new_obs.append(zl.get_bedrooms(card_info)) # Bathrooms new_obs.append(zl.get_bathrooms(card_info)) # Days on the Market/Zillow new_obs.append(zl.get_days_on_market(soup)) # Sale Type (House for Sale, New Construction, Foreclosure, etc.) new_obs.append(zl.get_sale_type(soup)) # URL for each house listing new_obs.append(zl.get_url(soup)) # Append new_obs to list output_data. output_data.append(new_obs) # Close the webdriver connection. zl.close_connection(driver) # Write data to data frame, then to CSV file. file_name = "%s_%s.csv" % (str( time.strftime("%Y-%m-%d")), str(time.strftime("%H%M%S"))) columns = [ "address", "city", "state", "zip", "price", "sqft", "bedrooms", "bathrooms", "days_on_zillow", "sale_type", "url" ] pd.DataFrame(output_data, columns=columns).to_csv(file_name, index=False, encoding="UTF-8")
# Bedrooms new_obs.append(parser.get_bedrooms()) # Bathrooms new_obs.append(parser.get_bathrooms()) # Days on the Market/Zillow new_obs.append(parser.get_days_on_market()) # Sale Type (House for Sale, New Construction, Foreclosure, etc.) new_obs.append(parser.get_sale_type()) # URL for each house listing new_obs.append(parser.get_url()) # Append new_obs to list output_data. output_data.append(new_obs) # Close the webdriver connection. zl.close_connection(driver) # Write data to data frame, then to CSV file. file_name = "%s_%s.csv" % (str(time.strftime("%Y-%m-%d")), str(time.strftime("%H%M%S"))) columns = ["address", "city", "state", "zip", "price", "sqft", "bedrooms", "bathrooms", "days_on_zillow", "sale_type", "url"] pd.DataFrame(output_data, columns = columns).drop_duplicates().to_csv( file_name, index = False, encoding = "UTF-8" )