コード例 #1
0
    def gener_init_pq(self):  # 生成初始搜索点(p0,q0)
        rgs = BassEstimate(self.s)
        P0, Q0 = rgs.optima_search()[1:3]  # SABM最优点(P0,Q0)
        p_range = np.linspace(0.4 * P0, P0, num=3)
        q_range = np.linspace(0.2 * Q0 / self.k, 0.6 * Q0 / self.k, num=3)
        to_fit = {}
        params_cont = []
        for p in p_range:  # 取9个点用于确定参数与估计值之间的联系
            for q in q_range:
                diffu = Diffuse(p,
                                q,
                                g=self.G,
                                num_runs=self.s_len,
                                multi_proc=self.m_p)
                s_estim = diffu.repete_diffuse()
                s_estim_avr = np.mean(s_estim, axis=0)
                rgs_1 = BassEstimate(s_estim_avr)
                P, Q = rgs_1.optima_search()[1:3]
                params_cont.append([p, q, P, Q])

        to_fit = pd.DataFrame(params_cont, columns=['p', 'q', 'P', 'Q'])
        result_p = smf.ols('p~P+Q-1', data=to_fit).fit()
        result_q = smf.ols('q~P+Q-1', data=to_fit).fit()

        p0 = result_p.params['P'] * P0 + result_p.params['Q'] * Q0
        q0 = result_q.params['P'] * P0 + result_q.params['Q'] * Q0
        return round(p0, 5), round(q0, 5)  # 保留5位小数位,防止出错
コード例 #2
0
 def add_data(self, p, q):
     diff = Diffuse(p, q, g=self.g, alpha=self.alpha, sigma=self.sigma)
     x = np.mean(diff.repete_diffuse(), axis=0)
     max_idx = np.argmax(x)
     s = x[:(max_idx + 2)]
     para_range = [[1e-6, 0.1], [1e-5, 0.8], [sum(s), 4*self.num_nodes]]
     bassest = BassEstimate(s, para_range)
     bassest.t_n = 1000
     res = bassest.optima_search(c_n=200, threshold=10e-6)
     return res[1:3]  # P, Q
 def r2_mse_abm(params, S=S):
     p, q = params
     T = len(S)
     diffuse = Diffuse(p, q, num_runs=T, multi_proc=True)
     diffuse_cont = diffuse.repete_diffuse(repetes=10)
     X = np.mean(diffuse_cont, axis=0)
     a = np.sum(np.square(X)) / np.sum(S)  # 除以np.sum(S)是为减少a的大小
     b = -2*np.sum(X*S) / np.sum(S)
     c = np.sum(np.square(S)) / np.sum(S)
     sigma = -b/(2*a)  # 倍数
     mse = np.sqrt(np.sum(S) * (4*a*c - b**2) / (4*a*T))
     hat_S = list(X*sigma)
     tse = np.sum(np.square(S - hat_S))
     mean_y = np.mean(S)
     ssl = np.sum(np.square(S - mean_y))
     R_2 = (ssl - tse) / ssl
     return R_2, mse, sigma
 def fitness(individual, S=S):
     p, q = individual
     T = len(S)
     if p <= 0:
         raise Exception(f"p={p}小于0!")
     elif q <= 0:
         raise Exception(f"q={q}小于0!")
     else:
         diffuse = Diffuse(p, q, num_runs=T, multi_proc=True)
         diffuse_cont = diffuse.repete_diffuse(repetes=10)
         X = np.mean(diffuse_cont, axis=0)
         a = np.sum(np.square(X)) / np.sum(S)  # 除以np.sum(S)是为减少a的大小
         b = -2*np.sum(X*S) / np.sum(S)
         c = np.sum(np.square(S)) / np.sum(S)
         mse = np.sqrt(np.sum(S) * (4*a*c - b**2) / (4*a*T))
         # sigma = -b/(2*a)  # 倍数
     return mse
コード例 #5
0
 def get_M(self, p, q):  # 获取对应扩散率曲线的最优潜在市场容量
     if p <= 0:
         raise Exception(f"p={p}小于0!")
     elif q <= 0:
         raise Exception(f"q={q}小于0!")
     else:
         diffu = Diffuse(p,
                         q,
                         g=self.G,
                         num_runs=self.s_len,
                         multi_proc=self.m_p)
         s_estim = diffu.repete_diffuse()
         x = np.mean(s_estim, axis=0)
         a = np.sum(np.square(x)) / np.sum(
             self.s)  # 除以np.sum(self.s)是为减少a的大小
         b = -2 * np.sum(x * self.s) / np.sum(self.s)
         c = np.sum(np.square(self.s)) / np.sum(self.s)
         mse = np.sqrt(
             sum(self.s) * (4 * a * c - b**2) / (4 * a * self.s_len))
         sigma = -b / (2 * a)
         m = sigma * self.G.number_of_nodes()
         return [mse, p, q, m], list(x * sigma)
def gener_init_params(S, g=nx.gnm_random_graph(10000, 30000)):  # 生成初始搜索点(p0,q0)
    rgs = BassEstimate(S)
    P0, Q0 = rgs.optima_search()[1 : 3]  # BASS最优点(P0,Q0)
    p_range = np.linspace(0.3*P0, P0, num=3)
    q_range = np.linspace(0.06*Q0, 0.3*Q0, num=3)
    to_fit = {}
    params_cont = []
    for p in p_range:  # 取9个点用于确定参数与估计值之间的联系
        for q in q_range:
            diffu = Diffuse(p, q, g=g, num_runs=len(S), multi_proc=True)
            s_estim = diffu.repete_diffuse()
            s_estim_avr = np.mean(s_estim, axis=0)
            rgs_1 = BassEstimate(s_estim_avr)
            P, Q = rgs_1.optima_search()[1: 3]
            params_cont.append([p, q, P, Q])

    to_fit = pd.DataFrame(params_cont, columns=['p', 'q', 'P', 'Q'])
    result_p = smf.ols('p~P+Q-1', data=to_fit).fit()
    result_q = smf.ols('q~P+Q-1', data=to_fit).fit()

    p0 = result_p.params['P']*P0 + result_p.params['Q']*Q0
    q0 = result_q.params['P']*P0 + result_q.params['Q']*Q0
    return round(p0, 5), round(q0, 5)   # 保留5位小数位,防止出错
コード例 #7
0
def func_1(p, q, sigma):
    p = round(p, 5)
    q = round(q, 5)
    diff = Diffuse(p=p, q=q, sigma=sigma, num_runs=35, multi_proc=True)
    x = np.mean(diff.repete_diffuse(), axis=0)
    return str([p, q]), list(np.concatenate(([p, q], x)))
コード例 #8
0
def func(p, q, sigma):
    diff = Diffuse(p, q, sigma=sigma, num_runs=40)
    x = np.mean(diff.repete_diffuse(), axis=0)
    return np.concatenate(([p, q], x))
コード例 #9
0
prj = db.indivHeter

#%%
def func(p, q, sigma):
    diff = Diffuse(p, q, sigma=sigma, num_runs=40)
    x = np.mean(diff.repete_diffuse(), axis=0)
    return np.concatenate(([p, q], x))

#%%[markdown]
#### 扩散示例

#%%
sigma = 0.1
p, q = 0.001, 0.05
t1 = time.perf_counter()
diff = Diffuse(p, q, sigma=sigma)
diff_cont = diff.repete_diffuse()
S = np.mean(diff_cont, axis=0)
print(f"Time elasped:{time.perf_counter()-t1:.2f}s")
print(f"网络:{sigma}")
print(f"最大采纳量{np.max(S):.0f}, 最大时间步:{np.argmax(S)}")

#%%
m_idx = np.argmax(S)
s = S[:m_idx + 2]
t1 = time.process_time()
para_range = [[1e-5, 0.1], [1e-5, 0.8], [sum(s), 10*sum(s)]]
bassest = BassEstimate(s, para_range)
mse, P, Q, M = bassest.optima_search(c_n=100, threshold=10e-6)
r_2 = bassest.r2([P, Q, M])
print(f'Time elapsed: {(time.process_time() - t1):.2f}s')
コード例 #10
0
# coding=utf-8
import numpy as np
import networkx as nx
import time
import random
from abmdiffuse import Diffuse

if __name__ == '__main__':
    t1 = time.perf_counter()
    p, q, alpha = 0.01, 0.5, 1
    diffu = Diffuse(p, q, alpha=alpha)
    diffu_cont = diffu.repete_diffuse(repetes=10)
    print(
        f"参数设置: p--{p}, q--{q}, alpha--{alpha} network--{diffu.g.number_of_nodes()}"
    )
    print(f"用时{time.perf_counter() - t1:.2f}秒")
コード例 #11
0
def func(p, q, g):
    p = round(p, 5)
    q = round(q, 5)
    diff = Diffuse(p, q, g=g, num_runs=35)
    x = np.mean(diff.repete_diffuse(), axis=0)
    return str([p, q]), list(np.concatenate(([p, q], x)))
コード例 #12
0
for line in diff_list:
    pl.plot(line[2:])

#%%
for line in diff_list[:15]:
    pl.plot(line[2:])

#%%
param_bound = ws0["param_boundary"]
print(param_bound)

#%%
t1 = time.perf_counter()
g = nx.watts_strogatz_graph(10000, 6, 0)
p, q = 0.001, 0.1
diff = Diffuse(p, q, g=g)
diff_cont = diff.repete_diffuse(20)
S = np.mean(diff_cont, axis=0)
print(f"Time elasped:{time.perf_counter()-t1:.2f}s")
print(f"网络: nx.watts_strogatz_graph(10000, 6, 0)")
print(f"最大采纳量{np.max(S):.0f}, 最大时间步:{np.argmax(S)}")

m_idx = np.argmax(S)
s = S[:m_idx + 2]
t1 = time.process_time()
para_range = [[1e-5, 0.1], [1e-5, 0.8], [sum(s), 10 * sum(s)]]
bassest = BassEstimate(s, para_range)
mse, P, Q, M = bassest.optima_search(c_n=100, threshold=10e-6)
r_2 = bassest.r2([P, Q, M])
print(f'Time elapsed: {(time.process_time() - t1):.2f}s')
print(f'P:{P:.4f}   Q:{Q:.4f}   M:{M:.0f}\nr^2:{r_2:.4f}')
コード例 #13
0
# coding=utf-8
import numpy as np
import networkx as nx
import time
import random
from abmdiffuse import Diffuse

if __name__ == '__main__':
    import pylab as pl
    t1 = time.perf_counter()
    p, q = 0.001, 0.05
    diffu = Diffuse(p=p, q=q, sigma=0.1)
    diffu_cont = diffu.repete_diffuse(repetes=20)
    print(f"参数设置: p--{p}, q--{q} sigma--{diffu.sigma}")
    print(f"用时{time.perf_counter() - t1:.2f}秒")
    fig = pl.figure(figsize=(12, 6))
    ax = fig.add_subplot(1, 1, 1)
    for line in diffu_cont:
        ax.plot(line, 'k-', lw=0.5, alpha=0.5)
    ax.plot(np.mean(diffu_cont, axis=0), 'r-', lw=2)
    pl.show()