コード例 #1
0
def main():
    args = parse_args()
    logger = log.get_logger(args.log)
    args.logger = logger
    logger.info('*' * 80)
    logger.info('the args are the below')
    logger.info('*' * 80)
    for x in args.__dict__:
        logger.info(x + ',' + str(args.__dict__[x]))
    logger.info(cfg.config[args.dataset])
    logger.info('*' * 80)
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
    if not os.path.exists(args.param_dir):
        os.mkdir(args.param_dir)
    torch.manual_seed(long(time.time()))
    model = ablation.BDCN(pretrain=args.pretrain,
                          logger=logger,
                          ms=args.ms,
                          block=args.block,
                          bdcn=not args.no_bdcn,
                          direction=args.dir,
                          k=args.num_conv,
                          rate=args.rate)
    if args.complete_pretrain:
        model.load_state_dict(torch.load(args.complete_pretrain))
    logger.info(model)
    train(model, args)
コード例 #2
0
ファイル: ablation_train.py プロジェクト: xavysp/BDCN_xsp
def main():
    args = parse_args()
    logger = log.get_logger(args.log)
    args.logger = logger
    logger.info('*'*80)
    logger.info('the args are the below')
    logger.info('*'*80)
    for x in args.__dict__:
        logger.info(x+','+str(args.__dict__[x]))
    logger.info(cfg.config[args.dataset])
    logger.info('*'*80)
    # os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
    device = torch.device('cpu' if torch.cuda.device_count() == 0
                          else 'cuda')
    if not os.path.exists(args.param_dir):
        os.mkdir(args.param_dir)
    torch.manual_seed(time.time())
    model = ablation.BDCN(pretrain=args.pretrain, logger=logger,
        ms=args.ms, block=args.block, bdcn=not args.no_bdcn, direction=args.dir,
        k=args.num_conv, rate=args.rate).to(device)
    res_model = count_parameters(model)
    print('Number of parameters> ',res_model)
    if args.complete_pretrain:
        model.load_state_dict(torch.load(args.complete_pretrain))
    logger.info(model)
    train(model, args, devi= device)
コード例 #3
0
ファイル: ablation_test.py プロジェクト: zhukkang/BDCN
def main():
    import time
    print time.localtime()
    args = parse_args()
    args.bdcn = not args.no_bdcn
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
    model = ablation.BDCN(ms=args.ms, block=args.block, bdcn=not args.no_bdcn,
        direction=args.dir, k=args.num_conv, rate=args.rate)
    model.load_state_dict(torch.load('%s' % (args.model)))

    test(model, args)
コード例 #4
0
ファイル: ablation_test.py プロジェクト: xavysp/BDCN_xsp
def main():
    import time
    print(time.localtime())
    args = parse_args()
    args.bdcn = not args.no_bdcn
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
    device = torch.device('cpu' if torch.cuda.device_count() == 0 else 'cuda')

    model = ablation.BDCN(ms=args.ms,
                          block=args.block,
                          bdcn=not args.no_bdcn,
                          direction=args.dir,
                          k=args.num_conv,
                          rate=args.rate).to(device)
    chckpnt_dir = os.path.join('params',
                               args.train_data + '-B' + str(args.block),
                               args.model)
    model.load_state_dict(torch.load(chckpnt_dir, map_location=device))
    print('Successfuly checkpoint loaded ', chckpnt_dir)
    test(model, args, device=device)