コード例 #1
0
def nnet_dropout(X, Y):
    """Neural net with dropout."""
    reg = 0.001  # Weight prior
    noise = .5  # Likelihood st. dev.

    net = (
        ab.InputLayer(name="X", n_samples=n_samples) >>
        ab.DenseMAP(output_dim=30, l2_reg=reg, l1_reg=0.) >>
        ab.Activation(tf.tanh) >>
        ab.DropOut(keep_prob=0.95) >>
        ab.DenseMAP(output_dim=20, l2_reg=reg, l1_reg=0.) >>
        ab.Activation(tf.tanh) >>
        ab.DropOut(keep_prob=0.95) >>
        ab.DenseMAP(output_dim=10, l2_reg=reg, l1_reg=0.) >>
        ab.Activation(tf.tanh) >>
        ab.DropOut(keep_prob=0.95) >>
        ab.DenseMAP(output_dim=5, l2_reg=reg, l1_reg=0.) >>
        ab.Activation(tf.tanh) >>
        ab.DenseMAP(output_dim=1, l2_reg=reg, l1_reg=0.)
    )

    phi, reg = net(X=X)
    lkhood = tf.distributions.Normal(loc=phi, scale=noise)
    loss = ab.max_posterior(lkhood, Y, reg)
    return phi, loss
コード例 #2
0
def nnet(X, Y):
    """Neural net with regularization."""
    lambda_ = 1e-4  # Weight regularizer
    noise = .5  # Likelihood st. dev.

    net = (
        ab.InputLayer(name="X", n_samples=1) >> ab.DenseMAP(
            output_dim=40, l2_reg=lambda_, l1_reg=0.) >> ab.Activation(tf.tanh)
        >> ab.DenseMAP(output_dim=20, l2_reg=lambda_,
                       l1_reg=0.) >> ab.Activation(tf.tanh) >>
        ab.DenseMAP(output_dim=10, l2_reg=lambda_, l1_reg=0.) >> ab.Activation(
            tf.tanh) >> ab.DenseMAP(output_dim=1, l2_reg=lambda_, l1_reg=0.))

    f, reg = net(X=X)
    lkhood = tf.distributions.Normal(loc=f, scale=noise)
    loss = ab.max_posterior(lkhood, Y, reg)
    return f, loss
コード例 #3
0
def linear(X, Y):
    """Linear regression with l2 regularization."""
    lambda_ = 1e-4  # Weight regularizer
    noise = 1.  # Likelihood st. dev.

    net = (ab.InputLayer(name="X") >> ab.DenseMAP(
        output_dim=1, l2_reg=lambda_, l1_reg=0.))

    Xw, reg = net(X=X)
    lkhood = tf.distributions.Normal(loc=Xw, scale=noise)
    loss = ab.max_posterior(lkhood, Y, reg)
    # loss = 0.5 * tf.reduce_mean((Y - Xw)**2) + reg

    return Xw, loss
コード例 #4
0
def linear(X, Y):
    """Linear regression with l2 regularization."""
    reg = .01  # Weight prior
    noise = .5  # Likelihood st. dev.

    net = (
        ab.InputLayer(name="X", n_samples=1) >>
        ab.DenseMAP(output_dim=1, l2_reg=reg, l1_reg=0.)
    )

    phi, reg = net(X=X)
    lkhood = tf.distributions.Normal(loc=phi, scale=noise)
    loss = ab.max_posterior(lkhood, Y, reg)

    return phi, loss
コード例 #5
0
def svr(X, Y):
    """Support vector regressor."""
    reg = 0.1
    eps = 0.01
    lenscale = 1.

    kern = ab.RBF(lenscale=lenscale)  # keep the length scale positive
    net = (
        ab.InputLayer(name="X", n_samples=1) >>
        ab.RandomFourier(n_features=50, kernel=kern) >>
        ab.DenseMAP(output_dim=1, l2_reg=reg, l1_reg=0.)
    )

    phi, reg = net(X=X)
    loss = tf.reduce_mean(tf.maximum(tf.abs(Y - phi - eps), 0.)) + reg
    return phi, loss
コード例 #6
0
def svr(X, Y):
    """Support vector regressor, kind of..."""
    lambda_ = 1e-4
    eps = 0.01
    lenscale = 1.

    # Specify which kernel to approximate with the random Fourier features
    kern = ab.RBF(lenscale=lenscale)

    net = (
        # ab.InputLayer(name="X", n_samples=n_samples_) >>
        ab.InputLayer(name="X", n_samples=1) >> ab.RandomFourier(
            n_features=50, kernel=kern) >>
        # ab.DropOut(keep_prob=0.9) >>
        ab.DenseMAP(output_dim=1, l2_reg=lambda_, l1_reg=0.))

    f, reg = net(X=X)
    loss = tf.reduce_mean(tf.nn.relu(tf.abs(Y - f) - eps)) + reg
    return f, loss
コード例 #7
0
# Optimization
NITER = 20000  # Training iterations per fold
BSIZE = 10  # mini-batch size
CONFIG = tf.ConfigProto(device_count={'GPU': 0})  # Use GPU ?
LSAMPLES = 1  # We're only using 1 dropout "sample" for learning to be more
# like a MAP network
PSAMPLES = 50  # Number of samples for prediction
REG = 0.001  # weight regularizer

# Network structure
n_samples_ = tf.placeholder_with_default(LSAMPLES, [])
net = ab.stack(
    ab.InputLayer(name='X', n_samples=n_samples_),
    ab.DropOut(0.95),
    ab.DenseMAP(output_dim=64, l1_reg=0., l2_reg=REG),
    ab.Activation(h=tf.nn.relu),
    ab.DropOut(0.5),
    ab.DenseMAP(output_dim=64, l1_reg=0., l2_reg=REG),
    ab.Activation(h=tf.nn.relu),
    ab.DropOut(0.5),
    ab.DenseMAP(output_dim=1, l1_reg=0., l2_reg=REG),
)


def main():
    """Run the demo."""
    data = load_breast_cancer()
    X = data.data.astype(np.float32)
    y = data.target.astype(np.int32)[:, np.newaxis]
    X = StandardScaler().fit_transform(X).astype(np.float32)
コード例 #8
0
                 kernel_size=(5, 5),
                 l1_reg=0., l2_reg=reg),  # LSAMPLES, BATCH_SIZE, 28, 28, 32
    ab.Activation(h=tf.nn.relu),
    ab.MaxPool2D(pool_size=(2, 2),
                 strides=(2, 2)),  # LSAMPLES, BATCH_SIZE, 14, 14, 32

    ab.Conv2DMAP(filters=64,
                 kernel_size=(5, 5),
                 l1_reg=0., l2_reg=reg),  # LSAMPLES, BATCH_SIZE, 14, 14, 64
    ab.Activation(h=tf.nn.relu),
    ab.MaxPool2D(pool_size=(2, 2),
                 strides=(2, 2)),  # LSAMPLES, BATCH_SIZE, 7, 7, 64

    ab.Reshape(target_shape=(7*7*64,)),  # LSAMPLES, BATCH_SIZE, 7*7*64

    ab.DenseMAP(output_dim=1024,
                l1_reg=0., l2_reg=reg),  # LSAMPLES, BATCH_SIZE, 1024
    ab.Activation(h=tf.nn.relu),
    ab.DropOut(0.5),

    ab.DenseMAP(output_dim=10,
                l1_reg=0., l2_reg=reg),  # LSAMPLES, BATCH_SIZE, 10
)


def main():

    # Dataset
    mnist_data = tf.contrib.learn.datasets.mnist.read_data_sets(
        './mnist_demo', reshape=True)

    N, D = mnist_data.train.images.shape