def generate_data_based_on_characterization_set(automaton, automaton_type='mealy'): from aalpy.SULs import MealySUL, DfaSUL from aalpy.oracles import RandomWalkEqOracle from aalpy.learning_algs import run_Lstar # automaton = load_automaton_from_file(path_to_automaton, automaton_type) alphabet = automaton.get_input_alphabet() eq_oracle = RandomWalkEqOracle(alphabet, automaton, num_steps=5000, reset_prob=0.09, reset_after_cex=True) sul = DfaSUL(automaton) if automaton_type == 'dfa' else MealySUL(automaton) automaton, data = run_Lstar(alphabet, sul, eq_oracle, automaton_type=automaton_type, print_level=0, return_data=True, suffix_closedness=True) characterization_set = data['characterization set'] prefixes = [state.prefix for state in automaton.states] sequences = [p + e for e in characterization_set for p in prefixes] sequences.extend([ p + tuple([i]) + e for p in prefixes for i in automaton.get_input_alphabet() for e in characterization_set ]) # sequences.extend([p + e for p in sequences for e in characterization_set]) for _ in range(1): sequences.extend([ p + tuple([i]) + e for p in sequences for i in automaton.get_input_alphabet() for e in characterization_set ]) for _ in range(3): sequences.extend(sequences) labels = [sul.query(s)[-1] for s in sequences] sequences = [list(s) for s in sequences] input_al = automaton.get_input_alphabet() output_al = { output for state in automaton.states for output in state.output_fun.values() } input_dict = tokenized_dict(input_al) out_dict = tokenized_dict(output_al) train_seq = [seq_to_tokens(word, input_dict) for word in sequences] train_labels = [seq_to_tokens(word, out_dict) for word in labels] return train_seq, train_labels
def test_all_configuration_combinations(self): angluin_example = get_Angluin_dfa() alphabet = angluin_example.get_input_alphabet() automata_type = ['dfa', 'mealy', 'moore'] closing_strategies = ['shortest_first', 'longest_first', 'single'] cex_processing = [None, 'longest_prefix', 'rs'] suffix_closedness = [True, False] caching = [True, False] for automata in automata_type: for closing in closing_strategies: for cex in cex_processing: for suffix in suffix_closedness: for cache in caching: sul = DfaSUL(angluin_example) random_walk_eq_oracle = RandomWalkEqOracle(alphabet, sul, 5000, reset_after_cex=True) state_origin_eq_oracle = StatePrefixEqOracle(alphabet, sul, walks_per_state=10, walk_len=50) tran_cov_eq_oracle = TransitionFocusOracle(alphabet, sul, num_random_walks=200, walk_len=30, same_state_prob=0.3) w_method_eq_oracle = WMethodEqOracle(alphabet, sul, max_number_of_states=len(angluin_example.states)) random_W_method_eq_oracle = RandomWMethodEqOracle(alphabet, sul, walks_per_state=10, walk_len=50) bf_exploration_eq_oracle = BreadthFirstExplorationEqOracle(alphabet, sul, 3) random_word_eq_oracle = RandomWordEqOracle(alphabet, sul) cache_based_eq_oracle = CacheBasedEqOracle(alphabet, sul) kWayStateCoverageEqOracle = KWayStateCoverageEqOracle(alphabet, sul) oracles = [random_walk_eq_oracle, random_word_eq_oracle, random_W_method_eq_oracle, kWayStateCoverageEqOracle, cache_based_eq_oracle, bf_exploration_eq_oracle, tran_cov_eq_oracle, w_method_eq_oracle, state_origin_eq_oracle] if not cache: oracles.remove(cache_based_eq_oracle) for oracle in oracles: sul = DfaSUL(angluin_example) oracle.sul = sul learned_model = run_Lstar(alphabet, sul, oracle, automaton_type=automata, closing_strategy=closing, suffix_closedness=suffix, cache_and_non_det_check=cache, cex_processing=cex, print_level=0) is_eq = self.prove_equivalence(learned_model) if not is_eq: print(oracle, automata) assert False assert True
def test_suffix_closedness(self): angluin_example = get_Angluin_dfa() alphabet = angluin_example.get_input_alphabet() suffix_closedness = [True, False] automata_type = ['dfa', 'mealy', 'moore'] for automata in automata_type: for s_closed in suffix_closedness: sul = DfaSUL(angluin_example) eq_oracle = RandomWalkEqOracle(alphabet, sul, 500) learned_dfa = run_Lstar(alphabet, sul, eq_oracle, automaton_type=automata, suffix_closedness=s_closed, cache_and_non_det_check=True, cex_processing='rs', print_level=0) is_eq = self.prove_equivalence(learned_dfa) if not is_eq: assert False assert True
def test_closing_strategies(self): dfa = get_Angluin_dfa() alphabet = dfa.get_input_alphabet() closing_strategies = ['shortest_first', 'longest_first', 'single'] automata_type = ['dfa', 'mealy', 'moore'] for automata in automata_type: for closing in closing_strategies: sul = DfaSUL(dfa) eq_oracle = RandomWalkEqOracle(alphabet, sul, 1000) learned_dfa = run_Lstar(alphabet, sul, eq_oracle, automaton_type=automata, closing_strategy=closing, cache_and_non_det_check=True, cex_processing='rs', print_level=0) is_eq = self.prove_equivalence(learned_dfa) if not is_eq: assert False assert True
def test_cex_processing(self): angluin_example = get_Angluin_dfa() alphabet = angluin_example.get_input_alphabet() cex_processing = [None, 'longest_prefix', 'rs'] automata_type = ['dfa', 'mealy', 'moore'] for automata in automata_type: for cex in cex_processing: sul = DfaSUL(angluin_example) eq_oracle = RandomWalkEqOracle(alphabet, sul, 500) learned_dfa = run_Lstar(alphabet, sul, eq_oracle, automaton_type=automata, cache_and_non_det_check=True, cex_processing=cex, print_level=0) is_eq = self.prove_equivalence(learned_dfa) if not is_eq: assert False assert True
def random_dfa_example(alphabet_size, number_of_states, num_accepting_states=1): """ Generate a random DFA machine and learn it. :param alphabet_size: size of the input alphabet :param number_of_states: number of states in the generated DFA :param num_accepting_states: number of accepting states :return: DFA """ assert num_accepting_states <= number_of_states alphabet = list(string.ascii_letters[:26])[:alphabet_size] random_dfa = generate_random_dfa(number_of_states, alphabet, num_accepting_states) # visualize_automaton(random_dfa, path='correct') sul_dfa = DfaSUL(random_dfa) # examples of various equivalence oracles random_walk_eq_oracle = RandomWalkEqOracle(alphabet, sul_dfa, 5000) state_origin_eq_oracle = StatePrefixEqOracle(alphabet, sul_dfa, walks_per_state=10, walk_len=50) tran_cov_eq_oracle = TransitionFocusOracle(alphabet, sul_dfa, num_random_walks=200, walk_len=30, same_state_prob=0.3) w_method_eq_oracle = WMethodEqOracle(alphabet, sul_dfa, max_number_of_states=number_of_states) random_W_method_eq_oracle = RandomWMethodEqOracle(alphabet, sul_dfa, walks_per_state=10, walk_len=50) bf_exploration_eq_oracle = BreadthFirstExplorationEqOracle( alphabet, sul_dfa, 5) random_word_eq_oracle = RandomWordEqOracle(alphabet, sul_dfa) cache_based_eq_oracle = CacheBasedEqOracle(alphabet, sul_dfa) user_based_eq_oracle = UserInputEqOracle(alphabet, sul_dfa) kWayStateCoverageEqOracle = KWayStateCoverageEqOracle(alphabet, sul_dfa) learned_dfa = run_Lstar(alphabet, sul_dfa, random_walk_eq_oracle, automaton_type='dfa', cache_and_non_det_check=False, cex_processing='rs') # visualize_automaton(learned_dfa) return learned_dfa
def test_eq_oracles(self): angluin_example = get_Angluin_dfa() alphabet = angluin_example.get_input_alphabet() automata_type = ['dfa', 'mealy', 'moore'] for automata in automata_type: sul = DfaSUL(angluin_example) random_walk_eq_oracle = RandomWalkEqOracle(alphabet, sul, 5000, reset_after_cex=True) state_origin_eq_oracle = StatePrefixEqOracle(alphabet, sul, walks_per_state=10, walk_len=50) tran_cov_eq_oracle = TransitionFocusOracle(alphabet, sul, num_random_walks=200, walk_len=30, same_state_prob=0.3) w_method_eq_oracle = WMethodEqOracle(alphabet, sul, max_number_of_states=len(angluin_example.states)) random_W_method_eq_oracle = RandomWMethodEqOracle(alphabet, sul, walks_per_state=10, walk_len=50) bf_exploration_eq_oracle = BreadthFirstExplorationEqOracle(alphabet, sul, 3) random_word_eq_oracle = RandomWordEqOracle(alphabet, sul) cache_based_eq_oracle = CacheBasedEqOracle(alphabet, sul) kWayStateCoverageEqOracle = KWayStateCoverageEqOracle(alphabet, sul) oracles = [random_walk_eq_oracle, random_word_eq_oracle, random_W_method_eq_oracle, w_method_eq_oracle, kWayStateCoverageEqOracle, cache_based_eq_oracle, bf_exploration_eq_oracle, tran_cov_eq_oracle, state_origin_eq_oracle] for oracle in oracles: sul = DfaSUL(angluin_example) oracle.sul = sul learned_model = run_Lstar(alphabet, sul, oracle, automaton_type=automata, cache_and_non_det_check=True, cex_processing=None, print_level=0) is_eq = self.prove_equivalence(learned_model) if not is_eq: print(oracle, automata) assert False assert True
def verify_cex(aalpy_model, white_box_model, rnn, cex_set): """ Verify that counterexamples are not spurious and find which model classified correctly :param aalpy_model: model obtained by our approach :param white_box_model: modle obtained by refinement-based learning :param rnn: RNN that serves as system under learning :param cex_set: found cases of non-conformance between two models :return: """ correct_model = None for cex in cex_set: sul1, sul2 = DfaSUL(aalpy_model), DfaSUL(white_box_model) output_black_box = sul1.query(cex)[-1] output_white_box = sul2.query(cex)[-1] rnn.renew() rnn_sul = RNN_BinarySUL_for_Weiss_Framework(rnn) rnn_output = rnn_sul.query(cex)[-1] if output_black_box == output_white_box: return False if output_black_box != rnn_output and output_white_box != rnn_output: return False if output_black_box == rnn_output: if correct_model and correct_model == 'White-Box': assert False correct_model = 'Black-Box' else: print(output_black_box) print(rnn_output) if correct_model and correct_model == 'Black-Box': assert False correct_model = 'White-Box' print(f'All examples were classified correctly by the {correct_model} model and misclassified by the other.') return True
def angluin_seminal_example(): """ Example automaton from Anguin's seminal paper. :return: learned DFA """ dfa = get_Angluin_dfa() alph = dfa.get_input_alphabet() sul = DfaSUL(dfa) eq_oracle = RandomWalkEqOracle(alph, sul, 500) learned_dfa = run_Lstar(alph, sul, eq_oracle, automaton_type='dfa', cache_and_non_det_check=True, cex_processing=None, print_level=3) return learned_dfa
print(i) learning_time_dfa = [] learning_time_mealy = [] learning_time_moore = [] total_time_dfa = [] total_time_mealy = [] total_time_moore = [] states.append(num_states) for _ in range(repeat): dfa = generate_random_dfa(num_states, alphabet=alphabet, num_accepting_states=num_states // 2) sul = DfaSUL(dfa) # eq_oracle = StatePrefixEqOracle(alphabet, sul, walks_per_state=5, walk_len=40) eq_oracle = RandomWalkEqOracle(alphabet, sul, num_steps=9000, reset_prob=0.09) _, data = run_Lstar(alphabet, sul, eq_oracle, cex_processing=cex_processing, cache_and_non_det_check=False, return_data=True, automaton_type='dfa')
def run_comparison(example, train=True, num_layers=2, hidden_dim=50, rnn_class=GRUNetwork, insufficient_testing=False, verbose=False): rnn, alphabet, train_set = train_or_load_rnn(example, num_layers=num_layers, hidden_dim=hidden_dim, rnn_class=rnn_class, train=train) # initial examples for Weiss et Al all_words = sorted(list(train_set.keys()), key=lambda x: len(x)) pos = next((w for w in all_words if rnn.classify_word(w) is True), None) neg = next((w for w in all_words if rnn.classify_word(w) is False), None) starting_examples = [w for w in [pos, neg] if None is not w] # Extract Automaton Using White-Box eq. query rnn.renew() if verbose: print('---------------------------------WHITE BOX EXTRACTION--------------------------------------------------') else: blockPrint() start_white_box = time.time() dfa_weiss = extract(rnn, time_limit=500, initial_split_depth=10, starting_examples=starting_examples) time_white_box = time.time() - start_white_box # Make sure that internal states are back to initial rnn.renew() if verbose: print('---------------------------------BLACK BOX EXTRACTION--------------------------------------------------') sul = RNN_BinarySUL_for_Weiss_Framework(rnn) alphabet = list(alphabet) # define the equivalence oracle if insufficient_testing: eq_oracle = RandomWordEqOracle(alphabet, sul, num_walks=100, min_walk_len=3, max_walk_len=12) else: eq_oracle = RandomWMethodEqOracle(alphabet, sul, walks_per_state=1000, walk_len=25) if 'tomita' not in example: eq_oracle = TransitionFocusOracle(alphabet, sul, num_random_walks=1000, walk_len=20) start_black_box = time.time() aalpy_dfa = run_Lstar(alphabet=alphabet, sul=sul, eq_oracle=eq_oracle, automaton_type='dfa', max_learning_rounds=10, print_level=2 , cache_and_non_det_check=False, cex_processing='rs') time_black_box = time.time() - start_black_box enablePrint() if insufficient_testing: if len(aalpy_dfa.states) == len(dfa_weiss.Q): translated_weiss_2_aalpy = Weiss_to_AALpy_DFA_format(dfa_weiss) sul = DfaSUL(translated_weiss_2_aalpy) eq_oracle = RandomWMethodEqOracle(alphabet, sul, walks_per_state=1000, walk_len=10) cex = eq_oracle.find_cex(aalpy_dfa) if not cex: print( '-------------------------WHITE-Box vs. BLACK-BOX WITH INSUFFICIENT TESTING -------------------------') print('White-box and Black-box technique extracted the same automaton.') print(f'White-box time: {round(time_white_box, 2)} seconds.') print(f'Black-box time: {round(time_black_box, 2)} seconds.') else: verify_cex(aalpy_dfa, translated_weiss_2_aalpy, rnn, [cex]) return if len(aalpy_dfa.states) != len(dfa_weiss.Q): print('---------------------------------WHITE vs. BLACK BOX EXTRACTION----------------------------------------') nn_props = F'{"GRU" if rnn_class == GRUNetwork else "LSTM"}_layers_{num_layers}_dim_{hidden_dim}' print(f'Example : {example}') print(f'Configuration : {nn_props}') print(f"Number of states\n " f"White-box extraction: {len(dfa_weiss.Q)}\n " f"Black-box extraction: {len(aalpy_dfa.states)}") translated_weiss_2_aalpy = Weiss_to_AALpy_DFA_format(dfa_weiss) sul = DfaSUL(translated_weiss_2_aalpy) eq_oracle = RandomWMethodEqOracle(alphabet, sul, walks_per_state=10000, walk_len=20) if 'tomita' not in example: eq_oracle = TransitionFocusOracle(alphabet, sul) cex_set = [] for _ in range(10): cex = eq_oracle.find_cex(aalpy_dfa) if cex and cex not in cex_set: cex_set.append(cex) cex_set.sort(key=len) # verify that the counterexamples are not spurios and find out which model is correct one real_cex = verify_cex(aalpy_dfa, translated_weiss_2_aalpy, rnn, cex_set) if not real_cex: print('Spurious CEX') assert False #print('Few Counterexamples') #print(' ', cex_set[:3]) else: print('Size of both models: ', len(aalpy_dfa.states))
def accuracy_test(): ground_truth_model = load_automaton_from_file( 'TrainingDataAndAutomata/bp_depth4.dot', automaton_type='dfa') input_al = ground_truth_model.get_input_alphabet() output_al = [1, 0] train_seq, train_labels = generate_data_from_automaton(ground_truth_model, input_al, num_examples=10000, lens=(1, 2, 3, 5, 8, 10, 12, 15, 20, 25, 30)) x_train, y_train, x_test, y_test = split_train_validation(train_seq, train_labels, 0.8, uniform=True) # Train all neural networks with same parameters, this can be configured to train with different parameters rnn = RNNClassifier(input_al, output_dim=len(output_al), num_layers=2, hidden_dim=50, x_train=x_train, y_train=y_train, x_test=x_test, y_test=y_test, batch_size=32, nn_type='GRU') rnn.train(epochs=150, stop_acc=1.0, stop_epochs=2, verbose=1) sul = RnnBinarySUL(rnn) gt_sul = DfaSUL(ground_truth_model) random_walk_eq_oracle = RandomWalkEqOracle(input_al, sul, num_steps=10000, reset_prob=0.05) random_word_eq_oracle = RandomWordEqOracle(input_al, sul, min_walk_len=5, max_walk_len=25, num_walks=1000) random_w_eq_oracle = RandomWMethodEqOracle(input_al, sul, walks_per_state=200, walk_len=25) learned_model = run_Lstar(input_al, sul, random_word_eq_oracle, automaton_type='dfa', max_learning_rounds=5) from random import choice, randint random_tc = [] coverage_guided_tc = [] num_tc = 1000 for _ in range(num_tc): random_tc.append( tuple(choice(input_al) for _ in range(randint(10, 25)))) prefix = choice(learned_model.states).prefix middle = tuple(choice(input_al) for _ in range(20)) suffix = choice(learned_model.characterization_set) coverage_guided_tc.append(prefix + middle + suffix) num_adv_random = 0 for tc in random_tc: correct = gt_sul.query(tc) trained = sul.query(tc) if correct != trained: num_adv_random += 1 num_adv_guided = 0 for tc in coverage_guided_tc: correct = gt_sul.query(tc) trained = sul.query(tc) if correct != trained: num_adv_guided += 1 print(f'Random sampling: {round((num_adv_random/num_tc)*100,2)}') print(f'Guided sampling: {round((num_adv_guided/num_tc)*100,2)}')