コード例 #1
0
ファイル: straight_env.py プロジェクト: r-pad/aa_simulation
 def state_to_observation(self, state):
     """
     Prepare state to be read as input to neural network.
     """
     _, y, yaw, x_dot, y_dot, yaw_dot = state
     yaw = normalize_angle(yaw)
     return np.array([y, yaw, x_dot, y_dot, yaw_dot])
コード例 #2
0
ファイル: straight_env.py プロジェクト: r-pad/aa_simulation
    def project_line(state, x0, y0, angle):
        """
        Note that this policy is trained to follow a straight line
        to the right (y = 0). To follow an arbitrary line, use this
        function to transform the current absolute state to a form
        that makes the policy believe the car is moving to the right.

        :param state: Current absolute state of robot
        :param x0: x-value of start of line to follow
        :param y0: y-value of start of line to follow
        :param angle: Angle of line to follow
        """
        x, y, yaw, x_dot, y_dot, yaw_dot = state
        angle = normalize_angle(angle)

        current_angle = np.arctan2((y - y0), (x - x0))
        projected_angle = normalize_angle(current_angle - angle)
        dist = np.sqrt((x - x0)**2 + (y - y0)**2)

        new_x = dist * np.cos(projected_angle)
        new_y = dist * np.sin(projected_angle)
        new_yaw = normalize_angle(yaw - angle)

        return np.array([new_x, new_y, new_yaw, x_dot, y_dot, yaw_dot])
コード例 #3
0
ファイル: circle_env.py プロジェクト: DBay-ani/aa_simulation
    def state_to_observation(self, state):
        """
        Convert state [x, y, yaw, x_dot, y_dot, yaw_dot] to
        [dx, theta, ddx, dtheta]
        """
        r = self.radius
        x, y, yaw, x_dot, y_dot, yaw_dot = state

        dx = np.sqrt(x**2 + y**2) - r
        theta = normalize_angle(np.arctan2(-x, y) + np.pi - yaw)
        ddx = x/(x**2 + y**2)**0.5*x_dot + y/(x**2 + y**2)**0.5*y_dot
        dtheta = -y/(x**2 + y**2)*x_dot + x/(x**2 + y**2)*y_dot - yaw_dot

        # May want to rescale/normalize values to each other.
        return np.array([dx, theta, ddx, dtheta])