def build_playback_archive(): filename = _G.PlotPlaybackFilename if os.path.exists(filename): print(f"Archive {filename} already exists") return _G.load_data(filename) print(f"Building archive playback for '{filename}'") files = sorted(glob_plots(filename)) cur_timestamp = 0 data = [] _len = len(files) for i, file in enumerate(files): print(f"Processing {i}/{_len}") dat = PlotPlaybackRecord(cur_timestamp) dat.sx, dat.ex = find_plot_window_length(file) data.append(dat) cur_timestamp += _G.TimeWindowSize _G.dump_data(data, filename) print("Archived dumped") return data
def start_analyze(): global data print(f"Analyzing stream file index of {_G.StreamFileIndex}") data = [] if _G.FLAG_POSITIVE_PROC: print(f"Analyzing Positive Samples") _G.ensure_dir_exist(f"{_G.PositiveSamplePath}/.") _G.wait(1) files = _G.positive_audios() for i, file in enumerate(files): analyze_and_plot_audio(file, _G.positive_plot_filename(i), True) _G.dump_data(data, _G.make_positive_dataname(i)) elif _G.FLAG_NEGATIVE_PROC: print(f"Analyzing Negative Samples") _G.ensure_dir_exist(f"{_G.NegativeSamplePath}/.") _G.wait(1) files = _G.negative_audios() for i, file in enumerate(files): analyze_and_plot_audio(file, _G.negative_plot_filename(i), True) _G.dump_data(data, _G.make_negative_dataname(i)) else: _G.ensure_dir_exist(_G.plot_filename(0)) files = get_audio_files(_G.StreamFilePrefix, _G.StreamFileSuffix) flen = len(files) for i, file in enumerate(files): print(f"Analyzing {i+1}/{flen}") analyze_and_plot_audio(file, _G.plot_filename(i), True) # if i >= 2: # break _G.dump_data(data, _G.get_stream_adump_filename())
verbose=VERBOSE, n_jobs=N_JOBS) x_train = np.array(x_train, dtype=object) x_train = x_train.reshape(x_train.shape[0], x_train.shape[1] * x_train.shape[2]) print(f"Reshaped size: {x_train.shape}") if TRAIN_SVM: print("Training SVM") clsier_svm.fit(x_train, y_train) print("Best params: ", clsier_svm.best_params_) print("Result:") pprint(clsier_svm.cv_results_) print("Dumping SVM data") _G.dump_data(clsier_svm, f"svm_zcr.mod") if TRAIN_KNN: print("Training KNN") clsier_knn.fit(x_train, y_train) print("Best params: ", clsier_knn.best_params_) print("Result:") pprint(clsier_knn.cv_results_) print("Dumping KNN data") _G.dump_data(clsier_knn, f"knn_zcr.mod") if TRAIN_RFR: print("Training Random Forest") clsier_rfr.fit(x_train, y_train) print("Best params: ", clsier_rfr.best_params_) print("Result:")
clsier_svm = GridSearchCV(estimator=svm.SVC(), param_grid=parm_svm, scoring='accuracy',cv=GRID_CV,verbose=VERBOSE,n_jobs=N_JOBS) clsier_knn = GridSearchCV(estimator=KNeighborsClassifier(), param_grid=parm_knn, scoring='accuracy',cv=GRID_CV,verbose=VERBOSE,n_jobs=N_JOBS) clsier_rfr = GridSearchCV(estimator=RandomForestRegressor(), param_grid=parm_rfr, scoring='explained_variance',cv=GRID_CV,verbose=VERBOSE,n_jobs=N_JOBS) x_train = np.array(x_train, dtype=object) x_train = x_train.reshape(x_train.shape[0], x_train.shape[1]*x_train.shape[2]) print(f"x_traine reshped: {x_train.shape}") if TRAIN_SVM: print("Training SVM") clsier_svm.fit(x_train, y_train) print("Best params: ", clsier_svm.best_params_) print("Result:") pprint(clsier_svm.cv_results_) print("Dumping SVM") _G.dump_data(clsier_svm, "svm_mfcc.mod") if TRAIN_KNN: print("Training KNN") clsier_knn.fit(x_train, y_train) print("Best params: ", clsier_knn.best_params_) print("Result:") pprint(clsier_knn.cv_results_) _G.dump_data(clsier_knn, f"knn_mfcc.mod") if TRAIN_RFR: print("Training Random Forest") clsier_rfr.fit(x_train, y_train) print("Best params: ", clsier_rfr.best_params_) print("Result:") pprint(clsier_rfr.cv_results_)
verbose=VERBOSE, n_jobs=N_JOBS) x_train = np.array(x_train, dtype=object) x_train = x_train.reshape(x_train.shape[0], x_train.shape[1] * x_train.shape[2]) print(f"Reshaped size: {x_train.shape}") if TRAIN_SVM: print("Training SVM") clsier_svm.fit(x_train, y_train) print("Best params: ", clsier_svm.best_params_) print("Result:") pprint(clsier_svm.cv_results_) print("Dumping SVM data") _G.dump_data(clsier_svm, f"svm_rolloff.mod") if TRAIN_KNN: print("Training KNN") clsier_knn.fit(x_train, y_train) print("Best params: ", clsier_knn.best_params_) print("Result:") pprint(clsier_knn.cv_results_) print("Dumping KNN data") _G.dump_data(clsier_knn, f"knn_rolloff.mod") if TRAIN_RFR: print("Training Random Forest") clsier_rfr.fit(x_train, y_train) print("Best params: ", clsier_rfr.best_params_) print("Result:")