コード例 #1
0
    def test_squeezing_data(self):
        x_range = get_range(self.mc.data_container.x_train)
        x_train = np.copy(self.mc.data_container.x_train)

        squeezer = FeatureSqueezing(
            self.mc,
            clip_values=x_range,
            smoothing_methods=['normal', 'binary'],
            bit_depth=8,
            sigma=0.1,
            kernel_size=2,
            pretrained=False,
        )

        # Expecting difference between input data and squeezed data
        mc_normal = squeezer.get_def_model_container('normal')
        mc_binary = squeezer.get_def_model_container('binary')

        self.assertFalse((x_train == mc_normal.data_container.x_train).all())
        self.assertFalse((x_train == mc_binary.data_container.x_train).all())

        # average perturbation
        l2 = np.mean(get_l2_norm(x_train, mc_normal.data_container.x_train))
        logger.info('L2 norm of normal squeezer:%f', l2)
        self.assertLessEqual(l2, 0.2)

        # maximum perturbation
        l2 = np.max(get_l2_norm(x_train, mc_binary.data_container.x_train))
        logger.info('L2 norm of binary squeezer:%f', l2)
        self.assertLessEqual(l2, 0.2)
コード例 #2
0
    def test_deepfool(self):
        attack = attacks.DeepFoolContainer(
            self.mc,
            max_iter=100,
            epsilon=1e-6,
            nb_grads=10)
        adv, y_adv, x_clean, y_clean = attack.generate(count=NUM_ADV)

        # At least made some change from clean images
        self.assertFalse((adv == x_clean).all())

        # test accuracy
        accuracy = self.mc.evaluate(adv, y_clean)
        logger.info('Accuracy on adv. examples: %f', accuracy)
        self.assertLessEqual(accuracy, 0.2)

        # test success rate
        success_rate = (y_adv != y_clean).sum() / len(y_adv)
        logger.info('Success rate of adv. attack: %f', success_rate)
        self.assertGreaterEqual(success_rate, 0.8)

        # sum success rate (missclassified) and accuracy (correctly classified)
        self.assertAlmostEqual(success_rate + accuracy, 1.0, places=4)

        # Check the max perturbation
        dif = np.max(np.abs(adv - x_clean))
        logger.info('Max perturbation (L1-norm): %f', dif)
        self.assertLessEqual(dif, 1.0 + 1e-4)

        # Check bounding box
        self.assertLessEqual(np.max(adv), 1.0 + 1e-4)
        self.assertGreaterEqual(np.min(adv), 0 - 1e-4)

        l2 = np.max(get_l2_norm(adv, x_clean))
        logger.info('L2 norm = %f', l2)
コード例 #3
0
def main():
    master_seed(SEED)

    dataset = DATASET_LIST[DATA_NAME]
    dc = DataContainer(dataset, get_data_path())
    dc()
    model = MnistCnnCW()
    mc = ModelContainerPT(model, dc)
    mc.load(MODEL_FILE)
    accuracy = mc.evaluate(dc.x_test, dc.y_test)
    print('Accuracy on test set: {}'.format(accuracy))

    attack = CarliniL2V2Container(mc,
                                  targeted=False,
                                  learning_rate=0.01,
                                  binary_search_steps=9,
                                  max_iter=1000,
                                  confidence=0.0,
                                  initial_const=0.01,
                                  c_range=(0, 1e10),
                                  batch_size=16,
                                  clip_values=(0.0, 1.0))
    adv, y_adv, x_clean, y_clean = attack.generate(count=100)

    l2 = np.mean(get_l2_norm(adv, x_clean))
    print('L2 norm: {}'.format(l2))
    not_match = y_adv != y_clean
    success_rate = len(not_match[not_match == True]) / len(adv)
    print('Success rate: {}'.format(success_rate))

    accuracy = mc.evaluate(adv, y_clean)
    print('Accuracy on adv. examples: {}'.format(accuracy))
    def test_squeezing_data(self):
        x_range = get_range(self.mc.data_container.x_train)
        x_train = np.copy(self.mc.data_container.x_train)

        squeezer = FeatureSqueezing(
            self.mc,
            clip_values=x_range,
            smoothing_methods=SQUEEZING_METHODS,
            bit_depth=8,
            sigma=0.1,
            kernel_size=3,
            pretrained=False,
        )

        # Expecting difference between input data and squeezed data
        mc_binary = squeezer.get_def_model_container(SQUEEZING_METHODS[0])
        mc_median = squeezer.get_def_model_container(SQUEEZING_METHODS[1])
        mc_normal = squeezer.get_def_model_container(SQUEEZING_METHODS[2])

        self.assertFalse((x_train == mc_binary.data_container.x_train).all())
        self.assertFalse((x_train == mc_median.data_container.x_train).all())
        self.assertFalse((x_train == mc_normal.data_container.x_train).all())

        # maximum perturbation
        l2 = np.max(get_l2_norm(x_train, mc_binary.data_container.x_train))
        logger.info('L2 norm of binary squeezer:%f', l2)
        self.assertLessEqual(l2, 0.5)

        # average perturbation
        # No upper bound on median filter
        l2 = np.mean(get_l2_norm(x_train, mc_median.data_container.x_train))
        logger.info('L2 norm of median squeezer:%f', l2)
        self.assertLessEqual(l2, 2.0)

        # average perturbation
        l2 = np.mean(get_l2_norm(x_train, mc_normal.data_container.x_train))
        logger.info('L2 norm of normal squeezer:%f', l2)
        self.assertLessEqual(l2, 2.0)
コード例 #5
0
    def test_carlini(self):
        clip_values = get_range(self.dc.x_train)
        # Lower the upper bound of `c_range` will reduce the norm of perturbation.
        attack = attacks.CarliniL2V2Container(
            self.mc,
            learning_rate=0.01,
            binary_search_steps=9,
            max_iter=1000,
            confidence=0.0,
            initial_const=0.01,
            c_range=(0, 1e4),
            batch_size=16,
            clip_values=clip_values
        )
        adv, y_adv, x_clean, y_clean = attack.generate(count=NUM_ADV)

        # At least made some change from clean images
        self.assertFalse((adv == x_clean).all())

        # test accuracy
        accuracy = self.mc.evaluate(adv, y_clean)
        logger.info('Accuracy on adv. examples: %f', accuracy)
        self.assertLessEqual(accuracy, 0.4)

        # test success rate
        success_rate = (y_adv != y_clean).sum() / len(y_adv)
        logger.info('Success rate of adv. attack: %f', success_rate)
        self.assertGreaterEqual(success_rate, 0.6)

        # sum success rate (missclassified) and accuracy (correctly classified)
        self.assertAlmostEqual(success_rate + accuracy, 1.0, places=4)

        # Check the max perturbation
        dif = np.max(np.abs(adv - x_clean))
        logger.info('Max perturbation (L1-norm): %f', dif)
        self.assertLessEqual(dif, 1.0 + 1e-4)

        # Check bounding box
        self.assertLessEqual(np.max(adv), 1.0 + 1e-4)
        self.assertGreaterEqual(np.min(adv), 0 - 1e-4)

        l2 = np.max(get_l2_norm(adv, x_clean))
        logger.info('L2 norm = %f', l2)
コード例 #6
0
def main():
    master_seed(SEED)

    dataset = DATASET_LIST[DATA_NAME]
    dc = DataContainer(dataset, get_data_path())
    dc(shuffle=True, normalize=True)
    print('# of trainset: {}, # of testset: {}'.format(len(dc.x_train),
                                                       len(dc.x_test)))
    num_classes = dc.num_classes
    num_features = dc.dim_data[0]
    model = IrisNN(num_features=num_features,
                   hidden_nodes=num_features * 4,
                   num_classes=num_classes)
    mc = ModelContainerPT(model, dc)
    mc.load(MODEL_FILE)
    accuracy = mc.evaluate(dc.x_test, dc.y_test)
    print('Accuracy on test set: {}'.format(accuracy))

    clip_values = get_range(dc.x_train, is_image=False)
    print('clip_values', clip_values)

    attack = CarliniL2V2Container(mc,
                                  targeted=False,
                                  learning_rate=0.01,
                                  binary_search_steps=9,
                                  max_iter=1000,
                                  confidence=0.0,
                                  initial_const=0.01,
                                  c_range=(0, 1e4),
                                  batch_size=16,
                                  clip_values=clip_values)
    adv, y_adv, x_clean, y_clean = attack.generate(count=100)

    l2 = np.mean(get_l2_norm(adv, x_clean))
    print('L2 norm: {}'.format(l2))
    not_match = y_adv != y_clean
    success_rate = len(not_match[not_match == True]) / len(adv)
    print('Success rate: {}'.format(success_rate))

    accuracy = mc.evaluate(adv, y_clean)
    print('Accuracy on adv. examples: {}'.format(accuracy))
コード例 #7
0
    def test_carlini(self):
        attack = attacks.CarliniL2V2Container(self.mc,
                                              learning_rate=0.01,
                                              binary_search_steps=9,
                                              max_iter=1000,
                                              confidence=0.0,
                                              initial_const=0.01,
                                              c_range=(0, 1e10),
                                              batch_size=64,
                                              clip_values=(0.0, 1.0))
        adv, y_adv, x_clean, y_clean = attack.generate(count=NUM_ADV)

        # At least made some change from clean images
        self.assertFalse((adv == x_clean).all())

        # test accuracy
        accuracy = self.mc.evaluate(adv, y_clean)
        logger.info('Accuracy on adv. examples: %f', accuracy)
        self.assertLessEqual(accuracy, 0.60)

        # test success rate
        success_rate = (y_adv != y_clean).sum() / len(y_adv)
        logger.info('Success rate of adv. attack: %f', success_rate)
        self.assertGreaterEqual(success_rate, 0.40)

        # Check the max perturbation
        dif = np.max(np.abs(adv - x_clean))
        logger.info('Max perturbation (L1-norm): %f', dif)
        self.assertLessEqual(dif, 1.0 + 1e-4)

        # Check bounding box
        self.assertLessEqual(np.max(adv), 1.0 + 1e-4)
        self.assertGreaterEqual(np.min(adv), 0 - 1e-4)

        l2 = np.max(get_l2_norm(adv, x_clean))
        logger.info('L2 norm = %f', l2)