (not path.exists("analysis")): os.mkdir("analysis")
def is_applicable(): pool = Pool() return (path.exists(pool.chi_mat_fn))
def main(): options = options_desc.parse_args(sys.argv)[0] if(options.common_filename): options.molecule = options.common_filename+".pdb" options.presampling = options.common_filename+".trr" options.internals = options.common_filename+".int" options.grompp = options.common_filename+".mdp" options.topology = options.common_filename+".top" options.index = options.common_filename+".ndx" print("Options:\n%s\n"%pformat(eval(str(options)))) assert(path.exists(options.molecule)) assert(path.exists(options.presampling)) assert(path.exists(options.internals)) assert(path.exists(options.grompp)) assert(path.exists(options.topology)) #TODO: what if there is no index-file? (make_ndx) assert(path.exists(options.index)) assert('moi' in gromacs.read_index_file(options.index)), "group 'MOI' should be defined in index file" # checks e.g. if the mdp-file looks good mdp_options = gromacs.read_mdp_file(options.grompp) temperatures = [ref_t for ref_t in re.findall("[0-9]+", mdp_options["ref_t"])] assert(len(set(temperatures)) == 1), "temperature definition in mdp file is ambiguous" temperature = temperatures[0] # get sampling temperature from mdp file if(int(temperature) > 310): if not(userinput("Your sampling temperature is set to %s K. Continue?"%temperature, "bool")): sys.exit("Quit by user.") # options we can fix mdp_options_dirty = False #if set, a new mdp-file will be written # the value of the following options need to be fixed critical_mdp_options = {"dihre":"yes", "dihre_fc":"1", "disre":"simple", "disre_fc":"1", "gen_temp":temperature} for (k,v) in critical_mdp_options.items(): if(mdp_options.has_key(k) and mdp_options[k].strip() != v): print "Error. I do not want to use '%s' for option '%s' ('%s' required). Please fix your mdp file."%(mdp_options[k].strip(),k,v) sys.exit("Quitting.") else: mdp_options[k] = v mdp_options_dirty = True # the value of the following options does not matter, but they should be there noncritical_mdp_options = {"tcoupl":"no", "pcoupl":"no", "gen_vel":"no", "gen_seed":"-1"} for (k,v) in noncritical_mdp_options.items(): if not(mdp_options.has_key(k)): mdp_options[k] = v mdp_options_dirty = True a = mdp_options.has_key("energygrps") and "moi" not in [str(egrp) for egrp in re.findall('[\S]+', mdp_options["energygrps"])] b = not(mdp_options.has_key("energygrps")) if(a or b): if not(userinput("'MOI' is not defined as an energy group in your mdp file. Maybe you have forgotten to define proper 'energygrps'. Continue?", "bool")): sys.exit("Quit by user.") a, b = mdp_options.has_key("nstxout"), mdp_options.has_key("nstenergy") if(a and not b): mdp_options["nstenergy"] = mdp_options["nstxout"] mdp_options_dirty = True elif(b and not a): mdp_options["nstxout"] = mdp_options["nstenergy"] mdp_options_dirty = True elif(b and a): assert(mdp_options["nstxout"] == mdp_options["nstenergy"]), "nstxout should equal nstenergy" if(int(mdp_options["nsteps"]) > 1e6): msg = "Number of MD-steps?" mdp_options["nsteps"] = str( userinput(msg, "int", default=int(mdp_options["nsteps"])) ) # create a fixed mdp-file if(mdp_options_dirty): print("Creating copy of mdp-file and adding missing options.") out_fn = options.grompp.rsplit(".", 1)[0] + "_fixed.mdp" f = open(out_fn, "w") # append f.write("; Generated by zgf_create_pool\n") for i in sorted(mdp_options.items()): f.write("%s = %s\n"%i) f.write("; EOF\n") f.close() options.grompp = out_fn # check if subsampling is reasonable if(os.path.getsize(options.presampling) > 100e6): # 100MB print("Presampling trajectory is large") trr = TrrFile(options.presampling) dt = trr.first_frame.next().t - trr.first_frame.t trr.close() print("Presampling timestep is %.2f ps"%dt) if(dt < 10): # picoseconds #TODO: maybe calculate subsampling factor individually, or ask? msg = "Subsample presampling trajectory by a tenth?" if(userinput(msg, "bool")): out_fn = options.presampling.rsplit(".", 1)[0] + "_tenth.trr" cmd = ["trjconv", "-f", options.presampling, "-o", out_fn, "-skip", "10"] check_call(cmd) options.presampling = out_fn # balance linears if(options.balance_linears): print("Balance Linears") old_converter = Converter(options.internals) print("Loading presampling....") frames = old_converter.read_trajectory(options.presampling) new_coord_list = [] for c in old_converter: if(not isinstance(c, LinearCoordinate)): new_coord_list.append(c) continue # we do not work on other Coordinate-Types #TODO: is this a good way to determine new_weight and new_offset??? new_weight = c.weight / sqrt(2*frames.var().getcoord(c)) new_offset = c.offset + frames.mean().getcoord(c) new_coord = LinearCoordinate(*c.atoms, label=c.label, weight=new_weight, offset=new_offset) new_coord_list.append(new_coord) new_converter = Converter(coord_list=new_coord_list) assert(old_converter.filename.endswith(".int")) options.internals = old_converter.filename[:-4] + "_balanced.int" print("Writing balanced Converter to: "+options.internals) f = open(options.internals, "w") f.write(new_converter.serialize()) f.close() assert(len(Converter(options.internals)) == len(new_coord_list)) #try parsing # Finally: Create root-node and pool pool = Pool() if(len(pool) != 0): print("ERROR: A pool already exists here.") sys.exit(1) pool.int_fn = options.internals pool.mdp_fn = options.grompp pool.top_fn = options.topology pool.ndx_fn = options.index pool.temperature = int(temperature) pool.gr_threshold = options.gr_threshold pool.gr_chains = options.gr_chains pool.alpha = None pool.save() # save pool for the first time... # ... then we can save the first node... node0 = Node() node0.state = "refined" node0.save() # also creates the node directory ... needed for symlink os.symlink(os.path.relpath(options.presampling, node0.dir), node0.trr_fn) os.symlink(os.path.relpath(options.molecule, node0.dir), node0.pdb_fn) pool.root_name = node0.name pool.save() #... now we have to save the pool again. if(not path.exists("analysis")): os.mkdir("analysis")
def is_applicable(): pool = Pool() return (pool.where("isa_partition and state != 'mdrun-failed'") > 0)
def is_applicable(): pool = Pool() return (len(pool) > 0)
def is_applicable(): pool = Pool() return(len(pool.where("isa_partition and is_sampled")) > 0)
def is_applicable(): pool = Pool() return( len(pool) > 1 and len(pool.where("isa_partition and state in ('converged','not-converged','mdrun-failed')")) == len(pool.where("isa_partition")) )
def is_applicable(): pool = Pool() return (len(pool.where("isa_partition and is_sampled")) > 0)