def do_eval(settings, args): # if args.ckpt_loading == "latest": dir_ckpt = settings.model_dir else: dir_ckpt = settings.model_dir_best # # model model = settings.ModelClass(settings) model.prepare_for_train_and_valid(dir_ckpt) model.assign_dropout_keep_prob(1.0) # # data file_raw = os.path.join(args.dir_examples, "data_examples_test.txt") data_raw = data_utils.load_from_file_raw(file_raw) # batch_stder = lambda x: data_utils.get_batch_std(x, settings) data_batcher = DataBatcher(data_raw, batch_stder, settings.batch_size_eval, single_pass=True) # # eval eval_score, loss_aver, metric_aver = eval_process( model, data_batcher, settings.max_batches_eval, mode_eval=True) # print('loss_aver, metric_aver: %g, %g' % (loss_aver, metric_aver)) settings.logger.info('loss_aver, metric_aver: %g, %g' % (loss_aver, metric_aver)) settings.logger.info('{}'.format(eval_score))
def do_predict(settings, args): # if args.ckpt_loading == "latest": dir_ckpt = settings.model_dir else: dir_ckpt = settings.model_dir_best # pb_file = os.path.join(dir_ckpt, "model_frozen.pb") # # model model = settings.ModelClass(settings) model.prepare_for_prediction_with_pb(pb_file) # # data if args.data == "test": file_raw = os.path.join(args.dir_examples, "data_examples_test.txt") elif args.data == "train": file_raw = os.path.join(args.dir_examples, "data_examples_train.txt") elif args.data == "valid": file_raw = os.path.join(args.dir_examples, "data_examples_valid.txt") # data_raw = data_utils.load_from_file_raw(file_raw) # batch_stder = lambda x: data_utils.get_batch_std(x, settings) data_batcher = DataBatcher(data_raw, batch_stder, settings.batch_size_eval, single_pass=True) # # predict count = 0 while True: batch = data_batcher.get_next_batch() # if batch is None: break if count == settings.max_batches_eval: continue # # count += 1 print(count) # print("batch data:") print(batch["input_y"]) print("batch data end") # results = model.predict_with_pb_from_batch(batch)["logits"] # print("results:") print(np.argmax(results[0], -1)) print("results end") print() # # settings.logger.info('prediction finished, with total num_batches: %d' % count)
# settings.result_dir = os.path.join(settings.base_dir, "result") if not os.path.exists(settings.base_dir): os.mkdir(settings.base_dir) if not os.path.exists(settings.result_dir): os.mkdir(settings.result_dir) # # model & vocab settings.model_tag = "multi_doc_qa" settings.vocab = vocab # # mode if args.mode == "train": example_gen = lambda single_pass: example_generator(train_files, True, settings.max_p_len, single_pass) batch_stder = lambda items: do_batch_std(items, vocab, settings) batcher = DataBatcher(example_gen, batch_stder, settings.batch_size, single_pass=False) # settings.is_train = True settings.check_settings() settings.logger.info("{}".format(args)) # model = ModelDocQA(settings) model.prepare_for_train_and_valid(settings.model_dir) # model_utils.do_train(model, batcher, settings) model.close_logger() # elif args.mode == "eval": example_gen = lambda single_pass: example_generator(dev_files, True, settings.max_p_len, single_pass) batch_stder = lambda items: do_batch_std(items, vocab, settings) batcher = DataBatcher(example_gen, batch_stder, settings.batch_size, single_pass=True) # batch_size
def do_train_and_valid(settings, args): # if args.ckpt_loading == "latest": dir_ckpt = settings.model_dir else: dir_ckpt = settings.model_dir_best # # model model = settings.ModelClass(settings) model.prepare_for_train_and_valid(dir_ckpt) # # data file_raw = os.path.join(args.dir_examples, "data_examples_train.txt") data_raw = data_utils.load_from_file_raw(file_raw) # batch_stder = lambda x: data_utils.get_batch_std(x, settings) data_batcher = DataBatcher(data_raw, batch_stder, settings.batch_size, single_pass=False) # eval_period = settings.valid_period_batch file_raw_eval = os.path.join(args.dir_examples, "data_examples_valid.txt") data_raw_eval = data_utils.load_from_file_raw(file_raw_eval) # # train loss = 10000.0 best_metric_val = 0 # last_improved = 0 lr = 0.0 # count = 0 model.settings.logger.info("") while True: # # eval if count % eval_period == 0: settings.logger.info("training curr batch, loss, lr: %d, %g, %g" % (count, loss, lr)) # model.save_ckpt(settings.model_dir, settings.model_name, count) model.assign_dropout_keep_prob(1.0) # settings.logger.info('evaluating after num_batches: %d' % count) eval_batcher = DataBatcher(data_raw_eval, batch_stder, settings.batch_size, single_pass=True) # eval_score, loss_aver, metric_val = eval_process( model, eval_batcher, settings.max_batches_eval, mode_eval=False) settings.logger.info( "eval loss_aver, metric, metric_best: %g, %g, %g" % (loss_aver, metric_val, best_metric_val)) # # save best if metric_val >= best_metric_val: # >= best_metric_val = metric_val # last_improved = count # ckpt settings.logger.info('a new best model, saving ...') model.save_ckpt_best(settings.model_dir_best, settings.model_name, count) # # if lr < settings.learning_rate_minimum and count > settings.warmup_steps: settings.logger.info( 'current learning_rate < learning_rate_minimum, stop training' ) break # model.assign_dropout_keep_prob(settings.keep_prob) settings.logger.info("") # # # train batch = data_batcher.get_next_batch() # if batch is None: break count += 1 # print(count) # result_dict = model.run_train_one_batch(batch) # just for train loss = result_dict["loss_optim"] lr = result_dict["lr"] # # print(loss) # model.logger.info("training curr batch, loss, lr: %d, %g, %g" % (count, loss, lr) # # settings.logger.info("training finshed with total num_batches: %d" % count)
def do_debug(settings, args): # if args.ckpt_loading == "latest": dir_ckpt = settings.model_dir else: dir_ckpt = settings.model_dir_best # # model model = ModelWrapper(settings, settings.model_graph) model.prepare_for_train_and_valid(dir_ckpt) model.assign_dropout_keep_prob(1.0) # # data file_raw = os.path.join(args.dir_examples, "data_examples_test.txt") data_raw = data_utils.load_from_file_raw(file_raw) # batch_stder = lambda x: data_utils.get_batch_std(x, settings) data_batcher = DataBatcher(data_raw, batch_stder, settings.batch_size_eval, single_pass=True) # # eval list_batches_result = [] # loss_aver, metric_aver = 0.0, 0.0 count = 0 while True: batch = data_batcher.get_next_batch() # if batch is None: break if count == 1000000: continue # # count += 1 # print(count) # results, loss, metric = model.run_eval_one_batch(batch) loss_aver += loss metric_aver += metric # print(loss) # print(metric) # print(count) print("batch data:") print(batch[-1]) # print("results:") print(np.argmax(results[0], -1)) print() # item = batch[0], batch[1], np.argmax(results[0], -1) list_batches_result.append(item) # # dir_result = "data_check_result" if not os.path.exists(dir_result): os.mkdir(dir_result) # file_path = os.path.join( dir_result, "list_batches_result_%d.pkl" % settings.batch_size_eval) # with open(file_path, 'wb') as fp: pickle.dump(list_batches_result, fp) # loss_aver /= count metric_aver /= count # print('loss_aver, metric_aver: %g, %g' % (loss_aver, metric_aver)) model.logger.info('loss_aver, metric_aver: %g, %g' % (loss_aver, metric_aver))