コード例 #1
0
    def gotoRegion(self, current_reg, next_reg, last=False):
        """
        If ``last`` is true, we will move to the center of the region.

        Returns ``True`` if we are outside the supposed ``current_reg``
        """

        if current_reg == next_reg and not last:
            # No need to move!
            self.drive_handler.setVelocity(0, 0)  # So let's stop
            return True

        controller = self.get_controller(current_reg, next_reg, last)

        pose = self.pose_handler.getPose()

        [X, DqX, F, inside, J] = controller(mat(pose[0:2]).T)

        self.drive_handler.setVelocity(X[0, 0], X[1, 0], pose[2])

        # Transform the region vertices into real coordinates
        pointArray = [
            self.fwd_coordmap(x)
            for x in self.rfi.regions[next_reg].getPoints()
        ]
        vertices = mat(pointArray).T

        # Figure out whether we've reached the destination region
        if is_inside([pose[0], pose[1]], vertices):
            arrived = True
        else:
            arrived = False

        if (arrived !=
            (not inside)) and (time.time() - self.last_warning) > 0.5:
            print "WARNING: Left current region but not in expected destination region"
            # Figure out what region we think we stumbled into
            for r in self.rfi.regions:
                pointArray = [self.fwd_coordmap(x) for x in r.getPoints()]
                vertices = mat(pointArray).T

                if is_inside([pose[0], pose[1]], vertices):
                    print "I think I'm in " + r.name
                    print pose
                    break
            self.last_warning = time.time()

        return arrived
コード例 #2
0
    def inRegion_old(self, regionName, initial=False):
        """
        Check if the robot is in this region
        regionName (string): Name of the region
        """

        if initial:
            self.prev_pose = self.executor.hsub.getPose()
            return True

        else:
            pose = self.executor.hsub.getPose()
            #########################################
            ### Copied from vectorController.py #####
            #########################################

            # make sure the pose is valid
            if sum(pose) == 0:
                pose = self.prev_pose  # maybe do interpolation later?
                ltlmop_logger.warning("Losing pose... Using old one.")
            else:
                self.prev_pose = pose

            regionNo = self.proj.rfiold.indexOfRegionWithName(regionName)
            pointArray = [
                x for x in self.proj.rfiold.regions[regionNo].getPoints()
            ]
            pointArray = map(self.executor.hsub.coordmap_map2lab, pointArray)
            vertices = numpy.mat(pointArray).T
            #ltlmop_logger.debug('self.proj.rfiold.regions:' + str(self.proj.rfiold.regions))
            #ltlmop_logger.debug("pose:" + str(pose))
            #ltlmop_logger.debug("vertices:" + str(vertices))
            #ltlmop_logger.debug(self.proj.rfiold.regions[regionNo].name +": " +  str(is_inside([pose[0], pose[1]], vertices)))
            return is_inside([pose[0], pose[1]], vertices)
コード例 #3
0
ファイル: heatController.py プロジェクト: SMSmith/LTLMoP
    def gotoRegion(self, current_reg, next_reg, last=False):
        """
        If ``last`` is true, we will move to the center of the region.
        
        Returns ``True`` if we are outside the supposed ``current_reg``
        """

        if current_reg == next_reg and not last:
            # No need to move!
            self.drive_handler.setVelocity(0, 0)  # So let's stop
            return False

        controller = self.get_controller(current_reg, next_reg, last)

        pose = self.pose_handler.getPose()

        [X, DqX, F, inside, J] = controller(mat(pose[0:2]).T)

        self.drive_handler.setVelocity(X[0,0], X[1,0], pose[2])
        
        # Transform the region vertices into real coordinates
        pointArray = [self.fwd_coordmap(x) for x in self.rfi.regions[next_reg].getPoints()]
        vertices = mat(pointArray).T 

        # Figure out whether we've reached the destination region
        if is_inside([pose[0], pose[1]], vertices):
            arrived = True
        else:
            arrived = False

        if (arrived != (not inside)) and (time.time()-self.last_warning) > 0.5:
            print "WARNING: Left current region but not in expected destination region"
            # Figure out what region we think we stumbled into
            for r in self.rfi.regions:
                pointArray = [self.fwd_coordmap(x) for x in r.getPoints()]
                vertices = mat(pointArray).T 

                if is_inside([pose[0], pose[1]], vertices):
                    print "I think I'm in " + r.name
                    print pose
                    break
            self.last_warning = time.time()

        return arrived
コード例 #4
0
    def gotoRegion(self, current_reg, next_reg, last=False):
        """
        If ``last`` is True, we will move to the center of the destination region.
        Returns ``True`` if we've reached the destination region.
        """
        q_gBundle = [[], []]  # goal bundle
        q_overlap = [[], []]  # overlapping points with robot range
        pose = self.pose_handler.getPose()  # Find our current configuration

        #Plot the robot on the map in figure 1
        if self.PLOT == True:
            plt.figure(self.original_figure)
            plt.clf()
            self.plotPoly(self.realRobot, 'r')
            self.plotPoly(self.robot, 'b')
            plt.plot(pose[0], pose[1], 'bo')
            self.plotPioneer(self.original_figure)

        if current_reg == next_reg and not last:
            # No need to move!
            self.drive_handler.setVelocity(0, 0)  # So let's stop
            return False

        # Check if Vicon has cut out
        if math.isnan(pose[2]):
            print "no vicon pose"
            print "WARNING: No Vicon data! Pausing."
            #self.drive_handler.setVelocity(0, 0)  # So let's stop
            time.sleep(1)
            return False

        ###This part is run when the robot goes to a new region, otherwise, the original map will be used.
        if not self.previous_current_reg == current_reg:
            #print 'getting into bug alogorithm'

            #clean up the previous self.map_work
            self.map_work = Polygon.Polygon()

            # NOTE: Information about region geometry can be found in self.proj.rfi.regions
            # create polygon list for regions other than the current_reg and the next_reg
            self.map_work += self.map[self.proj.rfi.regions[current_reg].name]
            self.map_work += self.map[self.proj.rfi.regions[next_reg].name]

            # building current polygon and destination polygon
            self.nextRegionPoly = self.map[
                self.proj.rfi.regions[next_reg].name]
            self.currentRegionPoly = self.map[
                self.proj.rfi.regions[current_reg].name]

            #set to zero velocity before finding the tranFace
            self.drive_handler.setVelocity(0, 0)
            if last:
                transFace = None
            else:
                print "Current reg is " + str(
                    self.proj.rfi.regions[current_reg].name.lower())
                print "Next reg is " + str(
                    self.proj.rfi.regions[next_reg].name.lower())

                for i in range(
                        len(self.proj.rfi.transitions[current_reg][next_reg])):
                    pointArray_transface = [
                        x for x in self.proj.rfi.transitions[current_reg]
                        [next_reg][i]
                    ]
                    transFace = asarray(
                        map(self.coordmap_map2lab, pointArray_transface))
                    bundle_x = (transFace[0, 0] +
                                transFace[1, 0]) / 2  #mid-point coordinate x
                    bundle_y = (transFace[0, 1] +
                                transFace[1, 1]) / 2  #mid-point coordinate y
                    q_gBundle = hstack((q_gBundle, vstack(
                        (bundle_x, bundle_y))))
                q_gBundle = q_gBundle.transpose()

                # Find the closest face to the current position
                max_magsq = 1000000
                for tf in q_gBundle:
                    magsq = (tf[0] - pose[0])**2 + (tf[1] - pose[1])**2
                    if magsq < max_magsq:
                        connection = 0
                        tf = tf + (tf - asarray(self.currentRegionPoly.center(
                        ))) / norm(tf - asarray(self.currentRegionPoly.center(
                        ))) * 2.1 * self.PioneerLengthHalf
                        if not self.nextRegionPoly.covers(
                                PolyShapes.Circle(self.PioneerLengthHalf * 2,
                                                  (tf[0], tf[1]))):
                            tf = tf - (tf - asarray(
                                self.currentRegionPoly.center())) / norm(
                                    tf - asarray(self.currentRegionPoly.center(
                                    ))) * 4.2 * self.PioneerLengthHalf
                            if self.nextRegionPoly.covers(
                                    PolyShapes.Circle(
                                        self.PioneerLengthHalf * 2,
                                        (tf[0], tf[1]))):
                                connection = 1
                        else:
                            connection = 1
                        if connection == 1:
                            pt1 = tf
                            max_magsq = magsq
                            transFace = 1
                            self.q_g[0] = pt1[0]
                            self.q_g[1] = pt1[1]
                        else:
                            sample = False
                            while not sample:
                                self.q_g[0], self.q_g[
                                    1] = self.nextRegionPoly.sample(
                                        random.random)
                                robo = PolyShapes.Circle(
                                    self.PioneerLengthHalf,
                                    (self.q_g[0], self.q_g[1]))
                                if not bool(robo - self.nextRegionPoly):
                                    sample = True
                """
                # Push the goal point to somewhere inside the next region to ensure the robot will get there.(CHECK!!)
                self.q_g = self.q_g+(self.q_g-asarray(self.currentRegionPoly.center()))/norm(self.q_g-asarray(self.currentRegionPoly.center()))*3*self.PioneerLengthHalf
                if not self.nextRegionPoly.isInside(self.q_g[0],self.q_g[1]):
                    self.q_g = self.q_g-(self.q_g-asarray(self.currentRegionPoly.center()))/norm(self.q_g-asarray(self.currentRegionPoly.center()))*6*self.PioneerLengthHalf
                """

                #plot exiting point
                if self.PLOT_EXIT == True:
                    plt.figure(self.overlap_figure)
                    plt.clf()
                    plt.plot(q_gBundle[:, 0], q_gBundle[:, 1], 'ko')
                    plt.plot(self.q_g[0], self.q_g[1], 'ro')
                    plt.plot(pose[0], pose[1], 'bo')
                    self.plotPioneer(self.overlap_figure, 0)

                if transFace is None:
                    print "ERROR: Unable to find transition face between regions %s and %s.  Please check the decomposition (try viewing projectname_decomposed.regions in RegionEditor or a text editor)." % (
                        self.proj.rfi.regions[current_reg].name,
                        self.proj.rfi.regions[next_reg].name)

        ##################################################
        #######check whether obstacle is detected#########
        ##################################################

        #Update pose,update self.robot, self.realRobot orientation
        self.robot.shift(pose[0] - self.prev_pose[0],
                         pose[1] - self.prev_pose[1])
        self.realRobot.shift(pose[0] - self.prev_pose[0],
                             pose[1] - self.prev_pose[1])
        self.robot.rotate(pose[2] - self.prev_pose[2], pose[0], pose[1])
        self.realRobot.rotate(pose[2] - self.prev_pose[2], pose[0], pose[1])
        self.prev_pose = pose

        ############################
        ########### STEP 1##########
        ############################
        ##Check whether obsRange overlaps with obstacle or the boundary (overlap returns the part of robot not covered by the region

        # for real Pioneer robot
        if self.system == 1:
            # motion controller is not in boundary following mode
            if self.boundary_following == False:

                if self.robocomm.getReceiveObs() == False:
                    overlap = self.robot - (self.map_work)
                else:
                    overlap = self.robot - (self.map_work -
                                            self.robocomm.getObsPoly())

            else:  #TRUE
                # use a robot with full range all around it
                Robot = PolyShapes.Circle(self.obsRange, (pose[0], pose[1]))
                Robot.shift(self.shift * cos(pose[2]),
                            self.shift * sin(pose[2]))

                if self.robocomm.getReceiveObs() == False:
                    overlap = Robot - (self.map_work)
                else:
                    overlap = Robot - (self.map_work -
                                       self.robocomm.getObsPoly())
        # for ODE
        else:
            if self.boundary_following == False:
                overlap = self.robot - (self.map_work)
            else:  #TRUE
                overlap = self.robot - (self.map_work)

        if self.boundary_following == False:
            if bool(overlap):  ## overlap of obstacles
                #print "There MAYBE overlap~~ check connection to goal"

                # check whether the real robot or and path to goal overlap with the obstacle
                QGoalPoly = PolyShapes.Circle(self.PioneerLengthHalf,
                                              (self.q_g[0], self.q_g[1]))
                path = PolyUtils.convexHull(self.realRobot + QGoalPoly)
                if self.system == 1:
                    if self.robocomm.getReceiveObs() == False:
                        pathOverlap = path - (self.map_work)
                    else:
                        pathOverlap = path - (self.map_work -
                                              self.robocomm.getObsPoly())
                else:
                    pathOverlap = path - (self.map_work)

                if bool(
                        pathOverlap
                ):  # there is overlapping, go into bounding following mode
                    #print "There IS overlap"
                    self.q_hit = mat([pose[0], pose[1]]).T
                    self.boundary_following = True

                    #Generate m-line polygon
                    QHitPoly = PolyShapes.Circle(self.PioneerLengthHalf / 4,
                                                 (pose[0], pose[1]))
                    QGoalPoly = PolyShapes.Circle(self.PioneerLengthHalf / 4,
                                                  (self.q_g[0], self.q_g[1]))
                    self.m_line = PolyUtils.convexHull(QHitPoly + QGoalPoly)

                    #plot the first overlap
                    if self.PLOT_M_LINE == True:
                        plt.figure(self.overlap_figure)
                        plt.clf()
                        self.plotPoly(QHitPoly, 'k')
                        self.plotPoly(QGoalPoly, 'k')
                        self.plotPoly(overlap, 'g')
                        self.plotPoly(self.m_line, 'b')
                        plt.plot(pose[0], pose[1], 'bo')
                        self.plotPioneer(self.overlap_figure, 0)

                else:  ##head towards the q_goal
                    if self.system == 1:
                        if self.robocomm.getReceiveObs(
                        ) == False:  # wait for obstacles from Pioneer
                            vx = 0
                            vy = 0
                        else:
                            dis_cur = vstack((self.q_g[0], self.q_g[1])) - mat(
                                [pose[0], pose[1]]).T
                            vx = (dis_cur / norm(dis_cur) / 3)[0, 0]
                            vy = (dis_cur / norm(dis_cur) / 3)[1, 0]

                    else:
                        dis_cur = vstack((self.q_g[0], self.q_g[1])) - mat(
                            [pose[0], pose[1]]).T
                        vx = (dis_cur / norm(dis_cur) / 3)[0, 0]
                        vy = (dis_cur / norm(dis_cur) / 3)[1, 0]
                        #print "no obstacles 2-ODE true"

            else:  ##head towards the q_goal
                if self.system == 1:
                    if self.robocomm.getReceiveObs(
                    ) == False:  # wait for obstacles from Pioneer
                        vx = 0
                        vy = 0
                    else:
                        dis_cur = vstack((self.q_g[0], self.q_g[1])) - mat(
                            [pose[0], pose[1]]).T
                        vx = (dis_cur / norm(dis_cur) / 3)[0, 0]
                        vy = (dis_cur / norm(dis_cur) / 3)[1, 0]

                else:
                    dis_cur = vstack(
                        (self.q_g[0], self.q_g[1])) - mat([pose[0], pose[1]]).T
                    vx = (dis_cur / norm(dis_cur) / 3)[0, 0]
                    vy = (dis_cur / norm(dis_cur) / 3)[1, 0]
                    #print "no obstacles 1-ODE true"

        if self.boundary_following == True:
            self.q_hit_count += 1
            # finding the point to go normal to (closest overlapping point)

            j = 0
            recheck = 0
            while not bool(overlap):
                # cannot see the obstacle. Based on the location of the previous point blow up the range of the robot on the left or on the right
                j += 1

                # finding whether the previous obstacle point is on the left side or the right side of the robot
                # angle = angle of the previous point from the x-axis of the field
                # omega = angle of the current Pioneer orientation from the x-axis of the field
                # cc    = differnece between angle and omega ( < pi = previous point on the left of robot, else on the right of robot)
                x = self.prev_follow[0] - pose[0]
                y = self.prev_follow[1] - pose[1]
                angle = atan(y / x)

                # convert angle to 2pi
                if x > 0 and y > 0:
                    angle = angle
                elif x < 0 and y > 0:
                    angle = pi + angle
                elif x < 0 and y < 0:
                    angle = pi + angle
                else:
                    angle = 2 * pi + angle

                # convert pose to 2pi
                if pose[2] < 0:
                    omega = (2 * pi + pose[2])
                else:
                    omega = pose[2]

                if omega > angle:
                    cc = 2 * pi - (omega - angle)
                else:
                    cc = angle - omega

                # on the left
                #if angle - omega > 0 and angle - omega < pi:
                if cc < pi:
                    #print "on the left, angle: "+ str(angle) + " omega: "+ str(omega)+ " angle-omega: "+ str(angle-omega)
                    Robot = PolyShapes.Rectangle(self.range * 2 * j,
                                                 self.range * 2 * j)
                    Robot.shift(pose[0] - self.range * j * 2,
                                pose[1] - self.range * j)
                    Robot.rotate(pose[2] - pi / 2, pose[0], pose[1])

                # on the right
                else:
                    #print "on the right, angle: "+ str(angle) + " omega: "+ str(omega)+ " angle-omega: "+ str(angle-omega)
                    Robot = PolyShapes.Rectangle(self.range * 2 * j,
                                                 self.range * 2 * j)
                    Robot.shift(pose[0], pose[1] - self.range * j)
                    Robot.rotate(pose[2] - pi / 2, pose[0], pose[1])

                if self.system == 1:
                    overlap = Robot - (self.map_work -
                                       self.robocomm.getObsPoly())
                else:
                    overlap = Robot - (self.map_work)

                #self.plotPoly(Robot, 'm',2)
                #determines as dynamic obstacles and can be go striaight to the goal point
                if j >= 2:
                    dis_cur = vstack(
                        (self.q_g[0], self.q_g[1])) - mat([pose[0], pose[1]]).T
                    vx = (dis_cur / norm(dis_cur) / 3)[0, 0]
                    vy = (dis_cur / norm(dis_cur) / 3)[1, 0]
                    overlap = None
                    self.overlap = overlap
                    self.q_hit_count = 0
                    self.boundary_following = False
                    self.m_line = None
                    self.drive_handler.setVelocity(vx, vy, pose[2])
                    RobotPoly = PolyShapes.Circle(self.PioneerLengthHalf +
                                                  0.06,
                                                  (pose[0], pose[1]))  ###0.05
                    departed = not self.currentRegionPoly.overlaps(
                        self.realRobot)
                    #departed = not self.currentRegionPoly.overlaps(self.realRobot) and (not (self.nextRegionPoly.overlaps(self.realRobot) and not self.nextRegionPoly.covers(self.realRobot)))
                    arrived = self.nextRegionPoly.covers(self.realRobot)
                    return arrived

            ##extra box plotting in figure 1#
            if self.PLOT_OVERLAP == True:
                plt.figure(self.original_figure)
                plt.clf()
                self.plotPoly(self.realRobot, 'r')
                self.plotPoly(self.robot, 'b')
                self.plotPoly(overlap, 'g', 3)
                plt.plot(pose[0], pose[1], 'bo')
                self.plotPioneer(self.original_figure)

            # find the closest point on the obstacle to the robot
            overlap_len = len(overlap)
            for j in range(overlap_len):
                BoundPolyPoints = asarray(overlap[j])
                for i in range(len(BoundPolyPoints) - 1):
                    bundle_x = (
                        BoundPolyPoints[i, 0] +
                        BoundPolyPoints[1 + i, 0]) / 2  #mid-point coordinate x
                    bundle_y = (
                        BoundPolyPoints[i, 1] +
                        BoundPolyPoints[1 + i, 1]) / 2  #mid-point coordinate y
                    q_overlap = hstack((q_overlap, vstack(
                        (bundle_x, bundle_y))))
                bundle_x = (BoundPolyPoints[len(BoundPolyPoints) - 1, 0] +
                            BoundPolyPoints[0, 0]) / 2  #mid-point coordinate x
                bundle_y = (BoundPolyPoints[len(BoundPolyPoints) - 1, 1] +
                            BoundPolyPoints[0, 1]) / 2  #mid-point coordinate y
                q_overlap = hstack((q_overlap, vstack((bundle_x, bundle_y))))
            q_overlap = q_overlap.transpose()
            pt = self.closest_pt([pose[0], pose[1]],
                                 vstack(
                                     (q_overlap,
                                      asarray(PolyUtils.pointList(overlap)))))
            self.prev_follow = pt

            #calculate the vector to follow the obstacle
            normal = mat([pose[0], pose[1]] - pt)

            #find the distance from the closest point
            distance = norm(normal)
            velocity = normal * self.trans_matrix
            vx = (velocity / norm(velocity) / 3)[0, 0]
            vy = (velocity / norm(velocity) / 3)[0, 1]

            # push or pull the robot towards the obstacle depending on whether the robot is close or far from the obstacle.
            turn = pi / 4 * (distance - 0.5 * self.obsRange) / (
                self.obsRange
            )  ### change to 0.6 from 0.5 for more allowance in following
            corr_matrix = mat([[cos(turn), -sin(turn)], [sin(turn),
                                                         cos(turn)]])
            v = corr_matrix * mat([[vx], [vy]])
            vx = v[0, 0]
            vy = v[1, 0]

            ##plotting overlap on figure 2
            if self.PLOT_OVERLAP == True:
                plt.figure(self.overlap_figure)
                plt.clf()
                self.plotPoly(self.m_line, 'b')
                self.plotPoly(overlap, 'r')
                plt.plot(pt[0], pt[1], 'ro')
                plt.plot(pose[0], pose[1], 'bo')
                self.plotPioneer(self.overlap_figure, 0)

            ## conditions that the loop will end
            #for 11111
            RobotPoly = PolyShapes.Circle(self.PioneerLengthHalf + 0.06,
                                          (pose[0], pose[1]))  ####0.05
            departed = not self.currentRegionPoly.overlaps(self.realRobot)
            #departed = not self.currentRegionPoly.overlaps(self.realRobot) and (not (self.nextRegionPoly.overlaps(self.realRobot) and not self.nextRegionPoly.covers(self.realRobot)))
            arrived = self.nextRegionPoly.covers(self.realRobot)

            #for 33333
            reachMLine = self.m_line.overlaps(RobotPoly)

            # 1.reached the next region
            if arrived:
                self.boundary_following = False
                self.m_line = None
                self.q_hit_count = 0
                print "arriving at the next region. Exit boundary following mode"
                vx = 0
                vy = 0
                """
                # 2.q_hit is reencountered
                elif norm(self.q_hit-mat([pose[0],pose[1]]).T) < 0.05 and self.q_hit_count > self.q_hit_Thres:
                    print "reencounter q_hit. cannot reach q_goal"
                    vx = 0
                    vy = 0
                """

            # 3.m-line reencountered
            elif reachMLine:
                #print >>sys.__stdout__, "m-line overlaps RoboPoly, m-line" + str(norm(self.q_g-self.q_hit)-2*self.obsRange) + " distance: " + str(norm(self.q_g-mat([pose[0],pose[1]]).T))
                if norm(self.q_g - mat([pose[0], pose[1]]).T
                        ) < norm(self.q_g - self.q_hit) - 2 * self.obsRange:
                    #print "m-line overlaps RoboPoly, m-line" + str(norm(self.q_g-self.q_hit)-2*self.obsRange) + " distance: " + str(norm(self.q_g-mat([pose[0],pose[1]]).T))
                    #print "leaving boundary following mode"
                    self.boundary_following = False
                    self.m_line = None
                    self.q_hit_count = 0
                    leaving = False

                    # turn the robot till it is facing the goal
                    while not leaving:
                        x = self.q_g[0] - self.pose_handler.getPose()[0]
                        y = self.q_g[1] - self.pose_handler.getPose()[1]
                        angle = atan(y / x)
                        if x > 0 and y > 0:
                            angle = angle
                        elif x < 0 and y > 0:
                            angle = pi + angle
                        elif x < 0 and y < 0:
                            angle = pi + angle
                        else:
                            angle = 2 * pi + angle

                        if self.pose_handler.getPose()[2] < 0:
                            omega = (2 * pi + self.pose_handler.getPose()[2])
                            #print >>sys.__stdout__,"omega<0: "+ str(omega)
                        else:
                            omega = self.pose_handler.getPose()[2]
                            #print >>sys.__stdout__,"omega: "+ str(omega)

                        if omega > angle:
                            cc = 2 * pi - (omega - angle)
                        else:
                            cc = angle - omega

                        # angle(goal point orientation) on the left of omega(robot orientation)
                        #if angle - omega > 0 and angle - omega < pi:
                        if cc < pi:
                            #print>>sys.__stdout__, "turn left"
                            vx, vy = self.turnLeft(cc)

                        # on the right
                        else:
                            #print>>sys.__stdout__, "turn right"
                            vx, vy = self.turnRight(2 * pi - cc)

                        #print>>sys.__stdout__, "omega: "+ str(omega) + " angle: "+ str(angle) + " (omega-angle): " + str(omega-angle)
                        self.drive_handler.setVelocity(
                            vx, vy,
                            self.pose_handler.getPose()[2])

                        if omega - angle < pi / 6 and omega - angle > -pi / 6:
                            leaving = True

            #Check whether the robot can leave now (the robot has to be closer to the goal than when it is at q_hit to leave)
            QGoalPoly = PolyShapes.Circle(self.PioneerLengthHalf,
                                          (self.q_g[0], self.q_g[1]))
            path = PolyUtils.convexHull(self.realRobot + QGoalPoly)
            if self.system == 1:
                if self.robocomm.getReceiveObs() == False:
                    pathOverlap = path - (self.map_work)
                else:
                    pathOverlap = path - (self.map_work -
                                          self.robocomm.getObsPoly())
            else:
                pathOverlap = path - (self.map_work)

            if not bool(pathOverlap):
                #print "There is NO MORE obstacles in front for now."

                # check if the robot is closer to the goal compared with q_hit
                if norm(self.q_hit - mat(self.q_g).T) > norm(
                        mat([pose[0], pose[1]]).T - mat(self.q_g).T):
                    #print "The robot is closer than the leaving point. The robot can leave"
                    self.boundary_following = False
                    self.m_line = None
                    self.q_hit_count = 0
                    dis_cur = vstack(
                        (self.q_g[0], self.q_g[1])) - mat([pose[0], pose[1]]).T
                    vx = (dis_cur / norm(dis_cur) / 3)[0, 0]
                    vy = (dis_cur / norm(dis_cur) / 3)[1, 0]
                else:
                    lala = 1
                    #print "not leaving bug algorithm. difference(-farther) =" + str(norm(self.q_hit-mat(self.q_g).T) - norm(mat([pose[0],pose[1]]).T-mat(self.q_g).T))
        """
        # Pass this desired velocity on to the drive handler
        # Check if there are obstacles within 0.35m of the robot, if so, stop the robot
        if self.system == 1:
            if self.robocomm.getSTOP() == True:
                vx = 0
                vy = 0
        """
        #vx = 0
        #vy = 0
        self.overlap = overlap
        self.drive_handler.setVelocity(vx, vy, pose[2])

        # Set the current region as the previous current region(for checking whether the robot has arrived at the next region)
        self.previous_current_reg = current_reg

        # check whether robot has arrived at the next region
        RobotPoly = PolyShapes.Circle(self.PioneerLengthHalf + 0.06,
                                      (pose[0], pose[1]))  ###0.05
        #departed = not self.currentRegionPoly.overlaps(self.realRobot) and (not (self.nextRegionPoly.overlaps(self.realRobot) and not self.nextRegionPoly.covers(self.realRobot)))
        departed = not self.currentRegionPoly.overlaps(self.realRobot)
        arrived = self.nextRegionPoly.covers(self.realRobot)
        if arrived:
            self.q_hit_count = 0
            self.boundary_following = False
            self.m_line = None

        if departed and (
                not arrived) and (time.time() - self.last_warning) > 0.5:
            print "WARNING: Left current region but not in expected destination region"
            # Figure out what region we think we stumbled into
            for r in self.proj.rfi.regions:
                pointArray = [self.coordmap_map2lab(x) for x in r.getPoints()]
                vertices = mat(pointArray).T

                if is_inside([pose[0], pose[1]], vertices):
                    #print "I think I'm in " + r.name
                    #print pose
                    break
            self.last_warning = time.time()

        return arrived
コード例 #5
0
    def gotoRegion(self, current_reg, next_reg, last=False):

        """
        If ``last`` is True, we will move to the center of the destination region.
        Returns ``True`` if we've reached the destination region.
        """
        q_gBundle              = [[],[]]          # goal bundle
        q_overlap              = [[],[]]          # overlapping points with robot range
        pose = self.pose_handler.getPose()        # Find our current configuration

        #Plot the robot on the map in figure 1
        if self.PLOT == True:
            plt.figure(self.original_figure)
            plt.clf()
            self.plotPoly(self.realRobot, 'r')
            self.plotPoly(self.robot, 'b')
            plt.plot(pose[0],pose[1],'bo')
            self.plotPioneer(self.original_figure)


        if current_reg == next_reg and not last:
            # No need to move!
            self.drive_handler.setVelocity(0, 0)  # So let's stop
            return False

        # Check if Vicon has cut out
        if math.isnan(pose[2]):
            print "no vicon pose"
            print "WARNING: No Vicon data! Pausing."
            #self.drive_handler.setVelocity(0, 0)  # So let's stop
            time.sleep(1)
            return False

        ###This part is run when the robot goes to a new region, otherwise, the original map will be used.
        if not self.previous_current_reg == current_reg:
            #print 'getting into bug alogorithm'

            #clean up the previous self.map_work
            self.map_work =  Polygon.Polygon()

            # NOTE: Information about region geometry can be found in self.proj.rfi.regions
            # create polygon list for regions other than the current_reg and the next_reg
            self.map_work += self.map[self.proj.rfi.regions[current_reg].name]
            self.map_work += self.map[self.proj.rfi.regions[next_reg].name]

            # building current polygon and destination polygon
            self.nextRegionPoly    = self.map[self.proj.rfi.regions[next_reg].name]
            self.currentRegionPoly = self.map[self.proj.rfi.regions[current_reg].name]

            #set to zero velocity before finding the tranFace
            self.drive_handler.setVelocity(0, 0)
            if last:
                transFace = None
            else:
                print "Current reg is " + str(self.proj.rfi.regions[current_reg].name.lower())
                print "Next reg is "+ str(self.proj.rfi.regions[next_reg].name.lower())


                for i in range(len(self.proj.rfi.transitions[current_reg][next_reg])):
                    pointArray_transface = [x for x in self.proj.rfi.transitions[current_reg][next_reg][i]]
                    transFace = asarray(map(self.coordmap_map2lab,pointArray_transface))
                    bundle_x = (transFace[0,0] +transFace[1,0])/2    #mid-point coordinate x
                    bundle_y = (transFace[0,1] +transFace[1,1])/2    #mid-point coordinate y
                    q_gBundle = hstack((q_gBundle,vstack((bundle_x,bundle_y))))
                q_gBundle = q_gBundle.transpose()

                # Find the closest face to the current position
                max_magsq = 1000000
                for tf in q_gBundle:
                    magsq = (tf[0] - pose[0])**2 + (tf[1] - pose[1])**2
                    if magsq < max_magsq:
                        connection = 0
                        tf = tf+(tf-asarray(self.currentRegionPoly.center()))/norm(tf-asarray(self.currentRegionPoly.center()))*2.1*self.PioneerLengthHalf
                        if not self.nextRegionPoly.covers(PolyShapes.Circle(self.PioneerLengthHalf*2,(tf[0],tf[1]))):
                            tf = tf-(tf-asarray(self.currentRegionPoly.center()))/norm(tf-asarray(self.currentRegionPoly.center()))*4.2*self.PioneerLengthHalf
                            if self.nextRegionPoly.covers(PolyShapes.Circle(self.PioneerLengthHalf*2,(tf[0],tf[1]))):
                                connection = 1
                        else:
                            connection = 1
                        if connection == 1:
                            pt1  = tf
                            max_magsq = magsq
                            transFace = 1
                            self.q_g[0] = pt1[0]
                            self.q_g[1] = pt1[1]
                        else:
                            sample = False
                            while not sample:
                                self.q_g[0],self.q_g[1] = self.nextRegionPoly.sample(random.random)
                                robo = PolyShapes.Circle(self.PioneerLengthHalf,(self.q_g[0],self.q_g[1]))
                                if not bool(robo - self.nextRegionPoly):
                                    sample = True


                """
                # Push the goal point to somewhere inside the next region to ensure the robot will get there.(CHECK!!)
                self.q_g = self.q_g+(self.q_g-asarray(self.currentRegionPoly.center()))/norm(self.q_g-asarray(self.currentRegionPoly.center()))*3*self.PioneerLengthHalf
                if not self.nextRegionPoly.isInside(self.q_g[0],self.q_g[1]):
                    self.q_g = self.q_g-(self.q_g-asarray(self.currentRegionPoly.center()))/norm(self.q_g-asarray(self.currentRegionPoly.center()))*6*self.PioneerLengthHalf
                """

                #plot exiting point
                if self.PLOT_EXIT == True:
                    plt.figure(self.overlap_figure)
                    plt.clf()
                    plt.plot(q_gBundle[:,0],q_gBundle[:,1],'ko' )
                    plt.plot(self.q_g[0],self.q_g[1],'ro')
                    plt.plot(pose[0],pose[1],'bo')
                    self.plotPioneer(self.overlap_figure,0)

                if transFace is None:
                    print "ERROR: Unable to find transition face between regions %s and %s.  Please check the decomposition (try viewing projectname_decomposed.regions in RegionEditor or a text editor)." % (self.proj.rfi.regions[current_reg].name, self.proj.rfi.regions[next_reg].name)


        ##################################################
        #######check whether obstacle is detected#########
        ##################################################

        #Update pose,update self.robot, self.realRobot orientation
        self.robot.shift(pose[0]-self.prev_pose[0],pose[1]-self.prev_pose[1])
        self.realRobot.shift(pose[0]-self.prev_pose[0],pose[1]-self.prev_pose[1])
        self.robot.rotate(pose[2]-self.prev_pose[2],pose[0],pose[1])
        self.realRobot.rotate(pose[2]-self.prev_pose[2],pose[0],pose[1])
        self.prev_pose = pose

        ############################
        ########### STEP 1##########
        ############################
        ##Check whether obsRange overlaps with obstacle or the boundary (overlap returns the part of robot not covered by the region

        # for real Pioneer robot
        if self.system == 1:
            # motion controller is not in boundary following mode
            if self.boundary_following == False:

                if self.robocomm.getReceiveObs() == False:
                    overlap = self.robot - ( self.map_work)
                else:
                    overlap = self.robot  - ( self.map_work - self.robocomm.getObsPoly())

            else: #TRUE
                # use a robot with full range all around it
                Robot = PolyShapes.Circle(self.obsRange,(pose[0],pose[1]))
                Robot.shift(self.shift*cos(pose[2]),self.shift*sin(pose[2]))

                if self.robocomm.getReceiveObs() == False:
                    overlap = Robot - ( self.map_work)
                else:
                    overlap = Robot  - ( self.map_work - self.robocomm.getObsPoly())
        # for ODE
        else:
            if self.boundary_following == False:
                overlap = self.robot  - (self.map_work)
            else:#TRUE
                overlap = self.robot  - (self.map_work)

        if self.boundary_following == False:
            if bool(overlap):    ## overlap of obstacles
                #print "There MAYBE overlap~~ check connection to goal"

                # check whether the real robot or and path to goal overlap with the obstacle
                QGoalPoly= PolyShapes.Circle(self.PioneerLengthHalf,(self.q_g[0],self.q_g[1]))
                path  = PolyUtils.convexHull(self.realRobot + QGoalPoly)
                if self.system == 1:
                    if self.robocomm.getReceiveObs() == False:
                        pathOverlap = path - ( self.map_work)
                    else:
                        pathOverlap = path  - ( self.map_work - self.robocomm.getObsPoly())
                else:
                    pathOverlap = path - ( self.map_work)


                if bool(pathOverlap):   # there is overlapping, go into bounding following mode
                    #print "There IS overlap"
                    self.q_hit  = mat([pose[0],pose[1]]).T
                    self.boundary_following = True

                    #Generate m-line polygon
                    QHitPoly = PolyShapes.Circle(self.PioneerLengthHalf/4,(pose[0],pose[1]))
                    QGoalPoly= PolyShapes.Circle(self.PioneerLengthHalf/4,(self.q_g[0],self.q_g[1]))
                    self.m_line  = PolyUtils.convexHull(QHitPoly + QGoalPoly)

                    #plot the first overlap
                    if self.PLOT_M_LINE == True:
                        plt.figure(self.overlap_figure)
                        plt.clf()
                        self.plotPoly(QHitPoly,'k')
                        self.plotPoly(QGoalPoly,'k')
                        self.plotPoly(overlap,'g')
                        self.plotPoly(self.m_line,'b')
                        plt.plot(pose[0],pose[1],'bo')
                        self.plotPioneer(self.overlap_figure,0)


                else:                ##head towards the q_goal
                    if self.system == 1:
                        if self.robocomm.getReceiveObs() == False:   # wait for obstacles from Pioneer
                            vx = 0
                            vy = 0
                        else:
                            dis_cur  = vstack((self.q_g[0],self.q_g[1]))- mat([pose[0],pose[1]]).T
                            vx = (dis_cur/norm(dis_cur)/3)[0,0]
                            vy = (dis_cur/norm(dis_cur)/3)[1,0]

                    else:
                        dis_cur  = vstack((self.q_g[0],self.q_g[1]))- mat([pose[0],pose[1]]).T
                        vx = (dis_cur/norm(dis_cur)/3)[0,0]
                        vy = (dis_cur/norm(dis_cur)/3)[1,0]
                        #print "no obstacles 2-ODE true"

            else:                ##head towards the q_goal
                    if self.system == 1:
                        if self.robocomm.getReceiveObs() == False:   # wait for obstacles from Pioneer
                            vx = 0
                            vy = 0
                        else:
                            dis_cur  = vstack((self.q_g[0],self.q_g[1]))- mat([pose[0],pose[1]]).T
                            vx = (dis_cur/norm(dis_cur)/3)[0,0]
                            vy = (dis_cur/norm(dis_cur)/3)[1,0]

                    else:
                        dis_cur  = vstack((self.q_g[0],self.q_g[1]))- mat([pose[0],pose[1]]).T
                        vx = (dis_cur/norm(dis_cur)/3)[0,0]
                        vy = (dis_cur/norm(dis_cur)/3)[1,0]
                        #print "no obstacles 1-ODE true"

        if self.boundary_following == True:
            self.q_hit_count       += 1
            # finding the point to go normal to (closest overlapping point)

            j = 0
            recheck = 0
            while not bool(overlap):
                # cannot see the obstacle. Based on the location of the previous point blow up the range of the robot on the left or on the right
                j += 1

                # finding whether the previous obstacle point is on the left side or the right side of the robot
                # angle = angle of the previous point from the x-axis of the field
                # omega = angle of the current Pioneer orientation from the x-axis of the field
                # cc    = differnece between angle and omega ( < pi = previous point on the left of robot, else on the right of robot)
                x = self.prev_follow[0] -pose[0]
                y = self.prev_follow[1] -pose[1]
                angle = atan(y/x)

                # convert angle to 2pi
                if x > 0 and y > 0:
                    angle = angle
                elif x < 0 and y > 0:
                    angle = pi + angle
                elif x <0 and y < 0:
                    angle = pi + angle
                else:
                    angle = 2*pi + angle

                # convert pose to 2pi
                if pose[2] < 0:
                    omega = (2*pi + pose[2])
                else:
                    omega = pose[2]


                if omega > angle:
                    cc = 2*pi - (omega - angle)
                else:
                    cc = angle - omega

                # on the left
                #if angle - omega > 0 and angle - omega < pi:
                if cc < pi:
                    #print "on the left, angle: "+ str(angle) + " omega: "+ str(omega)+ " angle-omega: "+ str(angle-omega)
                    Robot = PolyShapes.Rectangle(self.range*2*j,self.range*2*j)
                    Robot.shift(pose[0]-self.range*j*2,pose[1]-self.range*j)
                    Robot.rotate(pose[2]-pi/2,pose[0],pose[1])

                # on the right
                else:
                    #print "on the right, angle: "+ str(angle) + " omega: "+ str(omega)+ " angle-omega: "+ str(angle-omega)
                    Robot = PolyShapes.Rectangle(self.range*2*j,self.range*2*j)
                    Robot.shift(pose[0],pose[1]-self.range*j)
                    Robot.rotate(pose[2]-pi/2,pose[0],pose[1])

                if self.system == 1:
                    overlap = Robot - ( self.map_work - self.robocomm.getObsPoly())
                else:
                    overlap = Robot - ( self.map_work)

                #self.plotPoly(Robot, 'm',2)
                #determines as dynamic obstacles and can be go striaight to the goal point
                if j >= 2:
                    dis_cur  = vstack((self.q_g[0],self.q_g[1]))- mat([pose[0],pose[1]]).T
                    vx = (dis_cur/norm(dis_cur)/3)[0,0]
                    vy = (dis_cur/norm(dis_cur)/3)[1,0]
                    overlap = None
                    self.overlap = overlap
                    self.q_hit_count        = 0
                    self.boundary_following = False
                    self.m_line             = None
                    self.drive_handler.setVelocity(vx,vy, pose[2])
                    RobotPoly = PolyShapes.Circle(self.PioneerLengthHalf+0.06,(pose[0],pose[1]))     ###0.05
                    departed = not self.currentRegionPoly.overlaps(self.realRobot)
                    #departed = not self.currentRegionPoly.overlaps(self.realRobot) and (not (self.nextRegionPoly.overlaps(self.realRobot) and not self.nextRegionPoly.covers(self.realRobot)))
                    arrived  = self.nextRegionPoly.covers(self.realRobot)
                    return arrived




            ##extra box plotting in figure 1#
            if self.PLOT_OVERLAP == True:
                plt.figure(self.original_figure)
                plt.clf()
                self.plotPoly(self.realRobot, 'r')
                self.plotPoly(self.robot, 'b')
                self.plotPoly(overlap,'g',3)
                plt.plot(pose[0],pose[1],'bo')
                self.plotPioneer(self.original_figure)

            # find the closest point on the obstacle to the robot
            overlap_len = len(overlap)
            for j in range(overlap_len):
                BoundPolyPoints = asarray(overlap[j])
                for i in range(len(BoundPolyPoints)-1):
                    bundle_x = (BoundPolyPoints[i,0] +BoundPolyPoints[1+i,0])/2    #mid-point coordinate x
                    bundle_y = (BoundPolyPoints[i,1] +BoundPolyPoints[1+i,1])/2    #mid-point coordinate y
                    q_overlap = hstack((q_overlap,vstack((bundle_x,bundle_y))))
                bundle_x = (BoundPolyPoints[len(BoundPolyPoints)-1,0] +BoundPolyPoints[0,0])/2    #mid-point coordinate x
                bundle_y = (BoundPolyPoints[len(BoundPolyPoints)-1,1] +BoundPolyPoints[0,1])/2    #mid-point coordinate y
                q_overlap = hstack((q_overlap,vstack((bundle_x,bundle_y))))
            q_overlap = q_overlap.transpose()
            pt =  self.closest_pt([pose[0],pose[1]], vstack((q_overlap,asarray(PolyUtils.pointList(overlap)))))
            self.prev_follow = pt

            #calculate the vector to follow the obstacle
            normal = mat([pose[0],pose[1]] - pt)

            #find the distance from the closest point
            distance = norm(normal)
            velocity = normal * self.trans_matrix
            vx = (velocity/norm(velocity)/3)[0,0]
            vy = (velocity/norm(velocity)/3)[0,1]

            # push or pull the robot towards the obstacle depending on whether the robot is close or far from the obstacle.
            turn = pi/4*(distance-0.5*self.obsRange)/(self.obsRange)    ### change to 0.6 from 0.5 for more allowance in following
            corr_matrix       = mat([[cos(turn),-sin(turn)],[sin(turn),cos(turn)]])
            v =  corr_matrix*mat([[vx],[vy]])
            vx = v[0,0]
            vy = v[1,0]


            ##plotting overlap on figure 2
            if self.PLOT_OVERLAP == True:
                plt.figure(self.overlap_figure)
                plt.clf()
                self.plotPoly(self.m_line,'b');
                self.plotPoly(overlap,'r');
                plt.plot(pt[0],pt[1],'ro')
                plt.plot(pose[0],pose[1],'bo')
                self.plotPioneer(self.overlap_figure,0)


            ## conditions that the loop will end
            #for 11111
            RobotPoly = PolyShapes.Circle(self.PioneerLengthHalf+0.06,(pose[0],pose[1]))   ####0.05
            departed = not self.currentRegionPoly.overlaps(self.realRobot)
            #departed = not self.currentRegionPoly.overlaps(self.realRobot) and (not (self.nextRegionPoly.overlaps(self.realRobot) and not self.nextRegionPoly.covers(self.realRobot)))
            arrived  = self.nextRegionPoly.covers(self.realRobot)

            #for 33333
            reachMLine= self.m_line.overlaps(RobotPoly)

            # 1.reached the next region
            if arrived:
                self.boundary_following = False
                self.m_line             = None
                self.q_hit_count       = 0
                print "arriving at the next region. Exit boundary following mode"
                vx = 0
                vy = 0

                """
                # 2.q_hit is reencountered
                elif norm(self.q_hit-mat([pose[0],pose[1]]).T) < 0.05 and self.q_hit_count > self.q_hit_Thres:
                    print "reencounter q_hit. cannot reach q_goal"
                    vx = 0
                    vy = 0
                """

            # 3.m-line reencountered
            elif reachMLine:
                #print >>sys.__stdout__, "m-line overlaps RoboPoly, m-line" + str(norm(self.q_g-self.q_hit)-2*self.obsRange) + " distance: " + str(norm(self.q_g-mat([pose[0],pose[1]]).T))
                if norm(self.q_g-mat([pose[0],pose[1]]).T) < norm(self.q_g-self.q_hit)-2*self.obsRange:
                    #print "m-line overlaps RoboPoly, m-line" + str(norm(self.q_g-self.q_hit)-2*self.obsRange) + " distance: " + str(norm(self.q_g-mat([pose[0],pose[1]]).T))
                    #print "leaving boundary following mode"
                    self.boundary_following = False
                    self.m_line             = None
                    self.q_hit_count       = 0
                    leaving                = False

                    # turn the robot till it is facing the goal
                    while not leaving:
                        x = self.q_g[0] -self.pose_handler.getPose()[0]
                        y = self.q_g[1] -self.pose_handler.getPose()[1]
                        angle = atan(y/x)
                        if x > 0 and y > 0:
                            angle = angle
                        elif x < 0 and y > 0:
                            angle = pi + angle
                        elif x <0 and y < 0:
                            angle = pi + angle
                        else:
                            angle = 2*pi + angle


                        if self.pose_handler.getPose()[2] < 0:
                            omega = (2*pi + self.pose_handler.getPose()[2])
                            #print >>sys.__stdout__,"omega<0: "+ str(omega)
                        else:
                            omega = self.pose_handler.getPose()[2]
                            #print >>sys.__stdout__,"omega: "+ str(omega)


                        if omega > angle:
                            cc = 2*pi - (omega - angle)
                        else:
                            cc = angle - omega

                        # angle(goal point orientation) on the left of omega(robot orientation)
                        #if angle - omega > 0 and angle - omega < pi:
                        if cc < pi:
                            #print>>sys.__stdout__, "turn left"
                            vx,vy = self.turnLeft(cc)

                        # on the right
                        else:
                            #print>>sys.__stdout__, "turn right"
                            vx, vy = self.turnRight(2*pi-cc)

                        #print>>sys.__stdout__, "omega: "+ str(omega) + " angle: "+ str(angle) + " (omega-angle): " + str(omega-angle)
                        self.drive_handler.setVelocity(vx,vy, self.pose_handler.getPose()[2])

                        if omega - angle < pi/6 and omega - angle > -pi/6:
                            leaving = True

            #Check whether the robot can leave now (the robot has to be closer to the goal than when it is at q_hit to leave)
            QGoalPoly= PolyShapes.Circle(self.PioneerLengthHalf,(self.q_g[0],self.q_g[1]))
            path  = PolyUtils.convexHull(self.realRobot + QGoalPoly)
            if self.system == 1:
                if self.robocomm.getReceiveObs() == False:
                    pathOverlap = path - ( self.map_work)
                else:
                    pathOverlap = path  - ( self.map_work - self.robocomm.getObsPoly())
            else:
                pathOverlap = path - ( self.map_work)

            if not bool(pathOverlap):
                #print "There is NO MORE obstacles in front for now."

                # check if the robot is closer to the goal compared with q_hit
                if norm(self.q_hit-mat(self.q_g).T) > norm(mat([pose[0],pose[1]]).T-mat(self.q_g).T) :
                    #print "The robot is closer than the leaving point. The robot can leave"
                    self.boundary_following = False
                    self.m_line             = None
                    self.q_hit_count       = 0
                    dis_cur  = vstack((self.q_g[0],self.q_g[1]))- mat([pose[0],pose[1]]).T
                    vx = (dis_cur/norm(dis_cur)/3)[0,0]
                    vy = (dis_cur/norm(dis_cur)/3)[1,0]
                else:
                    lala = 1
                    #print "not leaving bug algorithm. difference(-farther) =" + str(norm(self.q_hit-mat(self.q_g).T) - norm(mat([pose[0],pose[1]]).T-mat(self.q_g).T))

        """
        # Pass this desired velocity on to the drive handler
        # Check if there are obstacles within 0.35m of the robot, if so, stop the robot
        if self.system == 1:
            if self.robocomm.getSTOP() == True:
                vx = 0
                vy = 0
        """
        #vx = 0
        #vy = 0
        self.overlap = overlap
        self.drive_handler.setVelocity(vx,vy, pose[2])


        # Set the current region as the previous current region(for checking whether the robot has arrived at the next region)
        self.previous_current_reg = current_reg


        # check whether robot has arrived at the next region
        RobotPoly = PolyShapes.Circle(self.PioneerLengthHalf+0.06,(pose[0],pose[1]))     ###0.05
        #departed = not self.currentRegionPoly.overlaps(self.realRobot) and (not (self.nextRegionPoly.overlaps(self.realRobot) and not self.nextRegionPoly.covers(self.realRobot)))
        departed = not self.currentRegionPoly.overlaps(self.realRobot)
        arrived  = self.nextRegionPoly.covers(self.realRobot)
        if arrived:
            self.q_hit_count        = 0
            self.boundary_following = False
            self.m_line             = None

        if departed and (not arrived) and (time.time()-self.last_warning) > 0.5:
            print "WARNING: Left current region but not in expected destination region"
            # Figure out what region we think we stumbled into
            for r in self.proj.rfi.regions:
                pointArray = [self.coordmap_map2lab(x) for x in r.getPoints()]
                vertices = mat(pointArray).T

                if is_inside([pose[0], pose[1]], vertices):
                    #print "I think I'm in " + r.name
                    #print pose
                    break
            self.last_warning = time.time()

        return arrived