def get_faulty_mqtt_SMM(): from aalpy.automata import StochasticMealyMachine, StochasticMealyState s0 = StochasticMealyState('s0') s1 = StochasticMealyState('s1') s2 = StochasticMealyState('s2') s0.transitions['connect'].append((s1, 'CONNACK', 1.)) s0.transitions['disconnect'].append((s0, 'CONCLOSED', 1.)) s0.transitions['publish'].append((s0, 'CONCLOSED', 1.)) s0.transitions['subscribe'].append((s0, 'CONCLOSED', 1.)) s0.transitions['unsubscribe'].append((s0, 'CONCLOSED', 1.)) s1.transitions['connect'].append((s0, 'CONCLOSED', 1.)) s1.transitions['disconnect'].append((s0, 'CONCLOSED', 1.)) s1.transitions['publish'].append((s1, 'PUBACK', 0.9)) s1.transitions['publish'].append((s0, 'CONCLOSED', 0.1)) s1.transitions['subscribe'].append((s2, 'SUBACK', 1.)) s1.transitions['unsubscribe'].append((s1, 'UNSUBACK', 1.)) s2.transitions['connect'].append((s0, 'CONCLOSED', 1.)) s2.transitions['disconnect'].append((s0, 'CONCLOSED', 1.)) s2.transitions['publish'].append((s2, 'PUBLISH_PUBACK', 1.)) s2.transitions['subscribe'].append((s2, 'SUBACK', 1.)) s2.transitions['unsubscribe'].append((s1, 'UNSUBACK', 0.8)) s2.transitions['unsubscribe'].append((s2, 'SUBACK', 0.2)) smm = StochasticMealyMachine(s0, [s0, s1, s2]) return smm
def get_minimal_faulty_coffee_machine_SMM(): s0 = StochasticMealyState('s0') s1 = StochasticMealyState('s1') s0.transitions['but'].append((s0, 'init', 1.)) s0.transitions['coin'].append((s1, 'beep', 1.)) s1.transitions['but'].append((s0, 'init', 0.1)) s1.transitions['but'].append((s0, 'coffee', 0.9)) s1.transitions['coin'].append((s1, 'beep', 1.)) smm = StochasticMealyMachine(s0, [s0, s1]) return smm
def smm_to_mdp_conversion(smm: StochasticMealyMachine): """ Convert SMM to MDP. Args: smm: StochasticMealyMachine: SMM to convert Returns: equivalent MDP """ inputs = smm.get_input_alphabet() mdp_states = [] smm_state_to_mdp_state = dict() init_state = MdpState("0", "___start___") mdp_states.append(init_state) for s in smm.states: incoming_edges = defaultdict(list) incoming_outputs = set() for pre_s in smm.states: for i in inputs: incoming_edges[i] += filter(lambda t: t[0] == s, pre_s.transitions[i]) incoming_outputs.update(map(lambda t: t[1], incoming_edges[i])) state_id = 0 for o in incoming_outputs: new_state_id = s.state_id + str(state_id) state_id += 1 new_state = MdpState(new_state_id, o) mdp_states.append(new_state) smm_state_to_mdp_state[(s.state_id, o)] = new_state for s in smm.states: mdp_states_for_s = { mdp_state for (s_id, o), mdp_state in smm_state_to_mdp_state.items() if s_id == s.state_id } for i in inputs: for outgoing_t in s.transitions[i]: target_smm_state = outgoing_t[0] output = outgoing_t[1] prob = outgoing_t[2] target_mdp_state = smm_state_to_mdp_state[( target_smm_state.state_id, output)] for mdp_state in mdp_states_for_s: mdp_state.transitions[i].append((target_mdp_state, prob)) if s == smm.initial_state: init_state.transitions[i].append((target_mdp_state, prob)) return Mdp(init_state, mdp_states)
def get_small_gridworld(): from aalpy.automata import StochasticMealyMachine, StochasticMealyState s0 = StochasticMealyState('s0') s1 = StochasticMealyState('s1') s2 = StochasticMealyState('s2') s3 = StochasticMealyState('s3') p_g = 0.8 p_m = 0.6 # gridworld of the form # W W W W with a start in the top left # W G M W states like s0 s1 # W M G W s2 s3 # W W W W s0.transitions['north'].append((s0, 'wall', 1.)) s0.transitions['west'].append((s0, 'wall', 1.)) s0.transitions['east'].append((s1, 'mud', p_m)) s0.transitions['east'].append((s3, 'grass', 1 - p_m)) s0.transitions['south'].append((s2, 'mud', p_m)) s0.transitions['south'].append((s3, 'grass', 1 - p_m)) s1.transitions['north'].append((s1, 'wall', 1.)) s1.transitions['east'].append((s1, 'wall', 1.)) s1.transitions['west'].append((s0, 'grass', p_g)) s1.transitions['west'].append((s2, 'mud', 1 - p_g)) s1.transitions['south'].append((s3, 'grass', p_g)) s1.transitions['south'].append((s2, 'mud', 1 - p_g)) s2.transitions['south'].append((s2, 'wall', 1.)) s2.transitions['west'].append((s2, 'wall', 1.)) s2.transitions['east'].append((s3, 'grass', p_g)) s2.transitions['east'].append((s1, 'mud', 1 - p_g)) s2.transitions['north'].append((s0, 'grass', p_g)) s2.transitions['south'].append((s1, 'mud', 1 - p_g)) s3.transitions['south'].append((s3, 'wall', 1.)) s3.transitions['east'].append((s3, 'wall', 1.)) s3.transitions['west'].append((s2, 'mud', p_m)) s3.transitions['west'].append((s0, 'grass', 1 - p_m)) s3.transitions['north'].append((s1, 'mud', p_m)) s3.transitions['north'].append((s0, 'grass', 1 - p_m)) smm = StochasticMealyMachine(s0, [s0, s1, s2, s3]) return smm
def to_smm(): # CC2640R2-no-feature-req.dot # {'mtu_req', 'pairing_req',} have 0.3 percent chance of looping to initial state moore_mdp_state_map = dict() initial_mdp_state = None for state in model.states: mdp_state = StochasticMealyState(state.state_id) moore_mdp_state_map[state.prefix] = mdp_state if not state.prefix: initial_mdp_state = mdp_state assert initial_mdp_state for state in model.states: mdp_state = moore_mdp_state_map[state.prefix] state_num = int(mdp_state.state_id[1:]) for i in alphabet: reached_state = state.transitions[i].prefix correct_output = state.output_fun[i] # if i in {'pairing_req', 'mtu_req'} and mdp_state.output != moore_mdp_state_map[reached_moore].output: if state_num % 6 == 0: last_out = model.compute_output_seq( model.initial_state, state.prefix[:-1]) if state.prefix else "NO_RESPONSE" if not last_out or last_out == correct_output: last_out = 'NO_RESPONSE' mdp_state.transitions[i].append((mdp_state, last_out[-1], 0.2)) mdp_state.transitions[i].append( (moore_mdp_state_map[reached_state], correct_output, 0.8)) if state_num % 5 == 0 and i in { 'length_req', 'length_rsp', 'feature_rsp' } and len(state.prefix) == 2: mdp_state.transitions[i].append( (moore_mdp_state_map[model.initial_state.prefix], 'SYSTEM_CRASH', 0.1)) mdp_state.transitions[i].append( (moore_mdp_state_map[reached_state], correct_output, 0.9)) else: mdp_state.transitions[i].append( (moore_mdp_state_map[reached_state], correct_output, 1.)) mdp = StochasticMealyMachine(initial_mdp_state, list(moore_mdp_state_map.values())) return mdp
def get_faulty_coffee_machine_SMM(): from aalpy.automata import StochasticMealyMachine, StochasticMealyState s0 = StochasticMealyState('s0') s1 = StochasticMealyState('s1') s2 = StochasticMealyState('s2') s0.transitions['but'].append((s0, 'init', 1.)) s0.transitions['coin'].append((s1, 'beep', 1.)) s1.transitions['but'].append((s0, 'init', 0.1)) s1.transitions['but'].append((s2, 'coffee', 0.9)) s1.transitions['coin'].append((s1, 'beep', 1.)) s2.transitions['but'].append((s0, 'init', 1.)) s2.transitions['coin'].append((s1, 'beep', 1.)) smm = StochasticMealyMachine(s0, [s0, s1, s2]) return smm
def generate_hypothesis(self): """Generates the hypothesis from the observation table. :return: current hypothesis Args: Returns: """ r_state_map = dict() state_counter = 0 for r in self.compatibility_classes_representatives: if self.automaton_type == 'mdp': r_state_map[r] = MdpState(state_id=f's{state_counter}', output=r[-1]) else: r_state_map[r] = StochasticMealyState(state_id=f's{state_counter}') r_state_map[r].prefix = r state_counter += 1 if self.automaton_type == 'mdp': r_state_map['chaos'] = MdpState(state_id=f's{state_counter}', output='chaos') for i in self.input_alphabet: r_state_map['chaos'].transitions[i[0]].append((r_state_map['chaos'], 1.)) else: r_state_map['chaos'] = StochasticMealyState(state_id=f'chaos') for i in self.input_alphabet: r_state_map['chaos'].transitions[i[0]].append((r_state_map['chaos'], 'chaos', 1.)) for s in self.compatibility_classes_representatives: for i in self.input_alphabet: freq_dict = self.T[s][i] total_sum = sum(freq_dict.values()) origin_state = s if self.strategy == 'classic' and not self.teacher.complete_query(s, i) \ or self.strategy != 'classic' and i not in self.T[s]: if self.automaton_type == 'mdp': r_state_map[origin_state].transitions[i[0]].append((r_state_map['chaos'], 1.)) else: r_state_map[origin_state].transitions[i[0]].append((r_state_map['chaos'], 'chaos', 1.)) else: if len(freq_dict.items()) == 0: if self.automaton_type == 'mdp': r_state_map[origin_state].transitions[i[0]].append((r_state_map['chaos'], 1.)) else: r_state_map[origin_state].transitions[i[0]].append((r_state_map['chaos'], 'chaos', 1.)) else: for output, frequency in freq_dict.items(): new_state = self.get_representative(s + i + tuple([output])) if self.automaton_type == 'mdp': r_state_map[origin_state].transitions[i[0]].append( (r_state_map[new_state], frequency / total_sum)) else: r_state_map[origin_state].transitions[i[0]].append( (r_state_map[new_state], output, frequency / total_sum)) if self.automaton_type == 'mdp': return Mdp(r_state_map[self.get_representative(self.initial_output)], list(r_state_map.values())) else: return StochasticMealyMachine(r_state_map[tuple()], list(r_state_map.values()))
def generate_random_smm(num_states, input_size, output_size, possible_probabilities=None): """ Generates random MDP. Args: num_states: number of states input_size: number of inputs output_size: number of outputs possible_probabilities: list of possible probability pairs to choose from Returns: random SMM """ inputs = [f'i{i + 1}' for i in range(input_size)] outputs = [f'o{i + 1}' for i in range(output_size)] if not possible_probabilities: possible_probabilities = [(1., ), (1., ), (1., ), (0.9, 0.1), (0.8, 0.2), (0.7, 0.3), (0.8, 0.1, 0.1), (0.7, 0.2, 0.1), (0.6, 0.2, 0.1, 0.1)] # ensure that there are no infinite loops possible_probabilities = [ p for p in possible_probabilities if len(p) <= num_states ] states = [] for i in range(num_states): states.append(StochasticMealyState(f'q{i}')) state_buffer = list(states) output_buffer = outputs.copy() for state in states: for i in inputs: prob = random.choice(possible_probabilities) reached_states = [] transition_outputs = [] for _ in prob: while True: o = random.choice( output_buffer) if output_buffer else random.choice( outputs) new_state = random.choice( state_buffer) if state_buffer else random.choice( states) # ensure determinism if o not in transition_outputs: break if output_buffer: output_buffer.remove(o) if state_buffer: state_buffer.remove(new_state) reached_states.append(new_state) transition_outputs.append(o) for index in range(len(prob)): state.transitions[i].append( (reached_states[index], transition_outputs[index], prob[index])) return StochasticMealyMachine(states[0], states)
def load_automaton_from_file(path, automaton_type, compute_prefixes=False): """ Loads the automaton from the file. Standard of the automatas strictly follows syntax found at: https://automata.cs.ru.nl/Syntax/Overview. Args: path: path to the file automaton_type: type of the automaton, if not specified it will be automatically determined according, one of ['dfa', 'mealy', 'moore', 'mdp', 'smm', 'onfsm'] compute_prefixes: it True, shortest path to reach every state will be computed and saved in the prefix of the state. Useful when loading the model to use them as a equivalence oracle. (Default value = False) Returns: automaton """ graph = graph_from_dot_file(path)[0] assert automaton_type in automaton_types node = MealyState if automaton_type == 'mealy' else DfaState if automaton_type == 'dfa' else MooreState node = MdpState if automaton_type == 'mdp' else StochasticMealyState if automaton_type == 'smm' else node node = OnfsmState if automaton_type == 'onfsm' else node assert node is not None node_label_dict = dict() for n in graph.get_node_list(): if n.get_name() == '__start0' or n.get_name() == '': continue label = None if 'label' in n.get_attributes().keys(): label = n.get_attributes()['label'] label = _process_label(label) node_name = n.get_name() output = None if automaton_type == 'moore' and label != "": label_output = _process_label(label) label = label_output.split('|')[0] output = label_output.split('|')[1] if automaton_type == 'mdp': node_label_dict[node_name] = node(node_name, label) else: node_label_dict[node_name] = node( label, output) if automaton_type == 'moore' else node(label) if 'shape' in n.get_attributes().keys( ) and 'doublecircle' in n.get_attributes()['shape']: node_label_dict[node_name].is_accepting = True initial_node = None for edge in graph.get_edge_list(): if edge.get_source() == '__start0': initial_node = node_label_dict[edge.get_destination()] continue source = node_label_dict[edge.get_source()] destination = node_label_dict[edge.get_destination()] label = edge.get_attributes()['label'] label = _process_label(label) if automaton_type == 'mealy': inp = label.split('/')[0] out = label.split('/')[1] inp = int(inp) if inp.isdigit() else inp out = int(out) if out.isdigit() else out source.transitions[inp] = destination source.output_fun[inp] = out elif automaton_type == 'onfsm': inp = label.split('/')[0] out = label.split('/')[1] inp = int(inp) if inp.isdigit() else inp out = int(out) if out.isdigit() else out source.transitions[inp].append((out, destination)) elif automaton_type == 'smm': inp = label.split('/')[0] out_prob = label.split('/')[1] out = out_prob.split(':')[0] prob = out_prob.split(':')[1] inp = int(inp) if inp.isdigit() else inp out = int(out) if out.isdigit() else out source.transitions[inp].append((destination, out, float(prob))) elif automaton_type == 'mdp': inp = label.split(':')[0] prob = label.split(':')[1] inp = int(inp) if inp.isdigit() else inp prob = float(prob) source.transitions[inp].append((destination, prob)) else: source.transitions[int(label) if label.isdigit( ) else label] = destination if automaton_type == 'dfa': automaton = Dfa(initial_node, list(node_label_dict.values())) elif automaton_type == 'moore': automaton = MooreMachine(initial_node, list(node_label_dict.values())) elif automaton_type == 'mdp': automaton = Mdp(initial_node, list(node_label_dict.values())) elif automaton_type == 'smm': automaton = StochasticMealyMachine(initial_node, list(node_label_dict.values())) elif automaton_type == 'onfsm': automaton = Onfsm(initial_node, list(node_label_dict.values())) else: automaton = MealyMachine(initial_node, list(node_label_dict.values())) assert automaton.is_input_complete() if compute_prefixes: for state in automaton.states: state.prefix = automaton.get_shortest_path(automaton.initial_state, state) return automaton