def plot_cluster_head(): parser = argparse.ArgumentParser() parser.add_argument("--model", "-m", type=str, default="model.hdf5") args = parser.parse_args() model = Model() assert model.load(args.model) all_y = np.identity(10, dtype=np.float32) head = model.cluster_head(all_y).data labels = [i for i in range(10)] plot.scatter_labeled_z(head, labels, "cluster_head.png")
def plot_mapped_cluster_head(): parser = argparse.ArgumentParser() parser.add_argument("--model", "-m", type=str, default="model.hdf5") args = parser.parse_args() model = Model() assert model.load(args.model) identity = np.identity(model.ndim_y, dtype=np.float32) mapped_head = model.linear_transformation(identity) labels = [i for i in range(10)] plot.scatter_labeled_z(mapped_head.data, labels, "cluster_head.png")
def plot_scatter(): parser = argparse.ArgumentParser() parser.add_argument("--model", "-m", type=str, default="model.hdf5") args = parser.parse_args() dataset_train, dataset_test = chainer.datasets.get_mnist() images_train, labels_train = dataset_train._datasets images_test, labels_test = dataset_test._datasets model = Model() assert model.load(args.model) # normalize images_train = (images_train - 0.5) * 2 images_test = (images_test - 0.5) * 2 with chainer.no_backprop_mode() and chainer.using_config("train", False): z = model.encode_x_z(images_test).data plot.scatter_labeled_z(z, labels_test, "scatter_gen.png")
def plot_scatter(): parser = argparse.ArgumentParser() parser.add_argument("--model", "-m", type=str, default="model.hdf5") args = parser.parse_args() dataset_train, dataset_test = chainer.datasets.get_mnist() images_train, labels_train = dataset_train._datasets images_test, labels_test = dataset_test._datasets model = Model() assert model.load(args.model) # normalize images_train = (images_train - 0.5) * 2 images_test = (images_test - 0.5) * 2 with chainer.no_backprop_mode() and chainer.using_config("train", False): z = model.encode_x_yz(images_test)[1].data plot.scatter_labeled_z(z, labels_test, "scatter_gen.png")
def plot_representation(): parser = argparse.ArgumentParser() parser.add_argument("--model", "-m", type=str, default="model.hdf5") args = parser.parse_args() dataset_train, dataset_test = chainer.datasets.get_mnist() images_train, labels_train = dataset_train._datasets images_test, labels_test = dataset_test._datasets model = Model() assert model.load(args.model) # normalize images_train = (images_train - 0.5) * 2 images_test = (images_test - 0.5) * 2 with chainer.no_backprop_mode() and chainer.using_config("train", False): y_onehot, z = model.encode_x_yz(images_test, apply_softmax_y=True) representation = model.encode_yz_representation(y_onehot, z).data plot.scatter_labeled_z(representation, labels_test, "scatter_r.png")