# set options ocp.solver_options.qp_solver = 'FULL_CONDENSING_QPOASES' #'PARTIAL_CONDENSING_HPIPM' # FULL_CONDENSING_QPOASES ocp.solver_options.integrator_type = 'ERK' ocp.solver_options.print_level = 3 ocp.solver_options.nlp_solver_type = 'SQP' # SQP_RTI, SQP ocp.solver_options.globalization = 'MERIT_BACKTRACKING' ocp.solver_options.nlp_solver_max_iter = 5000 ocp.solver_options.nlp_solver_tol_stat = 1e-6 ocp.solver_options.levenberg_marquardt = 0.1 ocp.solver_options.sim_method_num_steps = 15 ocp.solver_options.qp_solver_iter_max = 100 ocp_solver = AcadosOcpSolver(ocp, json_file='acados_ocp.json') for i, tau in enumerate(np.linspace(0, 1, N)): ocp_solver.set(i, 'x', (1 - tau) * x0 + tau * xf) ocp_solver.set(i, 'u', np.array([0.1, 0.5])) simX = np.zeros((N + 1, nx)) simU = np.zeros((N, nu)) status = ocp_solver.solve() if status != 0: ocp_solver.print_statistics() raise Exception('acados returned status {}. Exiting.'.format(status)) # get solution for i in range(N): simX[i, :] = ocp_solver.get(i, "x") simU[i, :] = ocp_solver.get(i, "u")
ocp.solver_options.nlp_solver_type = 'SQP' # SQP_RTI, SQP ocp.solver_options.globalization = 'MERIT_BACKTRACKING' ocp.solver_options.nlp_solver_max_iter = 500 # set prediction horizon ocp.solver_options.tf = Tf ocp_solver = AcadosOcpSolver(ocp, json_file='acados_ocp.json') ocp_solver.options_set("line_search_use_sufficient_descent", 0) ocp_solver.options_set("full_step_dual", 1) simX = np.ndarray((N + 1, nx)) simU = np.ndarray((N, nu)) for i, tau in enumerate(np.linspace(0, 1, N + 1)): ocp_solver.set(i, 'x', x0 * (1 - tau) + tau * xf) status = ocp_solver.solve() if status != 0: ocp_solver.print_statistics( ) # encapsulates: stat = ocp_solver.get_stats("statistics") # raise Exception('acados returned status {}. Exiting.'.format(status)) # get solution for i in range(N): simX[i, :] = ocp_solver.get(i, "x") simU[i, :] = ocp_solver.get(i, "u") simX[N, :] = ocp_solver.get(N, "x") ocp_solver.print_statistics( ) # encapsulates: stat = ocp_solver.get_stats("statistics")
json_file="acados_ocp_par.json") simX = np.zeros((Nsim, 6)) #simX_correct)#np.ndarray((Nsim, nx)) simU = np.ndarray((Nsim, 2)) x0 = x0_start try: # simulate for i in tqdm(range(Nsim)): #print(x0) x_noise = x0 + np.diag([1, 0.1, 0.2, 1, 0.1, 0.2 ]) @ np.random.normal( 0, noise_std, x0.shape) #print(x_noise) acados_solver.set(0, "lbx", x_noise) acados_solver.set(0, "ubx", x_noise) #acados_solver.set(0, "x", x_noise) for j in range(N): acados_solver.set(j, "yref", yref) acados_solver.set(N, 'yref', yref_e) status = acados_solver.solve() if status != 0: raise Exception( "acados returned status {} in closed loop iteration {}." .format(status, i)) # get solution u0 = acados_solver.get(0, "u") #print(u0)
class Pmpc(object): def __init__(self, N, sys, cost, wref=None, tuning=None, lam_g_ref=None, options={}): """ Constructor """ # store construction data self.__N = N self.__vars = sys['vars'] self.__nx = sys['vars']['x'].shape[0] self.__nu = sys['vars']['u'].shape[0] # nonlinear inequalities slacks if 'us' in sys['vars']: self.__ns = sys['vars']['us'].shape[0] else: self.__ns = 0 # mpc slacks if 'usc' in sys['vars']: self.__nsc = sys['vars']['usc'].shape[0] self.__scost = sys['scost'] else: self.__nsc = 0 # store system dynamics self.__F = sys['f'] # store path constraints if 'h' in sys: self.__h = sys['h'] else: self.__h = None # store slacked nonlinear inequality constraints if 'g' in sys: self.__gnl = sys['g'] else: self.__gnl = None # store system sensitivities around steady state self.__S = sys['S'] self.__cost = cost # set options self.__options = self.__default_options() for option in options: if option in self.__options: self.__options[option] = options[option] else: raise ValueError( 'Unknown option for Pmpc class instance: "{}"'.format( option)) # detect cost-type if self.__cost.n_in() == 2: # cost function of the form: l(x,u) self.__type = 'economic' # no tuning required tuning = None if self.__options['hessian_approximation'] == 'gauss_newton': self.__options['hessian_approximation'] = 'exact' Logger.logger.warning( 'Gauss-Newton Hessian approximation cannot be applied for economic MPC problem. Switched to exact Hessian.' ) else: # cost function of the form: (w-wref)'*H*(w-wref) + q'w self.__type = 'tracking' # check if tuning matrices are provided assert tuning != None, 'Provide tuning matrices for tracking MPC!' # periodicity operator self.__p_operator = self.__options['p_operator'] # construct MPC solver self.__construct_solver() # periodic indexing self.__index = 0 self.__index_acados = 0 # create periodic reference assert wref != None, 'Provide reference trajectory!' self.__create_reference(wref, tuning, lam_g_ref) # initialize log self.__initialize_log() # initialize acados solvers self.__acados_ocp_solver = None self.__acados_integrator = None # solver initial guess self.__set_initial_guess() return None def __default_options(self): # default options opts = { 'hessian_approximation': 'exact', 'ipopt_presolve': False, 'max_iter': 2000, 'p_operator': ca.Function('p_operator', [self.__vars['x']], [self.__vars['x']]), 'slack_flag': 'none' } return opts def __construct_solver(self): """ Construct periodic MPC solver """ # system variables and dimensions x = self.__vars['x'] u = self.__vars['u'] # NLP parameters if self.__type == 'economic': # parameters self.__p = ct.struct_symMX([ ct.entry('x0', shape=(self.__nx, 1)), ct.entry('xN', shape=(self.__nx, 1)) ]) # reassign for brevity x0 = self.__p['x0'] xN = self.__p['xN'] if self.__type == 'tracking': ref_vars = (ct.entry('x', shape=(self.__nx, ), repeat=self.__N + 1), ct.entry('u', shape=(self.__nu, ), repeat=self.__N)) if 'us' in self.__vars: ref_vars += (ct.entry('us', shape=(self.__ns, ), repeat=self.__N), ) # reference trajectory wref = ct.struct_symMX([ref_vars]) nw = self.__nx + self.__nu + self.__ns tuning = ct.struct_symMX([ # tracking tuning ct.entry('H', shape=(nw, nw), repeat=self.__N), ct.entry('q', shape=(nw, 1), repeat=self.__N) ]) # parameters self.__p = ct.struct_symMX([ ct.entry('x0', shape=(self.__nx, )), ct.entry('wref', struct=wref), ct.entry('tuning', struct=tuning) ]) # reassign for brevity x0 = self.__p['x0'] wref = self.__p.prefix['wref'] tuning = self.__p.prefix['tuning'] xN = wref['x', -1] # NLP variables variables_entry = (ct.entry('x', shape=(self.__nx, ), repeat=self.__N + 1), ct.entry('u', shape=(self.__nu, ), repeat=self.__N)) if 'us' in self.__vars: variables_entry += (ct.entry('us', shape=(self.__ns, ), repeat=self.__N), ) self.__wref = ct.struct_symMX([variables_entry ]) # structure of reference if 'usc' in self.__vars: variables_entry += (ct.entry('usc', shape=(self.__nsc, ), repeat=self.__N), ) # nlp variables + bounds w = ct.struct_symMX([variables_entry]) # variable bounds are implemented as inequalities self.__lbw = w(-np.inf) self.__ubw = w(np.inf) # prepare dynamics and path constraints entry constraints_entry = (ct.entry('dyn', shape=(self.__nx, ), repeat=self.__N), ) if self.__gnl is not None: constraints_entry += (ct.entry('g', shape=self.__gnl.size1_out(0), repeat=self.__N), ) if self.__h is not None: constraints_entry += (ct.entry('h', shape=self.__h.size1_out(0), repeat=self.__N), ) # terminal constraint nx_term = self.__p_operator.size1_out(0) # create general constraints structure g_struct = ct.struct_symMX([ ct.entry('init', shape=(self.__nx, 1)), constraints_entry, ct.entry('term', shape=(nx_term, 1)) ]) # create symbolic constraint expressions map_args = collections.OrderedDict() map_args['x0'] = ct.horzcat(*w['x', :-1]) map_args['p'] = ct.horzcat(*w['u']) F_constr = ct.horzsplit(self.__F.map(self.__N)(**map_args)['xf']) # generate constraints constr = collections.OrderedDict() constr['dyn'] = [a - b for a, b in zip(F_constr, w['x', 1:])] if 'us' in self.__vars: map_args['us'] = ct.horzcat(*w['us']) if self.__gnl is not None: constr['g'] = ct.horzsplit( self.__gnl.map(self.__N)(*map_args.values())) if 'usc' in self.__vars: map_args['usc'] = ct.horzcat(*w['usc']) if self.__h is not None: constr['h'] = ct.horzsplit( self.__h.map(self.__N)(*map_args.values())) repeated_constr = list( itertools.chain.from_iterable(zip(*constr.values()))) term_constraint = self.__p_operator(w['x', -1] - xN) self.__g = g_struct( ca.vertcat(w['x', 0] - x0, *repeated_constr, term_constraint)) self.__lbg = g_struct(np.zeros(self.__g.shape)) self.__ubg = g_struct(np.zeros(self.__g.shape)) if self.__h is not None: self.__ubg['h', :] = np.inf # nlp cost cost_map = self.__cost.map(self.__N) if self.__type == 'economic': cost_args = [ct.horzcat(*w['x', :-1]), ct.horzcat(*w['u'])] elif self.__type == 'tracking': if self.__ns != 0: cost_args_w = ct.horzcat(*[ ct.vertcat(w['x', k], w['u', k], w['us', k]) for k in range(self.__N) ]) cost_args_w_ref = ct.horzcat(*[ ct.vertcat(wref['x', k], wref['u', k], wref['us', k]) for k in range(self.__N) ]) else: cost_args_w = ct.horzcat(*[ ct.vertcat(w['x', k], w['u', k]) for k in range(self.__N) ]) cost_args_w_ref = ct.horzcat(*[ ct.vertcat(wref['x', k], wref['u', k]) for k in range(self.__N) ]) cost_args = [ cost_args_w, cost_args_w_ref, ct.horzcat(*tuning['H']), ct.horzcat(*tuning['q']) ] if self.__options['hessian_approximation'] == 'gauss_newton': if 'usc' not in self.__vars: hess_gn = ct.diagcat(*tuning['H'], ca.DM.zeros(self.__nx, self.__nx)) else: hess_block = list( itertools.chain.from_iterable( zip(tuning['H'], [ca.DM.zeros(self.__nsc, self.__nsc)] * self.__N))) hess_gn = ct.diagcat(*hess_block, ca.DM.zeros(self.__nx, self.__nx)) J = ca.sum2(cost_map(*cost_args)) # add cost on slacks if 'usc' in self.__vars: J += ca.sum2(ct.mtimes(self.__scost.T, ct.horzcat(*w['usc']))) # create solver prob = {'f': J, 'g': self.__g, 'x': w, 'p': self.__p} self.__w = w self.__g_fun = ca.Function('g_fun', [self.__w, self.__p], [self.__g]) # create IPOPT-solver instance if needed if self.__options['ipopt_presolve']: opts = { 'ipopt': { 'linear_solver': 'ma57', 'print_level': 0 }, 'expand': False } if Logger.logger.getEffectiveLevel() > 10: opts['ipopt']['print_level'] = 0 opts['print_time'] = 0 opts['ipopt']['sb'] = 'yes' self.__solver = ca.nlpsol('solver', 'ipopt', prob, opts) # create hessian approximation function if self.__options['hessian_approximation'] == 'gauss_newton': lam_g = ca.MX.sym('lam_g', self.__g.shape) # will not be used hess_approx = ca.Function('hess_approx', [self.__w, self.__p, lam_g], [hess_gn]) elif self.__options['hessian_approximation'] == 'exact': hess_approx = 'exact' # create sqp solver prob['lbg'] = self.__lbg prob['ubg'] = self.__ubg sqp_opts = { 'hessian_approximation': hess_approx, 'max_iter': self.__options['max_iter'] } self.__sqp_solver = sqp_method.Sqp(prob, sqp_opts) def step(self, x0): """ Compute periodic MPC feedback control for given initial condition. """ # reset periodic indexing if necessary self.__index = self.__index % len(self.__ref) # update nlp parameters p0 = self.__p(0.0) p0['x0'] = x0 if self.__type == 'economic': p0['xN'] = self.__ref[self.__index][-x0.shape[0]:] elif self.__type == 'tracking': p0['wref'] = self.__ref[self.__index] p0['tuning', 'H'] = self.__Href[self.__index] p0['tuning', 'q'] = self.__qref[self.__index] # pre-solve NLP with IPOPT for globalization if self.__options['ipopt_presolve']: ipopt_sol = self.__solver(x0=self.__w0, lbg=self.__lbg, ubg=self.__ubg, p=p0) self.__w0 = self.__w(ipopt_sol['x']) self.__lam_g0 = self.__g(ipopt_sol['lam_g']) # solve NLP sol = self.__sqp_solver.solve(self.__w0.cat, p0.cat, self.__lam_g0.cat) # store solution self.__g_sol = self.__g(self.__g_fun(sol['x'], p0)) self.__w_sol = self.__w(sol['x']) self.__extract_solver_stats() # shift reference self.__index += 1 # update initial guess self.__w0, self.__lam_g0 = self.__shift_initial_guess( self.__w_sol, self.__g(sol['lam_g'])) return self.__w_sol['u', 0] def step_acados(self, x0): # reset periodic indexing if necessary self.__index_acados = self.__index_acados % self.__Nref # format x0 x0 = np.squeeze(x0.full()) # update NLP parameters self.__acados_ocp_solver.set(0, "lbx", x0) self.__acados_ocp_solver.set(0, "ubx", x0) # update reference and tuning matrices self.__set_acados_reference() # solve status = self.__acados_ocp_solver.solve() # if status != 0: # raise Exception('acados solver returned status {}. Exiting.'.format(status)) # save solution self.__w_sol_acados = self.__w(0.0) for i in range(self.__N): self.__w_sol_acados['x', i] = self.__acados_ocp_solver.get(i, "x") self.__w_sol_acados['u', i] = self.__acados_ocp_solver.get( i, "u")[:self.__nu] if 'us' in self.__vars: self.__w_sol_acados['us', i] = self.__acados_ocp_solver.get( i, "u")[self.__nu:] self.__w_sol_acados['x', self.__N] = self.__acados_ocp_solver.get( self.__N, "x") # feedback policy u0 = self.__acados_ocp_solver.get(0, "u")[:self.__nu] # update initial guess self.__shift_initial_guess_acados() # shift index self.__index_acados += 1 return u0 def generate(self, dae, name='tunempc', opts={}): """ Create embeddable NLP solver """ from acados_template import AcadosModel, AcadosOcp, AcadosOcpSolver, AcadosSimSolver # extract dimensions nx = self.__nx nu = self.__nu + self.__ns # treat slacks as pseudo-controls # extract reference ref = self.__ref xref = np.squeeze(self.__ref[0][:nx], axis=1) uref = np.squeeze(self.__ref[0][nx:nx + nu], axis=1) # create acados model model = AcadosModel() model.x = ca.MX.sym('x', nx) model.u = ca.MX.sym('u', nu) model.p = [] model.name = name # detect input type n_in = dae.n_in() if n_in == 2: # xdot = f(x, u) if 'integrator_type' in opts: if opts['integrator_type'] == 'IRK': xdot = ca.MX.sym('xdot', nx) model.xdot = xdot model.f_impl_expr = xdot - dae(model.x, model.u[:self.__nu]) model.f_expl_expr = xdot elif opts['integrator_type'] == 'ERK': model.f_expl_expr = dae(model.x, model.u[:self.__nu]) else: raise ValueError('Provide numerical integrator type!') else: xdot = ca.MX.sym('xdot', nx) model.xdot = xdot model.f_expl_expr = xdot if n_in == 3: # f(xdot, x, u) = 0 model.f_impl_expr = dae(xdot, model.x, model.u[:self.__nu]) elif n_in == 4: # f(xdot, x, u, z) = 0 nz = dae.size1_in(3) z = ca.MX.sym('z', nz) model.z = z model.f_impl_expr = dae(xdot, model.x, model.u[:self.__nu], z) else: raise ValueError( 'Invalid number of inputs for system dynamics function.') if self.__gnl is not None: model.con_h_expr = self.__gnl(model.x, model.u[:self.__nu], model.u[self.__nu:]) if self.__type == 'economic': model.cost_expr_ext_cost = self.__cost(model.x, model.u[:self.__nu]) # create acados ocp ocp = AcadosOcp() ocp.model = model ny = nx + nu ny_e = nx # set horizon length ocp.dims.N = self.__N # set cost module if self.__type == 'economic': # set cost function type to external (provided in model) ocp.cost.cost_type = 'EXTERNAL' else: # set weighting matrices if self.__type == 'tracking': ocp.cost.W = self.__Href[0][0] # set-up linear least squares cost ocp.cost.cost_type = 'LINEAR_LS' ocp.cost.W_e = np.zeros((nx, nx)) ocp.cost.Vx = np.zeros((ny, nx)) ocp.cost.Vx[:nx, :nx] = np.eye(nx) Vu = np.zeros((ny, nu)) Vu[nx:, :] = np.eye(nu) ocp.cost.Vu = Vu ocp.cost.Vx_e = np.eye(nx) ocp.cost.yref = np.squeeze( ca.vertcat(xref,uref).full() - \ ct.mtimes(np.linalg.inv(ocp.cost.W),self.__qref[0][0].T).full(), # gradient term axis = 1 ) ocp.cost.yref_e = np.zeros((ny_e, )) if n_in == 4: # DAE flag ocp.cost.Vz = np.zeros((ny, nz)) # initial condition ocp.constraints.x0 = xref # set inequality constraints ocp.constraints.constr_type = 'BGH' if self.__S['C'] is not None: C = self.__S['C'][0][:, :nx] D = self.__S['C'][0][:, nx:] lg = -self.__S['e'][0] + ct.mtimes(C, xref).full() + ct.mtimes( D, uref).full() ug = 1e8 - self.__S['e'][0] + ct.mtimes( C, xref).full() + ct.mtimes(D, uref).full() ocp.constraints.lg = np.squeeze(lg, axis=1) ocp.constraints.ug = np.squeeze(ug, axis=1) ocp.constraints.C = C ocp.constraints.D = D if 'usc' in self.__vars: if 'us' in self.__vars: arg = [ self.__vars['x'], self.__vars['u'], self.__vars['us'], self.__vars['usc'] ] else: arg = [ self.__vars['x'], self.__vars['u'], self.__vars['usc'] ] Jsg = ca.Function( 'Jsg', [self.__vars['usc']], [ca.jacobian(self.__h(*arg), self.__vars['usc'])])(0.0) self.__Jsg = Jsg.full()[:-self.__nsc, :] ocp.constraints.Jsg = self.__Jsg ocp.cost.Zl = np.zeros((self.__nsc, )) ocp.cost.Zu = np.zeros((self.__nsc, )) ocp.cost.zl = np.squeeze(self.__scost.full(), axis=1) ocp.cost.zu = np.squeeze(self.__scost.full(), axis=1) # set nonlinear equality constraints if self.__gnl is not None: ocp.constraints.lh = np.zeros(self.__ns, ) ocp.constraints.uh = np.zeros(self.__ns, ) # terminal constraint: x_term = self.__p_operator(model.x) Jbx = ca.Function('Jbx', [model.x], [ca.jacobian(x_term, model.x)])(0.0) ocp.constraints.Jbx_e = Jbx.full() ocp.constraints.lbx_e = np.squeeze(self.__p_operator(xref).full(), axis=1) ocp.constraints.ubx_e = np.squeeze(self.__p_operator(xref).full(), axis=1) for option in list(opts.keys()): setattr(ocp.solver_options, option, opts[option]) self.__acados_ocp_solver = AcadosOcpSolver(ocp, json_file='acados_ocp_' + model.name + '.json') self.__acados_integrator = AcadosSimSolver(ocp, json_file='acados_ocp_' + model.name + '.json') # set initial guess self.__set_acados_initial_guess() return self.__acados_ocp_solver, self.__acados_integrator def __create_reference(self, wref, tuning, lam_g_ref): """ Create periodic reference and tuning data. """ # period of reference self.__Nref = len(wref['u']) # create reference and tuning sequence # for each starting point in period ref_pr = [] ref_du = [] ref_du_struct = [] H = [] q = [] for k in range(self.__Nref): # reference primal solution refk = [] for j in range(self.__N): refk += [ wref['x', (k + j) % self.__Nref], wref['u', (k + j) % self.__Nref] ] if 'us' in self.__vars: refk += [wref['us', (k + j) % self.__Nref]] refk.append(wref['x', (k + self.__N) % self.__Nref]) # reference dual solution lamgk = self.__g(0.0) lamgk['init'] = -lam_g_ref['dyn', (k - 1) % self.__Nref] for j in range(self.__N): lamgk['dyn', j] = lam_g_ref['dyn', (k + j) % self.__Nref] if 'g' in list(lamgk.keys()): lamgk['g', j] = lam_g_ref['g', (k + j) % self.__Nref] if 'h' in list(lamgk.keys()): lam_h = [lam_g_ref['h', (k + j) % self.__Nref]] if 'usc' in self.__vars: lam_h += [-self.__scost] # TODO not entirely correct lamgk['h', j] = ct.vertcat(*lam_h) lamgk['term'] = self.__p_operator( lam_g_ref['dyn', (k + self.__N - 1) % self.__Nref]) ref_pr.append(ct.vertcat(*refk)) ref_du.append(lamgk.cat) ref_du_struct.append(lamgk) if tuning is not None: H.append([ tuning['H'][(k + j) % self.__Nref] for j in range(self.__N) ]) q.append([ tuning['q'][(k + j) % self.__Nref] for j in range(self.__N) ]) self.__ref = ref_pr self.__ref_du = ref_du self.__ref_du_struct = ref_du_struct self.__Href = H self.__qref = q return None def __initialize_log(self): self.__log = { 'cpu': [], 'iter': [], 'f': [], 'status': [], 'sol_x': [], 'lam_x': [], 'lam_g': [], 'u0': [], 'nACtot': [], 'nAC': [], 'idx_AC': [], 'nAS': [] } return None def __extract_solver_stats(self): info = self.__sqp_solver.stats self.__log['cpu'].append(info['t_wall_total']) self.__log['iter'].append(info['iter_count']) self.__log['status'].append(info['return_status']) self.__log['sol_x'].append(info['x']) self.__log['lam_g'].append(info['lam_g']) self.__log['f'].append(info['f']) self.__log['u0'].append(self.__w(info['x'])['u', 0]) self.__log['nACtot'].append(info['nAC']) nAC, idx_AC = self.__detect_AC(self.__g(info['lam_g'])) self.__log['nAC'].append(nAC) self.__log['idx_AC'].append(nAC) self.__log['nAS'].append(info['nAS']) return None def __detect_AC(self, lam_g_opt): # optimal active set if 'h' in lam_g_opt.keys(): idx_opt = [ k for k in range(self.__h.size1_out(0) - self.__nsc) if lam_g_opt['h', 0][k] != 0 ] lam_g_ref = self.__g(self.__ref_du[self.__index]) idx_ref = [ k for k in range(self.__h.size1_out(0) - self.__nsc) if lam_g_ref['h', 0][k] != 0 ] else: idx_opt = [] idx_ref = [] # get number of active set changes nAC = len([k for k in idx_opt if k not in idx_ref]) nAC += len([k for k in idx_ref if k not in idx_opt]) return nAC, idx_opt def reset(self): self.__index = 0 self.__index_acados = 0 self.__initialize_log() self.__set_initial_guess() return None def __shift_initial_guess(self, w0, lam_g0): w_shifted = self.__w(0.0) lam_g_shifted = self.__g(0.0) lam_g_shifted['init'] = lam_g0['dyn', 0] # shift states and controls for i in range(self.__N): # shift primal solution w_shifted['x', i] = w0['x', i + 1] if i < self.__N - 1: w_shifted['u', i] = w0['u', i + 1] if 'us' in self.__vars: w_shifted['us', i] = w0['us', i + 1] if 'usc' in self.__vars: w_shifted['usc', i] = w0['usc', i + 1] # shift dual solution lam_g_shifted['dyn', i] = lam_g0['dyn', i + 1] for constr in ['g', 'h']: if constr in lam_g0.keys(): lam_g_shifted[constr, i] = lam_g0[constr, i + 1] # copy final interval w_shifted['x', self.__N] = w_shifted['x', self.__N - 1] w_shifted['u', self.__N - 1] = w_shifted['u', self.__N - 2] if 'us' in self.__vars: w_shifted['us', self.__N - 1] = w_shifted['us', self.__N - 2] if 'usc' in self.__vars: w_shifted['usc', self.__N - 1] = w_shifted['usc', self.__N - 2] lam_g_shifted['dyn', self.__N - 1] = lam_g_shifted['dyn', self.__N - 2] for constr in ['g', 'h']: if constr in lam_g0.keys(): lam_g_shifted[constr, self.__N - 1] = lam_g_shifted[constr, self.__N - 2] lam_g_shifted['term'] = lam_g0['term'] return w_shifted, lam_g_shifted def __shift_initial_guess_acados(self): for i in range(self.__N): x_prev = np.squeeze(self.__w_sol_acados['x', i + 1].full(), axis=1) self.__acados_ocp_solver.set(i, "x", x_prev) if i < self.__N - 1: u_prev = np.squeeze(self.__w_sol_acados['u', i + 1].full(), axis=1) if 'us' in self.__vars: u_prev = np.squeeze(ct.vertcat( u_prev, self.__w_sol_acados['us', i + 1]).full(), axis=1) self.__acados_ocp_solver.set(i, "u", u_prev) # initial guess in terminal stage on periodic trajectory idx = (self.__index_acados + self.__N) % self.__Nref # reference xref = np.squeeze(self.__ref[(idx + 1) % self.__Nref][:self.__nx], axis=1) uref = np.squeeze(self.__ref[idx][self.__nx:self.__nx + self.__nu + self.__ns], axis=1) self.__acados_ocp_solver.set(self.__N, "x", xref) self.__acados_ocp_solver.set(self.__N - 1, "u", uref) return None def __set_initial_guess(self): # create initial guess at steady state wref = self.__wref(self.__ref[self.__index]) w0 = self.__w(0.0) w0['x'] = wref['x'] w0['u'] = wref['u'] if 'us' in self.__vars: w0['us'] = wref['us'] self.__w0 = w0 # initial guess for multipliers self.__lam_g0 = self.__g(self.__ref_du[self.__index]) # acados solver initialization at reference if self.__acados_ocp_solver is not None: self.__set_acados_initial_guess() return None def __set_acados_reference(self): for i in range(self.__N): # periodic index idx = (self.__index_acados + i) % self.__Nref # reference xref = np.squeeze(self.__ref[idx][:self.__nx], axis=1) uref = np.squeeze(self.__ref[idx][self.__nx:self.__nx + self.__nu + self.__ns], axis=1) # construct output reference with gradient term yref = np.squeeze( ca.vertcat(xref,uref).full() - \ ct.mtimes( np.linalg.inv(self.__Href[idx][0]), # inverse of weighting matrix self.__qref[idx][0].T).full(), # gradient term axis = 1 ) self.__acados_ocp_solver.set(i, 'yref', yref) # update tuning matrix self.__acados_ocp_solver.cost_set(i, 'W', self.__Href[idx][0]) # update constraint bounds C = self.__S['C'][idx][:, :self.__nx] D = self.__S['C'][idx][:, self.__nx:] lg = -self.__S['e'][idx] + ct.mtimes(C, xref).full() + ct.mtimes( D, uref).full() ug = 1e8 - self.__S['e'][idx] + ct.mtimes( C, xref).full() + ct.mtimes(D, uref).full() self.__acados_ocp_solver.constraints_set(i, 'lg', np.squeeze(lg, axis=1)) self.__acados_ocp_solver.constraints_set(i, 'ug', np.squeeze(ug, axis=1)) # update terminal constraint idx = (self.__index_acados + self.__N) % self.__Nref x_term = np.squeeze(self.__p_operator(self.__ref[idx][:self.__nx]), axis=1) self.__acados_ocp_solver.set(self.__N, 'lbx', x_term) self.__acados_ocp_solver.set(self.__N, 'ubx', x_term) return None def __set_acados_initial_guess(self): for i in range(self.__N): # periodic index idx = (self.__index_acados + i) % self.__Nref # initialize at reference xref = np.squeeze(self.__ref[idx][:self.__nx], axis=1) uref = np.squeeze(self.__ref[idx][self.__nx:self.__nx + self.__nu + self.__ns], axis=1) # set initial guess self.__acados_ocp_solver.set(i, "x", xref) self.__acados_ocp_solver.set(i, "u", uref) # set dual initial guess ref_dual = self.__ref_du_struct[idx] self.__acados_ocp_solver.set(i, "pi", np.squeeze(ref_dual['dyn', i].full())) # the inequalities are internally organized in the following order: # [ lbu lbx lg lh ubu ubx ug uh ] lam_h = [] t = [] if i == 0: lam_h.append(ref_dual['init']) # lbx_0 t.append(np.zeros((self.__nx, ))) if 'h' in list(ref_dual.keys()): lam_lh = -ref_dual['h', 0][:ref_dual['h', 0].shape[0] - self.__nsc] lam_h.append(lam_lh) # lg t.append(self.__S['e'][idx % self.__Nref]) if 'g' in list(ref_dual.keys()): lam_h.append(ref_dual['g', 0]) # lh t.append(np.zeros((ref_dual['g', 0].shape[0], ))) if i == 0: lam_h.append(np.zeros((self.__nx, ))) # ubx_0 t.append(np.zeros((self.__nx, ))) if 'h' in list(ref_dual.keys()): lam_h.append( np.zeros((ref_dual['h', 0].shape[0] - self.__nsc, ))) # ug t.append(1e8 * np.ones((ref_dual['h', 0].shape[0] - self.__nsc, 1)) - self.__S['e'][idx]) if 'g' in list(ref_dual.keys()): lam_h.append(np.zeros((ref_dual['g', 0].shape[0], ))) # uh t.append(np.zeros((ref_dual['g', 0].shape[0], ))) if self.__nsc > 0: lam_sl = self.__scost - ct.mtimes(lam_lh.T, self.__Jsg).T lam_h.append(lam_sl) # ls lam_h.append(self.__scost) # us t.append(np.zeros((self.__nsc, ))) # slg > 0 t.append(np.zeros((self.__nsc, ))) # sug > 0 self.__acados_ocp_solver.set(i, "lam", np.squeeze(ct.vertcat(*lam_h).full())) self.__acados_ocp_solver.set(i, "t", np.squeeze(ct.vertcat(*t).full())) # terminal state idx = (self.__index_acados + self.__N) % self.__Nref xref = np.squeeze(self.__ref[idx][:self.__nx], axis=1) self.__acados_ocp_solver.set(self.__N, "x", xref) # terminal multipliers lam_term = np.squeeze( ct.vertcat(ref_dual['term'], np.zeros( (ref_dual['term'].shape[0], ))).full()) self.__acados_ocp_solver.set(self.__N, "lam", lam_term) return None @property def w(self): return self.__w @property def g_sol(self): return self.__g_sol @property def w_sol(self): return self.__w_sol @property def log(self): return self.__log @property def index(self): return self.__index @property def acados_ocp_solver(self): return self.__acados_ocp_solver @property def acados_integrator(self): return self.__acados_integrator @property def w_sol_acados(self): return self.__w_sol_acados
ocp.constraints.x0 = np.array([0.0, np.pi, 0.0, 0.0]) ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM' # FULL_CONDENSING_QPOASES ocp.solver_options.hessian_approx = 'EXACT' # GAUSS_NEWTON, EXACT ocp.solver_options.regularize_method = 'CONVEXIFY' # GAUSS_NEWTON, EXACT ocp.solver_options.integrator_type = 'ERK' ocp.solver_options.print_level = 0 ocp.solver_options.nlp_solver_type = 'SQP' # SQP_RTI, SQP # set prediction horizon ocp.solver_options.tf = Tf ocp_solver = AcadosOcpSolver(ocp, json_file='acados_ocp.json') for i in range(N): ocp_solver.set(i, "p", np.array([1.0])) simX = np.ndarray((N + 1, nx)) simU = np.ndarray((N, nu)) status = ocp_solver.solve() if status != 0: raise Exception('acados returned status {}. Exiting.'.format(status)) # get solution for i in range(N): simX[i, :] = ocp_solver.get(i, "x") simU[i, :] = ocp_solver.get(i, "u") simX[N, :] = ocp_solver.get(N, "x")
simX = np.ndarray((N + 1, nx)) simU = np.ndarray((N, nu)) # change options after creating ocp_solver ocp_solver.options_set("step_length", 0.99999) ocp_solver.options_set("globalization", "fixed_step") # fixed_step, merit_backtracking ocp_solver.options_set("tol_eq", 1e-2) ocp_solver.options_set("tol_stat", 1e-2) ocp_solver.options_set("tol_ineq", 1e-2) ocp_solver.options_set("tol_comp", 1e-2) # initialize solver for i in range(N): ocp_solver.set(i, "x", x0) status = ocp_solver.solve() if status not in [0, 2]: raise Exception('acados returned status {}. Exiting.'.format(status)) # get primal solution for i in range(N): simX[i, :] = ocp_solver.get(i, "x") simU[i, :] = ocp_solver.get(i, "u") simX[N, :] = ocp_solver.get(N, "x") print("inequality multipliers at stage 1") print(ocp_solver.get(1, "lam")) # inequality multipliers at stage 1 print("slack values at stage 1") print(ocp_solver.get(1, "t")) # slack values at stage 1
class MPC_controller(object): def __init__(self, quad_model, quad_constraints, t_horizon, n_nodes, sim_required=False): self.model = quad_model self.constraints = quad_constraints self.g_ = 9.8066 self.T = t_horizon self.N = n_nodes self.simulation_required = sim_required self.current_pose = None self.current_state = None self.dt = 0.05 self.rate = rospy.Rate(1 / self.dt) self.time_stamp = None self.trajectory_path = None self.current_twist = np.zeros(3) self.att_command = AttitudeTarget() self.att_command.type_mask = 128 # subscribers ## the robot state robot_state_sub_ = rospy.Subscriber('/robot_pose', Odometry, self.robot_state_callback) ## trajectory robot_trajectory_sub_ = rospy.Subscriber( '/robot_trajectory', itm_trajectory_msg, self.trajectory_command_callback) # publisher self.att_setpoint_pub = rospy.Publisher( '/mavros/setpoint_raw/attitude', AttitudeTarget, queue_size=1) # create a server server_ = rospy.Service('uav_mpc_server', SetBool, self.state_server) # setup optimizer self.quadrotor_optimizer_setup() # # It seems that thread cannot ensure the performance of the time self.att_thread = Thread(target=self.send_command, args=()) self.att_thread.daemon = True self.att_thread.start() def robot_state_callback(self, data): # robot state as [x, y, z, vx, vy, vz, [w, x, y, z]] self.current_state = np.array([ data.pose.pose.position.x, data.pose.pose.position.y, data.pose.pose.position.z, data.pose.pose.orientation.w, data.pose.pose.orientation.x, data.pose.pose.orientation.y, data.pose.pose.orientation.z, data.twist.twist.linear.x, data.twist.twist.linear.y, data.twist.twist.linear.z, ]).reshape(1, -1) def trajectory_command_callback(self, data): temp_traj = data.traj if data.size != len(temp_traj): rospy.logerr('Some data are lost') else: self.trajectory_path = np.zeros((data.size, 10)) for i in range(data.size): quaternion_ = self.rpy_to_quaternion( [temp_traj[i].roll, temp_traj[i].pitch, temp_traj[i].yaw]) self.trajectory_path[i] = np.array([ temp_traj[i].x, temp_traj[i].y, temp_traj[i].z, quaternion_[0], quaternion_[1], quaternion_[2], quaternion_[3], temp_traj[i].vx, temp_traj[i].vy, temp_traj[i].vz, ]) def quadrotor_optimizer_setup(self, ): Q_m_ = np.diag([ 10, 10, 10, 0.3, 0.3, 0.3, 0.3, 0.05, 0.05, 0.05, ]) # position, q, v P_m_ = np.diag([10, 10, 10, 0.05, 0.05, 0.05]) # only p and v R_m_ = np.diag([5.0, 5.0, 5.0, 0.6]) nx = self.model.x.size()[0] self.nx = nx nu = self.model.u.size()[0] self.nu = nu ny = nx + nu n_params = self.model.p.size()[0] if isinstance(self.model.p, ca.SX) else 0 acados_source_path = os.environ['ACADOS_SOURCE_DIR'] sys.path.insert(0, acados_source_path) # create OCP ocp = AcadosOcp() ocp.acados_include_path = acados_source_path + '/include' ocp.acados_lib_path = acados_source_path + '/lib' ocp.model = self.model ocp.dims.N = self.N ocp.solver_options.tf = self.T # initialize parameters ocp.dims.np = n_params ocp.parameter_values = np.zeros(n_params) # cost type ocp.cost.cost_type = 'LINEAR_LS' ocp.cost.cost_type_e = 'LINEAR_LS' ocp.cost.W = scipy.linalg.block_diag(Q_m_, R_m_) ocp.cost.W_e = P_m_ ocp.cost.Vx = np.zeros((ny, nx)) ocp.cost.Vx[:nx, :nx] = np.eye(nx) ocp.cost.Vu = np.zeros((ny, nu)) ocp.cost.Vu[-nu:, -nu:] = np.eye(nu) ocp.cost.Vx_e = np.zeros((nx - 4, nx)) # ocp.cost.Vx_e[:6, :6] = np.eye(6) ocp.cost.Vx_e[:3, :3] = np.eye(3) ocp.cost.Vx_e[-3:, -3:] = np.eye(3) # initial reference trajectory_ref x_ref = np.zeros(nx) x_ref[3] = 1.0 x_ref_e = np.zeros(nx - 4) u_ref = np.zeros(nu) u_ref[-1] = self.g_ ocp.cost.yref = np.concatenate((x_ref, u_ref)) ocp.cost.yref_e = x_ref_e # Set constraints ocp.constraints.lbu = np.array([ self.constraints.roll_rate_min, self.constraints.pitch_rate_min, self.constraints.yaw_rate_min, self.constraints.thrust_min ]) ocp.constraints.ubu = np.array([ self.constraints.roll_rate_max, self.constraints.pitch_rate_max, self.constraints.yaw_rate_max, self.constraints.thrust_max ]) ocp.constraints.idxbu = np.array([0, 1, 2, 3]) # initial state ocp.constraints.x0 = x_ref # solver options ocp.solver_options.qp_solver = 'FULL_CONDENSING_HPIPM' ocp.solver_options.hessian_approx = 'GAUSS_NEWTON' # explicit Runge-Kutta integrator ocp.solver_options.integrator_type = 'ERK' ocp.solver_options.print_level = 0 ocp.solver_options.nlp_solver_type = 'SQP' # 'SQP_RTI' ocp.solver_options.nlp_solver_max_iter = 400 # compile acados ocp ## files are stored in .ros/ json_file = os.path.join('./' + self.model.name + '_acados_ocp.json') self.solver = AcadosOcpSolver(ocp, json_file=json_file) if self.simulation_required: self.integrator = AcadosSimSolver(ocp, json_file=json_file) def mpc_estimation_loop(self, ): t1 = time.time() if self.trajectory_path is not None and self.current_state is not None: current_trajectory = self.trajectory_path u_des = np.array([0.0, 0.0, 0.0, self.g_]) self.solver.set( self.N, 'yref', np.concatenate( (current_trajectory[-1, :3], current_trajectory[-1, -3:]))) # self.solver.set(self.N, 'yref', current_trajectory[-1, :6]) for i in range(self.N): self.solver.set(i, 'yref', np.concatenate((current_trajectory[i], u_des))) self.solver.set(0, 'lbx', self.current_state.flatten()) self.solver.set(0, 'ubx', self.current_state.flatten()) # print(self.current_state) status = self.solver.solve() if status != 0: rospy.logerr("MPC cannot find a proper solution.") self.att_command.thrust = 0.5 self.att_command.body_rate.z = 0.0 self.att_command.body_rate.x = 0.0 self.att_command.body_rate.y = 0.0 # only for debug # print(self.trajectory_path) # print("----") # print(self.current_state) else: mpc_u_ = self.solver.get(0, 'u') # print(mpc_u_) # for i in range(self.N): # print(self.solver.get(i, 'x')) self.att_command.body_rate.x = mpc_u_[0] self.att_command.body_rate.y = mpc_u_[1] self.att_command.body_rate.z = mpc_u_[2] self.att_command.thrust = mpc_u_[3] / self.g_ - 0.5 # self.att_setpoint_pub.publish(self.att_command) else: if self.trajectory_path is None: rospy.loginfo("waiting trajectory") elif self.current_state is None: rospy.loginfo("waiting current state") else: rospy.loginfo("Unknown error") self.rate.sleep() # print(time.time()-t1) return True @staticmethod def quaternion_to_rpy(quaternion): q0, q1, q2, q3 = quaternion.w, quaternion.x, quaternion.y, quaternion.z roll_ = np.arctan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1**2 + q2**2)) pitch_ = np.arcsin(2 * (q0 * q2 - q3 * q1)) yaw_ = np.arctan2(2 * (q0 * q3 + q1 * q2), 1 - 2 * (q2**2 + q3**2)) return roll_, pitch_, yaw_ @staticmethod def rpy_to_quaternion(rqy): roll_, pitch_, yaw_ = rqy cy = np.cos(yaw_ * 0.5) sy = np.sin(yaw_ * 0.5) cp = np.cos(pitch_ * 0.5) sp = np.sin(pitch_ * 0.5) cr = np.cos(roll_ * 0.5) sr = np.sin(roll_ * 0.5) w_ = cr * cp * cy + sr * sp * sy x_ = sr * cp * cy - cr * sp * sy y_ = cr * sp * cy + sr * cp * sy z_ = cr * cp * sy - sr * sp * cy return np.array([w_, x_, y_, z_]) def state_server(self, req): return SetBoolResponse(True, 'MPC is ready') def send_command(self, ): rate = rospy.Rate(100) # Hz self.att_command.header = Header() while not rospy.is_shutdown(): # t2 = time.time() command_ = self.att_command # self.att_command.header.stamp = rospy.Time.now() self.att_setpoint_pub.publish(command_) try: # prevent garbage in console output when thread is killed rate.sleep() except rospy.ROSInterruptException: pass
'.json') acados_integrator = AcadosSimSolver(ocp, json_file='acados_ocp_' + model.name + '.json') simX = np.ndarray((N + 1, nx)) simU = np.ndarray((N, nu)) xcurrent = x0 simX[0, :] = xcurrent # closed loop for i in range(N): # solve ocp acados_ocp_solver.set(0, "lbx", xcurrent) acados_ocp_solver.set(0, "ubx", xcurrent) status = acados_ocp_solver.solve() if status != 0: raise Exception( 'acados acados_ocp_solver returned status {}. Exiting.'.format( status)) simU[i, :] = acados_ocp_solver.get(0, "u") # simulate system acados_integrator.set("x", xcurrent) acados_integrator.set("u", simU[i, :])
def main(cost_type='NONLINEAR_LS', hessian_approximation='EXACT', ext_cost_use_num_hess=0, integrator_type='ERK'): print(f"using: cost_type {cost_type}, integrator_type {integrator_type}") # create ocp object to formulate the OCP ocp = AcadosOcp() # set model model = export_pendulum_ode_model() ocp.model = model Tf = 1.0 nx = model.x.size()[0] nu = model.u.size()[0] ny = nx + nu ny_e = nx N = 20 ocp.dims.N = N # set cost Q = 2*np.diag([1e3, 1e3, 1e-2, 1e-2]) R = 2*np.diag([1e-2]) x = ocp.model.x u = ocp.model.u cost_W = scipy.linalg.block_diag(Q, R) if cost_type == 'LS': ocp.cost.cost_type = 'LINEAR_LS' ocp.cost.cost_type_e = 'LINEAR_LS' ocp.cost.Vx = np.zeros((ny, nx)) ocp.cost.Vx[:nx,:nx] = np.eye(nx) Vu = np.zeros((ny, nu)) Vu[4,0] = 1.0 ocp.cost.Vu = Vu ocp.cost.Vx_e = np.eye(nx) elif cost_type == 'NONLINEAR_LS': ocp.cost.cost_type = 'NONLINEAR_LS' ocp.cost.cost_type_e = 'NONLINEAR_LS' ocp.model.cost_y_expr = vertcat(x, u) ocp.model.cost_y_expr_e = x elif cost_type == 'EXTERNAL': ocp.cost.cost_type = 'EXTERNAL' ocp.cost.cost_type_e = 'EXTERNAL' ocp.model.cost_expr_ext_cost = vertcat(x, u).T @ cost_W @ vertcat(x, u) ocp.model.cost_expr_ext_cost_e = x.T @ Q @ x else: raise Exception('Unknown cost_type. Possible values are \'LS\' and \'NONLINEAR_LS\'.') if cost_type in ['LS', 'NONLINEAR_LS']: ocp.cost.yref = np.zeros((ny, )) ocp.cost.yref_e = np.zeros((ny_e, )) ocp.cost.W_e = Q ocp.cost.W = cost_W # set constraints Fmax = 80 ocp.constraints.constr_type = 'BGH' ocp.constraints.lbu = np.array([-Fmax]) ocp.constraints.ubu = np.array([+Fmax]) x0 = np.array([0.0, np.pi, 0.0, 0.0]) ocp.constraints.x0 = x0 ocp.constraints.idxbu = np.array([0]) ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM' # FULL_CONDENSING_QPOASES ocp.solver_options.hessian_approx = hessian_approximation ocp.solver_options.regularize_method = 'CONVEXIFY' ocp.solver_options.integrator_type = integrator_type if ocp.solver_options.integrator_type == 'GNSF': import json with open('../getting_started/common/' + model.name + '_gnsf_functions.json', 'r') as f: gnsf_dict = json.load(f) ocp.gnsf_model = gnsf_dict ocp.solver_options.qp_solver_cond_N = 5 # set prediction horizon ocp.solver_options.tf = Tf ocp.solver_options.nlp_solver_type = 'SQP' # SQP_RTI ocp.solver_options.ext_cost_num_hess = ext_cost_use_num_hess ocp_solver = AcadosOcpSolver(ocp, json_file = 'acados_ocp.json') # set NaNs as input to test reset() -> NOT RECOMMENDED!!! # ocp_solver.options_set('print_level', 2) for i in range(N): ocp_solver.set(i, 'x', np.NaN * np.ones((nx,))) ocp_solver.set(i, 'u', np.NaN * np.ones((nu,))) status = ocp_solver.solve() ocp_solver.print_statistics() # encapsulates: stat = ocp_solver.get_stats("statistics") if status == 0: raise Exception(f'acados returned status {status}, although NaNs were given.') else: print(f'acados returned status {status}, which is expected, since NaNs were given.') # RESET ocp_solver.reset() for i in range(N): ocp_solver.set(i, 'x', x0) if cost_type == 'EXTERNAL': # NOTE: hessian is wrt [u,x] if ext_cost_use_num_hess: for i in range(N): ocp_solver.cost_set(i, "ext_cost_num_hess", np.diag([0.04, 4000, 4000, 0.04, 0.04, ])) ocp_solver.cost_set(N, "ext_cost_num_hess", np.diag([4000, 4000, 0.04, 0.04, ])) simX = np.ndarray((N+1, nx)) simU = np.ndarray((N, nu)) status = ocp_solver.solve() ocp_solver.print_statistics() if status != 0: raise Exception(f'acados returned status {status} for cost_type {cost_type}\n' f'integrator_type = {integrator_type}.') # get solution for i in range(N): simX[i,:] = ocp_solver.get(i, "x") simU[i,:] = ocp_solver.get(i, "u") simX[N,:] = ocp_solver.get(N, "x")
ocp.solver_options.qp_solver_iter_max = 2000 # ocp.solver_options.qp_solver_warm_start = 1 # set prediction horizon ocp.solver_options.tf = Tf ocp_solver = AcadosOcpSolver(ocp, json_file = 'acados_ocp.json') # ocp_solver.options_set("qp_solver_warm_start", 1) simX = np.ndarray((N+1, nx)) simU = np.ndarray((N, nu)) # test setter ocp_solver.set(0, "u", 0.0) ocp_solver.set(0, "u", 0) ocp_solver.set(0, "u", np.array([0])) status = ocp_solver.solve() if status != 0: ocp_solver.print_statistics() # encapsulates: stat = ocp_solver.get_stats("statistics") raise Exception(f'acados returned status {status}.') # get solution for i in range(N): simX[i,:] = ocp_solver.get(i, "x") simU[i,:] = ocp_solver.get(i, "u") simX[N,:] = ocp_solver.get(N, "x")
ocp.constraints.idxbx_e = np.array(range(nx)) ocp.dims.nbx_e = nx ocp.solver_options.tf = Tf ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM' # FULL_CONDENSING_QPOASES ocp.solver_options.hessian_approx = 'GAUSS_NEWTON' ocp.solver_options.integrator_type = 'ERK' ocp.solver_options.nlp_solver_type = 'SQP' # SQP_RTI ocp_solver = AcadosOcpSolver(ocp, json_file = 'acados_ocp.json') # initial guess t_traj = np.linspace(0, Tf, N+1) x_traj = np.linspace(x0,xT,N+1) u_traj = np.ones((N,1))+np.random.rand(N,1)*1e-6 for n in range(N+1): ocp_solver.set(n, 'x', x_traj[n,:]) for n in range(N): ocp_solver.set(n, 'u', u_traj[n]) # solve status = ocp_solver.solve() if status != 0: raise Exception('acados returned status {}. Exiting.'.format(status)) # get solution stat_fields = ['time_tot', 'time_lin', 'time_qp', 'time_qp_solver_call', 'time_reg', 'sqp_iter'] for field in stat_fields: print(f"{field} : {ocp_solver.get_stats(field)}") simX = np.ndarray((N + 1, nx))
class Pmpc(object): def __init__(self, N, sys, cost, wref=None, tuning=None, lam_g_ref=None, sensitivities=None, options={}): """ Constructor """ # store construction data self.__N = N self.__vars = sys['vars'] self.__nx = sys['vars']['x'].shape[0] self.__nu = sys['vars']['u'].shape[0] # nonlinear inequalities slacks if 'us' in sys['vars']: self.__ns = sys['vars']['us'].shape[0] else: self.__ns = 0 # mpc slacks if 'usc' in sys['vars']: self.__nsc = sys['vars']['usc'].shape[0] self.__scost = sys['scost'] else: self.__nsc = 0 # store system dynamics self.__F = sys['f'] # store path constraints if 'h' in sys: self.__h = sys['h'] h_lin = self.__h(*self.__vars.values()) self.__h_x_idx = [ idx for idx in range(h_lin.shape[0]) if not True in ca.which_depends( h_lin[idx], ct.vertcat(*list(self.__vars.values())[1:])) ] else: self.__h = None # store slacked nonlinear inequality constraints if 'g' in sys: self.__gnl = sys['g'] self.__detect_state_dependent_constraints() else: self.__gnl = None self.__h_us_idx = [] # no nonlinear state-dependent constraints # store system sensitivities around steady state self.__S = sys['S'] self.__cost = cost # set options self.__options = self.__default_options() for option in options: if option in self.__options: self.__options[option] = options[option] else: raise ValueError( 'Unknown option for Pmpc class instance: "{}"'.format( option)) # detect cost-type if self.__cost.n_in() == 2: # cost function of the form: l(x,u) self.__type = 'economic' # no tuning required tuning = None if self.__options['hessian_approximation'] == 'gauss_newton': self.__options['hessian_approximation'] = 'exact' Logger.logger.warning( 'Gauss-Newton Hessian approximation cannot be applied for economic MPC problem. Switched to exact Hessian.' ) else: # cost function of the form: (w-wref)'*H*(w-wref) + q'w self.__type = 'tracking' # check if tuning matrices are provided assert tuning != None, 'Provide tuning matrices for tracking MPC!' # periodicity operator self.__p_operator = self.__options['p_operator'] self.__jac_p_operator = ca.Function('jac_p', [sys['vars']['x']], [ ca.jacobian(self.__p_operator(sys['vars']['x']), sys['vars']['x']) ]) self.__S = sensitivities # construct MPC solver self.__construct_solver() # periodic indexing self.__index = 0 self.__index_acados = 0 # create periodic reference assert wref != None, 'Provide reference trajectory!' self.__create_reference(wref, tuning, lam_g_ref) # initialize log self.__initialize_log() # initialize acados solvers self.__acados_ocp_solver = None self.__acados_integrator = None # solver initial guess self.__set_initial_guess() return None def __default_options(self): # default options opts = { 'hessian_approximation': 'exact', 'ipopt_presolve': False, 'max_iter': 2000, 'p_operator': ca.Function('p_operator', [self.__vars['x']], [self.__vars['x']]), 'slack_flag': 'none' } return opts def __construct_solver(self): """ Construct periodic MPC solver """ # system variables and dimensions x = self.__vars['x'] u = self.__vars['u'] # NLP parameters if self.__type == 'economic': # parameters self.__p = ct.struct_symMX([ ct.entry('x0', shape=(self.__nx, 1)), ct.entry('xN', shape=(self.__nx, 1)) ]) # reassign for brevity x0 = self.__p['x0'] xN = self.__p['xN'] if self.__type == 'tracking': ref_vars = (ct.entry('x', shape=(self.__nx, ), repeat=self.__N + 1), ct.entry('u', shape=(self.__nu, ), repeat=self.__N)) if 'us' in self.__vars: ref_vars += (ct.entry('us', shape=(self.__ns, ), repeat=self.__N), ) # reference trajectory wref = ct.struct_symMX([ref_vars]) nw = self.__nx + self.__nu + self.__ns tuning = ct.struct_symMX([ # tracking tuning ct.entry('H', shape=(nw, nw), repeat=self.__N), ct.entry('q', shape=(nw, 1), repeat=self.__N) ]) # parameters self.__p = ct.struct_symMX([ ct.entry('x0', shape=(self.__nx, )), ct.entry('wref', struct=wref), ct.entry('tuning', struct=tuning) ]) # reassign for brevity x0 = self.__p['x0'] wref = self.__p.prefix['wref'] tuning = self.__p.prefix['tuning'] xN = wref['x', -1] # NLP variables variables_entry = (ct.entry('x', shape=(self.__nx, ), repeat=self.__N + 1), ct.entry('u', shape=(self.__nu, ), repeat=self.__N)) if 'us' in self.__vars: variables_entry += (ct.entry('us', shape=(self.__ns, ), repeat=self.__N), ) self.__wref = ct.struct_symMX([variables_entry ]) # structure of reference if 'usc' in self.__vars: variables_entry += (ct.entry('usc', shape=(self.__nsc, ), repeat=self.__N), ) # nlp variables + bounds w = ct.struct_symMX([variables_entry]) # variable bounds are implemented as inequalities self.__lbw = w(-np.inf) self.__ubw = w(np.inf) # prepare dynamics and path constraints entry constraints_entry = (ct.entry('dyn', shape=(self.__nx, ), repeat=self.__N), ) if self.__gnl is not None: constraints_entry += (ct.entry('g', shape=self.__gnl.size1_out(0), repeat=self.__N), ) if self.__h is not None: constraints_entry += (ct.entry('h', shape=self.__h.size1_out(0), repeat=self.__N), ) # terminal constraint self.__nx_term = self.__p_operator.size1_out(0) # create general constraints structure g_struct = ct.struct_symMX([ ct.entry('init', shape=(self.__nx, 1)), constraints_entry, ct.entry('term', shape=(self.__nx_term, 1)) ]) # create symbolic constraint expressions map_args = collections.OrderedDict() map_args['x0'] = ct.horzcat(*w['x', :-1]) map_args['p'] = ct.horzcat(*w['u']) F_constr = ct.horzsplit(self.__F.map(self.__N)(**map_args)['xf']) # generate constraints constr = collections.OrderedDict() constr['dyn'] = [a - b for a, b in zip(F_constr, w['x', 1:])] if 'us' in self.__vars: map_args['us'] = ct.horzcat(*w['us']) if self.__gnl is not None: constr['g'] = ct.horzsplit( self.__gnl.map(self.__N)(*map_args.values())) if 'usc' in self.__vars: map_args['usc'] = ct.horzcat(*w['usc']) if self.__h is not None: constr['h'] = ct.horzsplit( self.__h.map(self.__N)(*map_args.values())) repeated_constr = list( itertools.chain.from_iterable(zip(*constr.values()))) term_constraint = self.__p_operator(w['x', -1] - xN) self.__g = g_struct( ca.vertcat(w['x', 0] - x0, *repeated_constr, term_constraint)) self.__lbg = g_struct(np.zeros(self.__g.shape)) self.__ubg = g_struct(np.zeros(self.__g.shape)) if self.__h is not None: self.__ubg['h', :] = np.inf for i in self.__h_us_idx + self.__h_x_idx: # rm constraints the only depend on x at k = 0 self.__lbg['h', 0, i] = -np.inf # nlp cost cost_map = self.__cost.map(self.__N) if self.__type == 'economic': cost_args = [ct.horzcat(*w['x', :-1]), ct.horzcat(*w['u'])] elif self.__type == 'tracking': if self.__ns != 0: cost_args_w = ct.horzcat(*[ ct.vertcat(w['x', k], w['u', k], w['us', k]) for k in range(self.__N) ]) cost_args_w_ref = ct.horzcat(*[ ct.vertcat(wref['x', k], wref['u', k], wref['us', k]) for k in range(self.__N) ]) else: cost_args_w = ct.horzcat(*[ ct.vertcat(w['x', k], w['u', k]) for k in range(self.__N) ]) cost_args_w_ref = ct.horzcat(*[ ct.vertcat(wref['x', k], wref['u', k]) for k in range(self.__N) ]) cost_args = [ cost_args_w, cost_args_w_ref, ct.horzcat(*tuning['H']), ct.horzcat(*tuning['q']) ] if self.__options['hessian_approximation'] == 'gauss_newton': if 'usc' not in self.__vars: hess_gn = ct.diagcat(*tuning['H'], ca.DM.zeros(self.__nx, self.__nx)) else: hess_block = list( itertools.chain.from_iterable( zip(tuning['H'], [ca.DM.zeros(self.__nsc, self.__nsc)] * self.__N))) hess_gn = ct.diagcat(*hess_block, ca.DM.zeros(self.__nx, self.__nx)) J = ca.sum2(cost_map(*cost_args)) # add cost on slacks if 'usc' in self.__vars: J += ca.sum2(ct.mtimes(self.__scost.T, ct.horzcat(*w['usc']))) # create solver prob = {'f': J, 'g': self.__g, 'x': w, 'p': self.__p} self.__w = w self.__g_fun = ca.Function('g_fun', [self.__w, self.__p], [self.__g]) # create IPOPT-solver instance if needed if self.__options['ipopt_presolve']: opts = { 'ipopt': { 'linear_solver': 'ma57', 'print_level': 0 }, 'expand': False } if Logger.logger.getEffectiveLevel() > 10: opts['ipopt']['print_level'] = 0 opts['print_time'] = 0 opts['ipopt']['sb'] = 'yes' self.__solver = ca.nlpsol('solver', 'ipopt', prob, opts) # create hessian approximation function if self.__options['hessian_approximation'] == 'gauss_newton': lam_g = ca.MX.sym('lam_g', self.__g.shape) # will not be used hess_approx = ca.Function('hess_approx', [self.__w, self.__p, lam_g], [hess_gn]) elif self.__options['hessian_approximation'] == 'exact': hess_approx = 'exact' # create sqp solver prob['lbg'] = self.__lbg prob['ubg'] = self.__ubg sqp_opts = { 'hessian_approximation': hess_approx, 'max_iter': self.__options['max_iter'] } self.__sqp_solver = sqp_method.Sqp(prob, sqp_opts) def step(self, x0): """ Compute periodic MPC feedback control for given initial condition. """ # reset periodic indexing if necessary self.__index = self.__index % len(self.__ref) # update nlp parameters p0 = self.__p(0.0) p0['x0'] = x0 if self.__type == 'economic': p0['xN'] = self.__ref[self.__index][-x0.shape[0]:] elif self.__type == 'tracking': p0['wref'] = self.__ref[self.__index] p0['tuning', 'H'] = self.__Href[self.__index] p0['tuning', 'q'] = self.__qref[self.__index] # pre-solve NLP with IPOPT for globalization if self.__options['ipopt_presolve']: ipopt_sol = self.__solver(x0=self.__w0, lbg=self.__lbg, ubg=self.__ubg, p=p0) self.__w0 = self.__w(ipopt_sol['x']) self.__lam_g0 = self.__g(ipopt_sol['lam_g']) # solve NLP sol = self.__sqp_solver.solve(self.__w0.cat, p0.cat, self.__lam_g0.cat) # store solution self.__g_sol = self.__g(self.__g_fun(sol['x'], p0)) self.__w_sol = self.__w(sol['x']) self.__extract_solver_stats() # shift reference self.__index += 1 # update initial guess self.__w0, self.__lam_g0 = self.__shift_initial_guess( self.__w_sol, self.__g(sol['lam_g'])) return self.__w_sol['u', 0] def step_acados(self, x0): # reset periodic indexing if necessary self.__index_acados = self.__index_acados % self.__Nref # format x0 x0 = np.squeeze(x0.full()) # update NLP parameters self.__acados_ocp_solver.set(0, "lbx", x0) self.__acados_ocp_solver.set(0, "ubx", x0) # update reference and tuning matrices self.__set_acados_reference() # solve status = self.__acados_ocp_solver.solve() # timings # np.append(self.__acados_times, self.__acados_ocp_solver.get_stats("time_tot")) print("acados timings: total: ", self.__acados_ocp_solver.get_stats("time_tot"), \ " lin: ", self.__acados_ocp_solver.get_stats("time_lin"), \ " sim: ", self.__acados_ocp_solver.get_stats("time_sim"), " qp: ", \ self.__acados_ocp_solver.get_stats("time_qp")) # if status != 0: # raise Exception('acados solver returned status {}. Exiting.'.format(status)) # save solution self.__w_sol_acados = self.__w(0.0) for i in range(self.__N): self.__w_sol_acados['x', i] = self.__acados_ocp_solver.get(i, "x") self.__w_sol_acados['u', i] = self.__acados_ocp_solver.get( i, "u")[:self.__nu] if 'us' in self.__vars: self.__w_sol_acados['us', i] = self.__acados_ocp_solver.get( i, "u")[self.__nu:] self.__w_sol_acados['x', self.__N] = self.__acados_ocp_solver.get( self.__N, "x") self.__extract_acados_solver_stats() # feedback policy u0 = self.__acados_ocp_solver.get(0, "u")[:self.__nu] # update initial guess self.__shift_initial_guess_acados() # shift index self.__index_acados += 1 return u0 def generate(self, dae=None, quad=None, name='tunempc', opts={}): """ Create embeddable NLP solver """ from acados_template import AcadosModel, AcadosOcp, AcadosOcpSolver, AcadosSimSolver # extract dimensions nx = self.__nx nu = self.__nu + self.__ns # treat slacks as pseudo-controls # extract reference ref = self.__ref xref = np.squeeze(self.__ref[0][:nx], axis=1) uref = np.squeeze(self.__ref[0][nx:nx + nu], axis=1) # sampling time self.__ts = opts['tf'] / self.__N # create acados model model = AcadosModel() model.x = ca.MX.sym('x', nx) model.u = ca.MX.sym('u', nu) model.p = [] model.name = name # detect input type if dae is None: model.f_expl_expr = self.__F(x0=model.x, p=model.u)['xf'] / self.__ts opts['integrator_type'] = 'ERK' opts['sim_method_num_stages'] = 1 opts['sim_method_num_steps'] = 1 else: n_in = dae.n_in() if n_in == 2: # xdot = f(x, u) if 'integrator_type' in opts: if opts['integrator_type'] in ['IRK', 'GNSF']: xdot = ca.MX.sym('xdot', nx) model.xdot = xdot model.f_impl_expr = xdot - dae(model.x, model.u[:self.__nu]) model.f_expl_expr = xdot elif opts['integrator_type'] == 'ERK': model.f_expl_expr = dae(model.x, model.u[:self.__nu]) else: raise ValueError('Provide numerical integrator type!') else: xdot = ca.MX.sym('xdot', nx) model.xdot = xdot model.f_expl_expr = xdot if n_in == 3: # f(xdot, x, u) = 0 model.f_impl_expr = dae(xdot, model.x, model.u[:self.__nu]) elif n_in == 4: # f(xdot, x, u, z) = 0 nz = dae.size1_in(3) z = ca.MX.sym('z', nz) model.z = z model.f_impl_expr = dae(xdot, model.x, model.u[:self.__nu], z) else: raise ValueError( 'Invalid number of inputs for system dynamics function.' ) if self.__gnl is not None: model.con_h_expr = self.__gnl(model.x, model.u[:self.__nu], model.u[self.__nu:]) if self.__type == 'economic': if quad is None: model.cost_expr_ext_cost = self.__cost( model.x, model.u[:self.__nu]) / self.__ts else: model.cost_expr_ext_cost = self.__cost(model.x, model.u[:self.__nu]) # create acados ocp ocp = AcadosOcp() ocp.model = model ny = nx + nu ny_e = nx if 'integrator_type' in opts and opts['integrator_type'] == 'GNSF': from acados_template import acados_dae_model_json_dump import os acados_dae_model_json_dump(model) # Set up Octave to be able to run the following: ## if using a virtual python env, the following lines can be added to the env/bin/activate script: # export OCTAVE_PATH=$OCTAVE_PATH:$ACADOS_INSTALL_DIR/external/casadi-octave # export OCTAVE_PATH=$OCTAVE_PATH:$ACADOS_INSTALL_DIR/interfaces/acados_matlab_octave/ # export OCTAVE_PATH=$OCTAVE_PATH:$ACADOS_INSTALL_DIR/interfaces/acados_matlab_octave/acados_template_mex/ # echo # echo "OCTAVE_PATH=$OCTAVE_PATH" status = os.system( "octave --eval \"convert({})\"".format("\'" + model.name + "_acados_dae.json\'")) # load gnsf from json with open(model.name + '_gnsf_functions.json', 'r') as f: import json gnsf_dict = json.load(f) ocp.gnsf_model = gnsf_dict # set horizon length ocp.dims.N = self.__N # set cost module if self.__type == 'economic': # set cost function type to external (provided in model) ocp.cost.cost_type = 'EXTERNAL' if quad is not None: ocp.solver_options.cost_discretization = 'INTEGRATOR' elif self.__type == 'tracking': # set weighting matrices ocp.cost.W = self.__Href[0][0] # set-up linear least squares cost ocp.cost.cost_type = 'LINEAR_LS' ocp.cost.W_e = np.zeros((nx, nx)) ocp.cost.Vx = np.zeros((ny, nx)) ocp.cost.Vx[:nx, :nx] = np.eye(nx) Vu = np.zeros((ny, nu)) Vu[nx:, :] = np.eye(nu) ocp.cost.Vu = Vu ocp.cost.Vx_e = np.eye(nx) ocp.cost.yref = np.squeeze( ca.vertcat(xref,uref).full() - \ ct.mtimes(np.linalg.inv(ocp.cost.W),self.__qref[0][0].T).full(), # gradient term axis = 1 ) ocp.cost.yref_e = np.zeros((ny_e, )) if n_in == 4: # DAE flag ocp.cost.Vz = np.zeros((ny, nz)) # if 'custom_hessian' in opts: # self.__custom_hessian = opts['custom_hessian'] # initial condition ocp.constraints.x0 = xref # set inequality constraints ocp.constraints.constr_type = 'BGH' if self.__S['C'] is not None: C = self.__S['C'][0][:, :nx] D = self.__S['C'][0][:, nx:] lg = -self.__S['e'][0] + ct.mtimes(C, xref).full() + ct.mtimes( D, uref).full() ug = 1e8 - self.__S['e'][0] + ct.mtimes( C, xref).full() + ct.mtimes(D, uref).full() ocp.constraints.lg = np.squeeze(lg, axis=1) ocp.constraints.ug = np.squeeze(ug, axis=1) ocp.constraints.C = C ocp.constraints.D = D if 'usc' in self.__vars: if 'us' in self.__vars: arg = [ self.__vars['x'], self.__vars['u'], self.__vars['us'], self.__vars['usc'] ] else: arg = [ self.__vars['x'], self.__vars['u'], self.__vars['usc'] ] Jsg = ca.Function( 'Jsg', [self.__vars['usc']], [ca.jacobian(self.__h(*arg), self.__vars['usc'])])(0.0) self.__Jsg = Jsg.full()[:-self.__nsc, :] ocp.constraints.Jsg = self.__Jsg ocp.cost.Zl = np.zeros((self.__nsc, )) ocp.cost.Zu = np.zeros((self.__nsc, )) ocp.cost.zl = np.squeeze(self.__scost.full(), axis=1) / self.__ts ocp.cost.zu = np.squeeze(self.__scost.full(), axis=1) / self.__ts # set nonlinear equality constraints if self.__gnl is not None: ocp.constraints.lh = np.zeros(self.__ns, ) ocp.constraints.uh = np.zeros(self.__ns, ) # terminal constraint: x_term = self.__p_operator(model.x) Jbx = ca.Function('Jbx', [model.x], [ca.jacobian(x_term, model.x)])(0.0) ocp.constraints.Jbx_e = Jbx.full() ocp.constraints.lbx_e = np.squeeze(self.__p_operator(xref).full(), axis=1) ocp.constraints.ubx_e = np.squeeze(self.__p_operator(xref).full(), axis=1) for option in list(opts.keys()): if hasattr(ocp.solver_options, option): setattr(ocp.solver_options, option, opts[option]) self.__acados_ocp_solver = AcadosOcpSolver(ocp, json_file='acados_ocp_' + model.name + '.json') self.__acados_integrator = AcadosSimSolver(ocp, json_file='acados_ocp_' + model.name + '.json') # set initial guess self.__set_acados_initial_guess() return self.__acados_ocp_solver, self.__acados_integrator def __create_reference(self, wref, tuning, lam_g_ref): """ Create periodic reference and tuning data. """ # period of reference self.__Nref = len(wref['u']) # create reference and tuning sequence # for each starting point in period ref_pr = [] ref_du = [] ref_du_struct = [] H = [] q = [] for k in range(self.__Nref): # reference primal solution refk = [] for j in range(self.__N): refk += [ wref['x', (k + j) % self.__Nref], wref['u', (k + j) % self.__Nref] ] if 'us' in self.__vars: refk += [wref['us', (k + j) % self.__Nref]] refk.append(wref['x', (k + self.__N) % self.__Nref]) # reference dual solution lamgk = self.__g(0.0) lamgk['init'] = -lam_g_ref['dyn', (k - 1) % self.__Nref] for j in range(self.__N): lamgk['dyn', j] = lam_g_ref['dyn', (k + j) % self.__Nref] if 'g' in list(lamgk.keys()): lamgk['g', j] = lam_g_ref['g', (k + j) % self.__Nref] if 'h' in list(lamgk.keys()): lam_h = [lam_g_ref['h', (k + j) % self.__Nref]] if 'usc' in self.__vars: lam_h += [-self.__scost] # TODO not entirely correct lamgk['h', j] = ct.vertcat(*lam_h) lamgk['term'] = self.__p_operator( lam_g_ref['dyn', (k + self.__N - 1) % self.__Nref]) # adjust dual solution of terminal constraint is projected if self.__nx_term != self.__nx: # find new terminal multiplier A_m = [] b_m = [] A_factor = ca.DM.eye(self.__nx) for j in range(self.__N): A_m.append( ct.mtimes( ct.mtimes( self.__S['B'][(self.__N - j - 1) % self.__Nref].T, A_factor), self.__jac_p_operator(ca.DM.ones(self.__nx, 1)).T)) b_m.append( ct.mtimes( ct.mtimes( self.__S['B'][(self.__N - j - 1) % self.__Nref].T, A_factor), lam_g_ref['dyn', (k + self.__N - 1) % self.__Nref])) A_factor = ct.mtimes( self.__S['A'][(self.__N - j - 1) % self.__Nref].T, A_factor) A_m = ct.vertcat(*A_m) b_m = ct.vertcat(*b_m) LI_indeces = [ ] # indeces of first full rank number linearly independent rows R0 = 0 for i in range(A_m.shape[0]): R = np.linalg.matrix_rank(A_m[LI_indeces + [i], :]) if R > R0: LI_indeces.append(i) R0 = R lamgk['term'] = ca.solve(A_m[LI_indeces, :], b_m[LI_indeces, :]) # recursively update dynamics multipliers delta_lam = -lam_g_ref['dyn', (k + self.__N - 1) % self.__Nref] + ct.mtimes( self.__jac_p_operator( ca.DM.ones(self.__nx, 1)).T, lamgk['term']) lamgk['dyn', self.__N - 1] += delta_lam for j in range(1, self.__N + 1): delta_lam = ct.mtimes( self.__S['A'][(self.__N - j) % self.__Nref].T, delta_lam) if j < self.__N: lamgk['dyn', self.__N - 1 - j] += delta_lam else: lamgk['init'] += -delta_lam ref_pr.append(ct.vertcat(*refk)) ref_du.append(lamgk.cat) ref_du_struct.append(lamgk) if tuning is not None: H.append([ tuning['H'][(k + j) % self.__Nref] for j in range(self.__N) ]) q.append([ tuning['q'][(k + j) % self.__Nref] for j in range(self.__N) ]) self.__ref = ref_pr self.__ref_du = ref_du self.__ref_du_struct = ref_du_struct self.__Href = H self.__qref = q return None def __initialize_log(self): self.__log = { 'cpu': [], 'iter': [], 'f': [], 'status': [], 'sol_x': [], 'lam_x': [], 'lam_g': [], 'u0': [], 'nACtot': [], 'nAC': [], 'idx_AC': [], 'nAS': [] } self.__log_acados = { 'time_tot': [], 'time_lin': [], 'time_sim': [], 'time_qp': [], 'sqp_iter': [], 'time_reg': [], 'time_qp_xcond': [], 'time_qp_solver_call': [], } return None def __extract_solver_stats(self): info = self.__sqp_solver.stats self.__log['cpu'].append(info['t_wall_total']) self.__log['iter'].append(info['iter_count']) self.__log['status'].append(info['return_status']) self.__log['sol_x'].append(info['x']) self.__log['lam_g'].append(info['lam_g']) self.__log['f'].append(info['f']) self.__log['u0'].append(self.__w(info['x'])['u', 0]) self.__log['nACtot'].append(info['nAC']) nAC, idx_AC = self.__detect_AC(self.__g(info['lam_g'])) self.__log['nAC'].append(nAC) self.__log['idx_AC'].append(nAC) self.__log['nAS'].append(info['nAS']) return None def __extract_acados_solver_stats(self): for key in list(self.__log_acados.keys()): self.__log_acados[key].append( self.__acados_ocp_solver.get_stats(key)) return None def __detect_AC(self, lam_g_opt): # optimal active set if 'h' in lam_g_opt.keys(): idx_opt = [ k for k in range(self.__h.size1_out(0) - self.__nsc) if lam_g_opt['h', 0][k] != 0 ] lam_g_ref = self.__g(self.__ref_du[self.__index]) idx_ref = [ k for k in range(self.__h.size1_out(0) - self.__nsc) if lam_g_ref['h', 0][k] != 0 ] else: idx_opt = [] idx_ref = [] # get number of active set changes nAC = len([k for k in idx_opt if k not in idx_ref]) nAC += len([k for k in idx_ref if k not in idx_opt]) return nAC, idx_opt def reset(self): self.__index = 0 self.__index_acados = 0 self.__initialize_log() self.__set_initial_guess() return None def __shift_initial_guess(self, w0, lam_g0): w_shifted = self.__w(0.0) lam_g_shifted = self.__g(0.0) lam_g_shifted['init'] = lam_g0['dyn', 0] # shift states and controls for i in range(self.__N): # shift primal solution w_shifted['x', i] = w0['x', i + 1] if i < self.__N - 1: w_shifted['u', i] = w0['u', i + 1] if 'us' in self.__vars: w_shifted['us', i] = w0['us', i + 1] if 'usc' in self.__vars: w_shifted['usc', i] = w0['usc', i + 1] # shift dual solution lam_g_shifted['dyn', i] = lam_g0['dyn', i + 1] for constr in ['g', 'h']: if constr in lam_g0.keys(): lam_g_shifted[constr, i] = lam_g0[constr, i + 1] # copy final interval w_shifted['x', self.__N] = w_shifted['x', self.__N - 1] w_shifted['u', self.__N - 1] = w_shifted['u', self.__N - 2] if 'us' in self.__vars: w_shifted['us', self.__N - 1] = w_shifted['us', self.__N - 2] if 'usc' in self.__vars: w_shifted['usc', self.__N - 1] = w_shifted['usc', self.__N - 2] lam_g_shifted['dyn', self.__N - 1] = lam_g_shifted['dyn', self.__N - 2] for constr in ['g', 'h']: if constr in lam_g0.keys(): lam_g_shifted[constr, self.__N - 1] = lam_g_shifted[constr, self.__N - 2] lam_g_shifted['term'] = lam_g0['term'] return w_shifted, lam_g_shifted def __shift_initial_guess_acados(self): for i in range(self.__N): x_prev = np.squeeze(self.__w_sol_acados['x', i + 1].full(), axis=1) self.__acados_ocp_solver.set(i, "x", x_prev) if i < self.__N - 1: u_prev = np.squeeze(self.__w_sol_acados['u', i + 1].full(), axis=1) if 'us' in self.__vars: u_prev = np.squeeze(ct.vertcat( u_prev, self.__w_sol_acados['us', i + 1]).full(), axis=1) self.__acados_ocp_solver.set(i, "u", u_prev) # initial guess in terminal stage on periodic trajectory idx = (self.__index_acados + self.__N) % self.__Nref # reference xref = np.squeeze(self.__ref[(idx + 1) % self.__Nref][:self.__nx], axis=1) uref = np.squeeze(self.__ref[idx][self.__nx:self.__nx + self.__nu + self.__ns], axis=1) self.__acados_ocp_solver.set(self.__N, "x", xref) self.__acados_ocp_solver.set(self.__N - 1, "u", uref) return None def __set_initial_guess(self): # create initial guess at steady state wref = self.__wref(self.__ref[self.__index]) w0 = self.__w(0.0) w0['x'] = wref['x'] w0['u'] = wref['u'] if 'us' in self.__vars: w0['us'] = wref['us'] self.__w0 = w0 # initial guess for multipliers self.__lam_g0 = self.__g(self.__ref_du[self.__index]) # acados solver initialization at reference if self.__acados_ocp_solver is not None: self.__set_acados_initial_guess() return None def __set_acados_reference(self): for i in range(self.__N): # periodic index idx = (self.__index_acados + i) % self.__Nref # reference xref = np.squeeze(self.__ref[idx][:self.__nx], axis=1) uref = np.squeeze(self.__ref[idx][self.__nx:self.__nx + self.__nu + self.__ns], axis=1) if self.__type == 'tracking': # construct output reference with gradient term yref = np.squeeze( ca.vertcat(xref,uref).full() - \ ct.mtimes( np.linalg.inv(self.__Href[idx][0]/self.__ts), # inverse of weighting matrix self.__qref[idx][0].T).full()/self.__ts, # gradient term axis = 1 ) self.__acados_ocp_solver.set(i, 'yref', yref) # update tuning matrix self.__acados_ocp_solver.cost_set( i, 'W', self.__Href[idx][0] / self.__ts) # set custom hessians if applicable # if self.__acados_ocp_solver.acados_ocp.solver_options.ext_cost_custom_hessian: # self.__acados_ocp_solver.cost_set(i, "cost_custom_hess", self.__custom_hessian[idx]) # update constraint bounds if self.__h is not None: C = self.__S['C'][idx][:, :self.__nx] D = self.__S['C'][idx][:, self.__nx:] lg = -self.__S['e'][idx] + ct.mtimes( C, xref).full() + ct.mtimes(D, uref).full() ug = 1e8 - self.__S['e'][idx] + ct.mtimes( C, xref).full() + ct.mtimes(D, uref).full() # remove constraints that depend on states only from first shooting node if i == 0: for k in range(D.shape[0]): if k in self.__h_us_idx + self.__h_x_idx: lg[k] += -1e8 self.__acados_ocp_solver.constraints_set( i, 'lg', np.squeeze(lg, axis=1)) self.__acados_ocp_solver.constraints_set( i, 'ug', np.squeeze(ug, axis=1)) # update terminal constraint idx = (self.__index_acados + self.__N) % self.__Nref x_term = np.squeeze(self.__p_operator(self.__ref[idx][:self.__nx]), axis=1) self.__acados_ocp_solver.set(self.__N, 'lbx', x_term) self.__acados_ocp_solver.set(self.__N, 'ubx', x_term) return None def __set_acados_initial_guess(self): # dual reference solution ref_dual = self.__ref_du_struct[self.__index_acados % self.__Nref] for i in range(self.__N): # periodic index idx = (self.__index_acados + i) % self.__Nref # initialize at reference xref = np.squeeze(self.__ref[idx][:self.__nx], axis=1) uref = np.squeeze(self.__ref[idx][self.__nx:self.__nx + self.__nu + self.__ns], axis=1) # set initial guess self.__acados_ocp_solver.set(i, "x", xref) self.__acados_ocp_solver.set(i, "u", uref) # set dual initial guess self.__acados_ocp_solver.set(i, "pi", np.squeeze(ref_dual['dyn', i].full())) # the inequalities are internally organized in the following order: # [ lbu lbx lg lh ubu ubx ug uh ] lam_h = [] t = [] if i == 0: lam_x0 = copy.deepcopy(ref_dual['init']) if 'h' in list(ref_dual.keys()): lam_lh0 = -ref_dual['h', i][:ref_dual['h', i].shape[0] - self.__nsc] t_lh0 = copy.deepcopy(self.__S['e'][idx % self.__Nref]) if i == 0: # set unused constraints at i=0 to be inactive C = self.__S['C'][idx][:, :self.__nx] D = self.__S['C'][idx][:, self.__nx:] for k in range(D.shape[0]): if k in self.__h_us_idx + self.__h_x_idx: lam_x0 += -ct.mtimes(lam_lh0[k], C[k, :]) lam_lh0[k] = 0.0 t_lh0[k] += 1e8 lam_lx0 = -copy.deepcopy(lam_x0) for k in range(self.__nx): if lam_lx0[k] < 0.0: lam_lx0[k] = 0.0 # assign multiplier to upper bound lam_h.append(lam_lx0) # lbx_0 t.append(np.zeros((self.__nx, ))) if 'h' in list(ref_dual.keys()): if i == 0: lam_lh = lam_lh0 t_lh = t_lh0 else: lam_lh = -ref_dual['h', i][:ref_dual['h', i].shape[0] - self.__nsc] t_lh = copy.deepcopy(self.__S['e'][idx % self.__Nref]) lam_h.append(lam_lh) # lg t.append(t_lh) if 'g' in list(ref_dual.keys()): lam_lg0 = -ref_dual['g', i] lam_ug0 = np.zeros(lam_lg0.shape) for k in range(lam_lg0.shape[0]): if lam_lg0[k] < 0.0: lam_ug0[k] = -lam_lg0[k] lam_lg0[k] = 0.0 lam_h.append(lam_lg0) # lh t.append(np.zeros((ref_dual['g', i].shape[0], ))) if i == 0: lam_ux0 = copy.deepcopy(lam_x0) for k in range(self.__nx): if lam_ux0[k] < 0.0: lam_ux0[k] = 0.0 # assign multiplier to lower bound lam_h.append(lam_ux0) # ubx_0 t.append(np.zeros((self.__nx, ))) if 'h' in list(ref_dual.keys()): lam_h.append( np.zeros((ref_dual['h', i].shape[0] - self.__nsc, ))) # ug t.append(1e8 * np.ones((ref_dual['h', i].shape[0] - self.__nsc, 1)) - self.__S['e'][idx]) if 'g' in list(ref_dual.keys()): lam_h.append(lam_ug0) # uh t.append(np.zeros((ref_dual['g', i].shape[0], ))) if self.__nsc > 0: lam_sl = self.__scost - ct.mtimes(lam_lh.T, self.__Jsg).T lam_h.append(lam_sl) # ls lam_h.append(self.__scost) # us t.append(np.zeros((self.__nsc, ))) # slg > 0 t.append(np.zeros((self.__nsc, ))) # sug > 0 if len(lam_h) != 0: self.__acados_ocp_solver.set( i, "lam", np.squeeze(ct.vertcat(*lam_h).full())) self.__acados_ocp_solver.set(i, "t", np.squeeze(ct.vertcat(*t).full())) # terminal state idx = (self.__index_acados + self.__N) % self.__Nref xref = np.squeeze(self.__ref[idx][:self.__nx], axis=1) self.__acados_ocp_solver.set(self.__N, "x", xref) # terminal multipliers lam_lterm = -ref_dual['term'] lam_uterm = np.zeros((ref_dual['term'].shape[0], )) for k in range(lam_lterm.shape[0]): if lam_lterm[k] < 0.0: lam_uterm[k] = -lam_lterm[k] lam_lterm[k] = 0.0 lam_term = np.squeeze(ct.vertcat(lam_lterm, lam_uterm).full()) self.__acados_ocp_solver.set(self.__N, "lam", lam_term) return None def __detect_state_dependent_constraints(self): """ Detect which nonlinear equalities depend on states but not on controls. """ g_nl = self.__gnl(self.__vars['x'], self.__vars['u'], self.__vars['us']) self.__gnl_x_idx = [] for i in range(g_nl.shape[0]): if not True in ca.which_depends(g_nl[i], self.__vars['u'], 1): self.__gnl_x_idx.append(i) self.__h_us_idx = [ idx + self.__h.size1_out(0) - self.__ns for idx in self.__gnl_x_idx ] return None @property def w(self): return self.__w @property def g_sol(self): return self.__g_sol @property def w_sol(self): return self.__w_sol @property def log(self): return self.__log @property def log_acados(self): return self.__log_acados @property def index(self): return self.__index @property def acados_ocp_solver(self): return self.__acados_ocp_solver @property def acados_integrator(self): return self.__acados_integrator @property def w_sol_acados(self): return self.__w_sol_acados
class QuadOptimizer: def __init__(self, quad_model, quad_constraints, t_horizon, n_nodes, sim_required=False, max_hight=1.0): self.model = quad_model self.constraints = quad_constraints self.g = 9.8066 self.T = t_horizon self.N = n_nodes self.simulation_required = sim_required robot_name_ = rospy.get_param("~robot_name", "bebop1_r") self.current_pose = None self.current_state = np.zeros((13, 1)) self.dt = 0.02 self.rate = rospy.Rate(1 / self.dt) self.time_stamp = None self.trajectory_path = None self.current_twist = np.zeros(3) self.att_command = AttitudeTarget() self.att_command.type_mask = 3 self.pendulum_state = np.zeros(4) # subscribers # the robot state robot_state_sub_ = rospy.Subscriber('/robot_pose', Odometry, self.robot_state_callback) # pendulum state pendulum_state_sub_ = rospy.Subscriber('/pendulum_pose', Odometry, self.pendulum_state_callback) # trajectory robot_trajectory_sub_ = rospy.Subscriber( '/robot_trajectory', itm_trajectory_msg, self.trajectory_command_callback) # publisher self.att_setpoint_pub = rospy.Publisher( '/mavros/setpoint_raw/attitude', AttitudeTarget, queue_size=1) # create a server server_ = rospy.Service('uav_mpc_server', SetBool, self.state_server) # setup optimizer self.quadrotor_optimizer_setup() # # It seems that thread cannot ensure the performance of the time self.att_thread = Thread(target=self.send_command, args=()) self.att_thread.daemon = True self.att_thread.start() def robot_state_callback(self, data): # robot state as [x, y, z, vx, vy, vz, roll, pitch, yaw] roll, pitch, yaw = self.quaternion_to_rpy(data.pose.pose.orientation) # self.current_state[:6] = np.array([data.pose.pose.position.x, data.pose.pose.position.y, data.pose.pose.position.z, # data.twist.twist.linear.x, data.twist.twist.linear.y, data.twist.twist.linear.z]).reshape(6,1) # self.current_state[-3:] = np.array([roll, pitch, yaw]).reshape(3,1) self.current_state = np.array([ data.pose.pose.position.x, data.pose.pose.position.y, data.pose.pose.position.z, data.twist.twist.linear.x, data.twist.twist.linear.y, data.twist.twist.linear.z, data.pose.pose.position.x, data.pose.pose.position.y, 0., 0., roll, pitch, yaw ], dtype=np.float64) def pendulum_state_callback(self, data): # pendulum state as [x, y, z, vx, vy, vz, s, r, ds, dr, roll, pitch, yaw] s, r = data.pose.pose.position.x, data.pose.pose.position.y ds, dr = data.twist.twist.linear.x, data.twist.twist.linear.y # self.current_state[7:10] = np.array([s, r, ds, dr]).reshape(4, 1) self.pendulum_state = np.array([s, r, ds, dr]) # .reshape(4, 1) # self.current_state_pendulum = np.array([self.current_state[0], self.current_state[1], self.current_state[2], # self.current_state[3], self.current_state[4], self.current_state[5], # s, r, ds, dr, # self.current_state[10], self.current_state[11], self.current_state[12]], dtype=np.float64) def trajectory_command_callback(self, data): temp_traj = data.traj if data.size != len(temp_traj): rospy.logerr('Some data are lost') else: self.trajectory_path = np.zeros((data.size, 13)) for i in range(data.size): self.trajectory_path[i] = np.array([ temp_traj[i].x, temp_traj[i].y, temp_traj[i].z, temp_traj[i].vx, temp_traj[i].vy, temp_traj[i].vz, temp_traj[i].load_x, temp_traj[i].load_y, temp_traj[i].load_vx, temp_traj[i].load_vy, temp_traj[i].roll, temp_traj[i].pitch, temp_traj[i].yaw, ]) def quadrotor_optimizer_setup(self, ): # Q_m_ = np.diag([80.0, 80.0, 120.0, 20.0, 20.0, # 30.0, 10.0, 10.0, 0.0]) # position, velocity, roll, pitch, (not yaw) # P_m_ = np.diag([86.21, 86.21, 120.95, # 6.94, 6.94, 11.04]) # only p and v # P_m_[0, 3] = 6.45 # P_m_[3, 0] = 6.45 # P_m_[1, 4] = 6.45 # P_m_[4, 1] = 6.45 # P_m_[2, 5] = 10.95 # P_m_[5, 2] = 10.95 # R_m_ = np.diag([50.0, 60.0, 1.0]) Q_m_ = np.diag( [ 10.0, 10.0, 10.0, 3e-1, 3e-1, 3e-1, #3e-1, 3e-1, 3e-2, 3e-2, 100.0, 100.0, 1e-3, 1e-3, 10.5, 10.5, 10.5 ] ) # position, velocity, load_position, load_velocity, [roll, pitch, yaw] P_m_ = np.diag([ 10.0, 10.0, 10.0, 0.05, 0.05, 0.05 # 10.0, 10.0, 10.0, # 0.05, 0.05, 0.05 ]) # only p and v # P_m_[0, 8] = 6.45 # P_m_[8, 0] = 6.45 # P_m_[1, 9] = 6.45 # P_m_[9, 1] = 6.45 # P_m_[2, 10] = 10.95 # P_m_[10, 2] = 10.95 R_m_ = np.diag([3.0, 3.0, 3.0, 1.0]) nx = self.model.x.size()[0] self.nx = nx nu = self.model.u.size()[0] self.nu = nu ny = nx + nu n_params = self.model.p.size()[0] if isinstance(self.model.p, ca.SX) else 0 acados_source_path = os.environ['ACADOS_SOURCE_DIR'] sys.path.insert(0, acados_source_path) # create OCP ocp = AcadosOcp() ocp.acados_include_path = acados_source_path + '/include' ocp.acados_lib_path = acados_source_path + '/lib' ocp.model = self.model ocp.dims.N = self.N ocp.solver_options.tf = self.T # initialize parameters ocp.dims.np = n_params ocp.parameter_values = np.zeros(n_params) # cost type ocp.cost.cost_type = 'LINEAR_LS' ocp.cost.cost_type_e = 'LINEAR_LS' ocp.cost.W = scipy.linalg.block_diag(Q_m_, R_m_) ocp.cost.W_e = P_m_ # np.zeros((nx-3, nx-3)) ocp.cost.Vx = np.zeros((ny, nx)) ocp.cost.Vx[:nx, :nx] = np.eye(nx) ocp.cost.Vu = np.zeros((ny, nu)) ocp.cost.Vu[-nu:, -nu:] = np.eye(nu) ocp.cost.Vx_e = np.zeros((nx - 7, nx)) # only consider p and v ocp.cost.Vx_e[:nx - 7, :nx - 7] = np.eye(nx - 7) # initial reference trajectory_ref x_ref = np.zeros(nx) x_ref_e = np.zeros(nx - 7) u_ref = np.zeros(nu) u_ref[-1] = self.g ocp.cost.yref = np.concatenate((x_ref, u_ref)) ocp.cost.yref_e = x_ref_e # Set constraints ocp.constraints.lbu = np.array([ self.constraints.roll_min, self.constraints.pitch_min, self.constraints.yaw_min, self.constraints.thrust_min ]) ocp.constraints.ubu = np.array([ self.constraints.roll_max, self.constraints.pitch_max, self.constraints.yaw_max, self.constraints.thrust_max ]) ocp.constraints.idxbu = np.array([0, 1, 2, 3]) # initial state ocp.constraints.x0 = x_ref # solver options ocp.solver_options.qp_solver = 'FULL_CONDENSING_HPIPM' ocp.solver_options.hessian_approx = 'GAUSS_NEWTON' # explicit Runge-Kutta integrator ocp.solver_options.integrator_type = 'ERK' ocp.solver_options.print_level = 0 ocp.solver_options.nlp_solver_type = 'SQP' # 'SQP_RTI' ocp.solver_options.levenberg_marquardt = 0.12 # 0.0 # compile acados ocp json_file = os.path.join('./' + self.model.name + '_acados_ocp.json') self.solver = AcadosOcpSolver(ocp, json_file=json_file) if self.simulation_required: self.integrator = AcadosSimSolver(ocp, json_file=json_file) def mpc_estimation_loop(self, mpc_iter): if self.trajectory_path is not None and self.current_state is not None: t1 = time.time() # dt = 0.1 current_trajectory = self.trajectory_path u_des = np.array([0.0, 0.0, 0.0, self.g]) new_state = self.current_state # new_state[6:10] = self.pendulum_state new_state[6] = self.pendulum_state[0] - self.current_state[0] new_state[7] = self.pendulum_state[1] - self.current_state[1] new_state[8] = self.pendulum_state[2] - self.current_state[3] new_state[9] = self.pendulum_state[3] - self.current_state[4] simX[mpc_iter] = new_state # mpc_iter+1 ? simD[mpc_iter] = current_trajectory[0] l = 0.1 #print(np.rad2deg(np.arcsin(new_state[6]/l))) # print() # print("current state: ") # np.set_printoptions(suppress=True) # print(new_state) # print() # print("current trajectory: ") # print(current_trajectory[-1]) tra = current_trajectory[0] # error_xyz = np.linalg.norm(np.array([new_state[0] - tra[0], new_state[1] - tra[1], new_state[2] - tra[2]])) # print(error_xyz) self.solver.set(self.N, 'yref', current_trajectory[-1, :6]) for i in range(self.N): self.solver.set( i, 'yref', np.concatenate([current_trajectory[i].flatten(), u_des])) # self.solver.set(0, 'lbx', self.current_state) # self.solver.set(0, 'ubx', self.current_state) self.solver.set(0, 'lbx', new_state) self.solver.set(0, 'ubx', new_state) status = self.solver.solve() tarr[mpc_iter] = time.time() - t1 if status != 0: rospy.logerr("MPC cannot find a proper solution.") # self.solver.print_statistics() print() print("current state: ") np.set_printoptions(suppress=True) print(new_state) print() print("current trajectory: ") print(current_trajectory[0]) self.att_command.orientation = Quaternion( *self.rpy_to_quaternion(0.0, 0.0, 0.0, w_first=False)) #self.att_command.thrust = 0.5 self.att_command.thrust = 0.62 self.att_command.body_rate.z = 0.0 else: # print() # print("predicted trajectory:") # for i in range(self.N): # print(self.solver.get(i, 'x')) mpc_u_ = self.solver.get(0, 'u') simU[mpc_iter] = mpc_u_ quat_local_ = self.rpy_to_quaternion(mpc_u_[0], mpc_u_[1], mpc_u_[2], w_first=False) self.att_command.orientation.x = quat_local_[0] self.att_command.orientation.y = quat_local_[1] self.att_command.orientation.z = quat_local_[2] self.att_command.orientation.w = quat_local_[3] # print(self.att_command.orientation) #self.att_command.thrust = mpc_u_[3]/9.8066 - 0.5 # self.att_command.thrust = mpc_u_[3]/9.8066 - 0.38 self.att_command.thrust = mpc_u_[3] / 9.8066 * 0.6175 # print() # print("mpc_u: ") # print(mpc_u_) # print() # print("---------------------------------------") # print(self.att_command.thrust) # yaw_command_ = self.yaw_command(current_yaw_, trajectory_path_[1, -1], 0.0) # yaw_command_ = self.yaw_controller(trajectory_path_[1, -1]-current_yaw_) # self.att_command.angular.z = yaw_command_ #self.att_command.body_rate.z = 0.0 # self.att_setpoint_pub.publish(self.att_command) # print("time: ") # print(time.time()-time_1) else: if self.trajectory_path is None: rospy.loginfo("waiting trajectory") elif self.current_state is None: rospy.loginfo("waiting current state") else: rospy.loginfo("Unknown error") self.rate.sleep() return True @staticmethod def quaternion_to_rpy(quaternion): q0, q1, q2, q3 = quaternion.w, quaternion.x, quaternion.y, quaternion.z roll_ = np.arctan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1**2 + q2**2)) pitch_ = np.arcsin(2 * (q0 * q2 - q3 * q1)) yaw_ = np.arctan2(2 * (q0 * q3 + q1 * q2), 1 - 2 * (q2**2 + q3**2)) return roll_, pitch_, yaw_ @staticmethod def state_server(req): return SetBoolResponse(True, 'MPC is ready') @staticmethod def rpy_to_quaternion(r, p, y, w_first=True): cy = np.cos(y * 0.5) sy = np.sin(y * 0.5) cp = np.cos(p * 0.5) sp = np.sin(p * 0.5) cr = np.cos(r * 0.5) sr = np.sin(r * 0.5) qw = cr * cp * cy + sr * sp * sy qx = sr * cp * cy - cr * sp * sy qy = cr * sp * cy + sr * cp * sy qz = cr * cp * sy - sr * sp * cy if w_first: return np.array([qw, qx, qy, qz]) else: return np.array([qx, qy, qz, qw]) def send_command(self, ): rate = rospy.Rate(100) # Hz self.att_command.header = Header() while not rospy.is_shutdown(): # t2 = time.time() command_ = self.att_command # self.att_command.header.stamp = rospy.Time.now() self.att_setpoint_pub.publish(command_) try: # prevent garbage in console output when thread is killed rate.sleep() except rospy.ROSInterruptException: pass
def solve_marathos_ocp(setting): globalization = setting['globalization'] line_search_use_sufficient_descent = setting[ 'line_search_use_sufficient_descent'] globalization_use_SOC = setting['globalization_use_SOC'] qp_solver = setting['qp_solver'] # create ocp object to formulate the OCP ocp = AcadosOcp() # set model model = export_linear_mass_model() ocp.model = model nx = model.x.size()[0] nu = model.u.size()[0] ny = nu # discretization Tf = 2 N = 20 shooting_nodes = np.linspace(0, Tf, N + 1) ocp.dims.N = N # set cost Q = 2 * np.diag([]) R = 2 * np.diag([1e1, 1e1]) ocp.cost.W_e = Q ocp.cost.W = scipy.linalg.block_diag(Q, R) ocp.cost.cost_type = 'LINEAR_LS' ocp.cost.cost_type_e = 'LINEAR_LS' ocp.cost.Vx = np.zeros((ny, nx)) Vu = np.eye((nu)) ocp.cost.Vu = Vu ocp.cost.yref = np.zeros((ny, )) # set constraints Fmax = 5 ocp.constraints.lbu = -Fmax * np.ones((nu, )) ocp.constraints.ubu = +Fmax * np.ones((nu, )) ocp.constraints.idxbu = np.array(range(nu)) x0 = np.array([1e-1, 1.1, 0, 0]) ocp.constraints.x0 = x0 # terminal constraint x_goal = np.array([0, -1.1, 0, 0]) ocp.constraints.idxbx_e = np.array(range(nx)) ocp.constraints.lbx_e = x_goal ocp.constraints.ubx_e = x_goal if SOFTEN_TERMINAL: ocp.constraints.idxsbx_e = np.array(range(nx)) ocp.cost.zl_e = 1e4 * np.ones(nx) ocp.cost.zu_e = 1e4 * np.ones(nx) ocp.cost.Zl_e = 1e6 * np.ones(nx) ocp.cost.Zu_e = 1e6 * np.ones(nx) # add obstacle if OBSTACLE: obs_rad = 1.0 obs_x = 0.0 obs_y = 0.0 circle = (obs_x, obs_y, obs_rad) ocp.constraints.uh = np.array([100.0]) # doenst matter ocp.constraints.lh = np.array([obs_rad**2]) x_square = model.x[0]**OBSTACLE_POWER + model.x[1]**OBSTACLE_POWER ocp.model.con_h_expr = x_square # copy for terminal ocp.constraints.uh_e = ocp.constraints.uh ocp.constraints.lh_e = ocp.constraints.lh ocp.model.con_h_expr_e = ocp.model.con_h_expr else: circle = None # soften if OBSTACLE and SOFTEN_OBSTACLE: ocp.constraints.idxsh = np.array([0]) ocp.constraints.idxsh_e = np.array([0]) Zh = 1e6 * np.ones(1) zh = 1e4 * np.ones(1) ocp.cost.zl = zh ocp.cost.zu = zh ocp.cost.Zl = Zh ocp.cost.Zu = Zh ocp.cost.zl_e = np.concatenate((ocp.cost.zl_e, zh)) ocp.cost.zu_e = np.concatenate((ocp.cost.zu_e, zh)) ocp.cost.Zl_e = np.concatenate((ocp.cost.Zl_e, Zh)) ocp.cost.Zu_e = np.concatenate((ocp.cost.Zu_e, Zh)) # set options ocp.solver_options.qp_solver = qp_solver # FULL_CONDENSING_QPOASES # PARTIAL_CONDENSING_HPIPM, FULL_CONDENSING_QPOASES, FULL_CONDENSING_HPIPM, # PARTIAL_CONDENSING_QPDUNES, PARTIAL_CONDENSING_OSQP ocp.solver_options.hessian_approx = 'GAUSS_NEWTON' ocp.solver_options.integrator_type = 'ERK' # ocp.solver_options.print_level = 1 ocp.solver_options.nlp_solver_type = 'SQP' # SQP_RTI, SQP ocp.solver_options.globalization = globalization ocp.solver_options.alpha_min = 0.01 # ocp.solver_options.__initialize_t_slacks = 0 # ocp.solver_options.levenberg_marquardt = 1e-2 ocp.solver_options.qp_solver_cond_N = 0 ocp.solver_options.print_level = 1 ocp.solver_options.nlp_solver_max_iter = 200 ocp.solver_options.qp_solver_iter_max = 400 # NOTE: this is needed for PARTIAL_CONDENSING_HPIPM to get expected behavior qp_tol = 5e-7 ocp.solver_options.qp_solver_tol_stat = qp_tol ocp.solver_options.qp_solver_tol_eq = qp_tol ocp.solver_options.qp_solver_tol_ineq = qp_tol ocp.solver_options.qp_solver_tol_comp = qp_tol ocp.solver_options.qp_solver_ric_alg = 1 # ocp.solver_options.qp_solver_cond_ric_alg = 1 # set prediction horizon ocp.solver_options.tf = Tf ocp_solver = AcadosOcpSolver(ocp, json_file=f'{model.name}_ocp.json') ocp_solver.options_set('line_search_use_sufficient_descent', line_search_use_sufficient_descent) ocp_solver.options_set('globalization_use_SOC', globalization_use_SOC) ocp_solver.options_set('full_step_dual', 1) if INITIALIZE: # initialize solver # [ocp_solver.set(i, "x", x0 + (i/N) * (x_goal-x0)) for i in range(N+1)] [ocp_solver.set(i, "x", x0) for i in range(N + 1)] # [ocp_solver.set(i, "u", 2*(np.random.rand(2) - 0.5)) for i in range(N)] # solve status = ocp_solver.solve() ocp_solver.print_statistics( ) # encapsulates: stat = ocp_solver.get_stats("statistics") sqp_iter = ocp_solver.get_stats('sqp_iter')[0] print(f'acados returned status {status}.') # ocp_solver.store_iterate(f'it{ocp.solver_options.nlp_solver_max_iter}_{model.name}.json') # get solution simX = np.array([ocp_solver.get(i, "x") for i in range(N + 1)]) simU = np.array([ocp_solver.get(i, "u") for i in range(N)]) pi_multiplier = [ocp_solver.get(i, "pi") for i in range(N)] print(f"cost function value = {ocp_solver.get_cost()}") # print summary print(f"solved Marathos test problem with settings {setting}") print( f"cost function value = {ocp_solver.get_cost()} after {sqp_iter} SQP iterations" ) # print(f"alphas: {alphas[:iter]}") # print(f"total number of QP iterations: {sum(qp_iters[:iter])}") # max_infeasibility = np.max(residuals[1:3]) # print(f"max infeasibility: {max_infeasibility}") # checks if status != 0: raise Exception(f"acados solver returned status {status} != 0.") if globalization == "FIXED_STEP": if sqp_iter != 18: raise Exception( f"acados solver took {sqp_iter} iterations, expected 18.") elif globalization == "MERIT_BACKTRACKING": if globalization_use_SOC == 1 and line_search_use_sufficient_descent == 0 and sqp_iter not in range( 21, 23): raise Exception( f"acados solver took {sqp_iter} iterations, expected range(21, 23)." ) elif globalization_use_SOC == 1 and line_search_use_sufficient_descent == 1 and sqp_iter not in range( 21, 24): raise Exception( f"acados solver took {sqp_iter} iterations, expected range(21, 24)." ) elif globalization_use_SOC == 0 and line_search_use_sufficient_descent == 0 and sqp_iter not in range( 155, 165): raise Exception( f"acados solver took {sqp_iter} iterations, expected range(155, 165)." ) elif globalization_use_SOC == 0 and line_search_use_sufficient_descent == 1 and sqp_iter not in range( 160, 175): raise Exception( f"acados solver took {sqp_iter} iterations, expected range(160, 175)." ) if PLOT: plot_linear_mass_system_X_state_space(simX, circle=circle, x_goal=x_goal) plot_linear_mass_system_U(shooting_nodes, simU) # plot_linear_mass_system_X(shooting_nodes, simX) # import pdb; pdb.set_trace() print(f"\n\n----------------------\n")
def main(use_cython=True): # (very) simple crane model beta = 0.001 k = 0.9 a_max = 10 dt_max = 2.0 # states p1 = SX.sym('p1') v1 = SX.sym('v1') p2 = SX.sym('p2') v2 = SX.sym('v2') x = vertcat(p1, v1, p2, v2) # controls a = SX.sym('a') dt = SX.sym('dt') u = vertcat(a, dt) f_expl = dt * vertcat(v1, a, v2, -beta * v2 - k * (p2 - p1)) model = AcadosModel() model.f_expl_expr = f_expl model.x = x model.u = u model.name = 'crane_time_opt' # create ocp object to formulate the OCP x0 = np.array([2.0, 0.0, 2.0, 0.0]) xf = np.array([0.0, 0.0, 0.0, 0.0]) ocp = AcadosOcp() ocp.model = model # N - maximum number of bangs N = 7 Tf = N nx = model.x.size()[0] nu = model.u.size()[0] # set dimensions ocp.dims.N = N # set cost ocp.cost.cost_type = 'EXTERNAL' ocp.cost.cost_type_e = 'EXTERNAL' ocp.model.cost_expr_ext_cost = dt ocp.model.cost_expr_ext_cost_e = 0 ocp.constraints.lbu = np.array([-a_max, 0.0]) ocp.constraints.ubu = np.array([+a_max, dt_max]) ocp.constraints.idxbu = np.array([0, 1]) ocp.constraints.x0 = x0 ocp.constraints.lbx_e = xf ocp.constraints.ubx_e = xf ocp.constraints.idxbx_e = np.array([0, 1, 2, 3]) # set prediction horizon ocp.solver_options.tf = Tf # set options ocp.solver_options.qp_solver = 'FULL_CONDENSING_QPOASES' #'PARTIAL_CONDENSING_HPIPM' # FULL_CONDENSING_QPOASES ocp.solver_options.integrator_type = 'ERK' ocp.solver_options.print_level = 3 ocp.solver_options.nlp_solver_type = 'SQP' # SQP_RTI, SQP ocp.solver_options.globalization = 'MERIT_BACKTRACKING' ocp.solver_options.nlp_solver_max_iter = 5000 ocp.solver_options.nlp_solver_tol_stat = 1e-6 ocp.solver_options.levenberg_marquardt = 0.1 ocp.solver_options.sim_method_num_steps = 15 ocp.solver_options.qp_solver_iter_max = 100 ocp.code_export_directory = 'c_generated_code' ocp.solver_options.hessian_approx = 'EXACT' ocp.solver_options.exact_hess_constr = 0 ocp.solver_options.exact_hess_dyn = 0 if use_cython: AcadosOcpSolver.generate(ocp, json_file='acados_ocp.json') AcadosOcpSolver.build(ocp.code_export_directory, with_cython=True) ocp_solver = AcadosOcpSolver.create_cython_solver('acados_ocp.json') else: # ctypes ## Note: skip generate and build assuming this is done before (in cython run) ocp_solver = AcadosOcpSolver(ocp, json_file='acados_ocp.json', build=False, generate=False) ocp_solver.reset() for i, tau in enumerate(np.linspace(0, 1, N)): ocp_solver.set(i, 'x', (1 - tau) * x0 + tau * xf) ocp_solver.set(i, 'u', np.array([0.1, 0.5])) simX = np.zeros((N + 1, nx)) simU = np.zeros((N, nu)) status = ocp_solver.solve() if status != 0: ocp_solver.print_statistics() raise Exception(f'acados returned status {status}.') # get solution for i in range(N): simX[i, :] = ocp_solver.get(i, "x") simU[i, :] = ocp_solver.get(i, "u") simX[N, :] = ocp_solver.get(N, "x") dts = simU[:, 1] print( "acados solved OCP successfully, creating integrator to simulate the solution" ) # simulate on finer grid sim = AcadosSim() # set model sim.model = model # set options sim.solver_options.integrator_type = 'ERK' sim.solver_options.num_stages = 4 sim.solver_options.num_steps = 3 sim.solver_options.T = 1.0 # dummy value dt_approx = 0.0005 dts_fine = np.zeros((N, )) Ns_fine = np.zeros((N, ), dtype='int16') # compute number of simulation steps for bang interval + dt_fine for i in range(N): N_approx = max(int(dts[i] / dt_approx), 1) dts_fine[i] = dts[i] / N_approx Ns_fine[i] = int(round(dts[i] / dts_fine[i])) N_fine = int(np.sum(Ns_fine)) simU_fine = np.zeros((N_fine, nu)) ts_fine = np.zeros((N_fine + 1, )) simX_fine = np.zeros((N_fine + 1, nx)) simX_fine[0, :] = x0 acados_integrator = AcadosSimSolver(sim) k = 0 for i in range(N): u = simU[i, 0] acados_integrator.set("u", np.hstack((u, np.ones(1, )))) # set simulation time acados_integrator.set("T", dts_fine[i]) for j in range(Ns_fine[i]): acados_integrator.set("x", simX_fine[k, :]) status = acados_integrator.solve() if status != 0: raise Exception(f'acados returned status {status}.') simX_fine[k + 1, :] = acados_integrator.get("x") simU_fine[k, :] = u ts_fine[k + 1] = ts_fine[k] + dts_fine[i] k += 1 # visualize if os.environ.get('ACADOS_ON_TRAVIS'): plt.figure() state_labels = ['p1', 'v1', 'p2', 'v2'] for i, l in enumerate(state_labels): plt.subplot(5, 1, i + 1) plt.plot(ts_fine, simX_fine[:, i], label='time optimal solution') plt.grid(True) plt.ylabel(l) if i == 0: plt.legend(loc=1) plt.subplot(5, 1, 5) plt.step(ts_fine, np.hstack((simU_fine[:, 0], simU_fine[-1, 0])), '-', where='post') plt.grid(True) plt.ylabel('a') plt.xlabel('t') plt.show()
def solve_marathos_problem_with_setting(setting): globalization = setting['globalization'] line_search_use_sufficient_descent = setting[ 'line_search_use_sufficient_descent'] globalization_use_SOC = setting['globalization_use_SOC'] # create ocp object to formulate the OCP ocp = AcadosOcp() # set model model = AcadosModel() x1 = SX.sym('x1') x2 = SX.sym('x2') x = vertcat(x1, x2) # dynamics: identity model.disc_dyn_expr = x model.x = x model.u = SX.sym('u', 0, 0) # [] / None doesnt work model.p = [] model.name = f'marathos_problem' ocp.model = model # discretization Tf = 1 N = 1 ocp.dims.N = N ocp.solver_options.tf = Tf # cost ocp.cost.cost_type_e = 'EXTERNAL' ocp.model.cost_expr_ext_cost_e = x1 # constarints ocp.model.con_h_expr = x1**2 + x2**2 ocp.constraints.lh = np.array([1.0]) ocp.constraints.uh = np.array([1.0]) # # soften # ocp.constraints.idxsh = np.array([0]) # ocp.cost.zl = 1e5 * np.array([1]) # ocp.cost.zu = 1e5 * np.array([1]) # ocp.cost.Zl = 1e5 * np.array([1]) # ocp.cost.Zu = 1e5 * np.array([1]) # add bounds on x # nx = 2 # ocp.constraints.idxbx_0 = np.array(range(nx)) # ocp.constraints.lbx_0 = -2 * np.ones((nx)) # ocp.constraints.ubx_0 = 2 * np.ones((nx)) # set options ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM' # FULL_CONDENSING_QPOASES # PARTIAL_CONDENSING_HPIPM, FULL_CONDENSING_QPOASES, FULL_CONDENSING_HPIPM, # PARTIAL_CONDENSING_QPDUNES, PARTIAL_CONDENSING_OSQP ocp.solver_options.hessian_approx = 'EXACT' ocp.solver_options.integrator_type = 'DISCRETE' # ocp.solver_options.print_level = 1 ocp.solver_options.tol = TOL ocp.solver_options.nlp_solver_type = 'SQP' # SQP_RTI, SQP ocp.solver_options.globalization = globalization ocp.solver_options.alpha_min = 1e-2 # ocp.solver_options.__initialize_t_slacks = 0 # ocp.solver_options.regularize_method = 'CONVEXIFY' ocp.solver_options.levenberg_marquardt = 1e-1 # ocp.solver_options.print_level = 2 SQP_max_iter = 300 ocp.solver_options.qp_solver_iter_max = 400 ocp.solver_options.regularize_method = 'MIRROR' # ocp.solver_options.exact_hess_constr = 0 ocp.solver_options.line_search_use_sufficient_descent = line_search_use_sufficient_descent ocp.solver_options.globalization_use_SOC = globalization_use_SOC ocp.solver_options.eps_sufficient_descent = 1e-1 ocp.solver_options.qp_tol = 5e-7 if FOR_LOOPING: # call solver in for loop to get all iterates ocp.solver_options.nlp_solver_max_iter = 1 ocp_solver = AcadosOcpSolver(ocp, json_file=f'{model.name}.json') else: ocp.solver_options.nlp_solver_max_iter = SQP_max_iter ocp_solver = AcadosOcpSolver(ocp, json_file=f'{model.name}.json') # initialize solver rad_init = 0.1 #0.1 #np.pi / 4 xinit = np.array([np.cos(rad_init), np.sin(rad_init)]) # xinit = np.array([0.82120912, 0.58406911]) [ocp_solver.set(i, "x", xinit) for i in range(N + 1)] # solve if FOR_LOOPING: # call solver in for loop to get all iterates iterates = np.zeros((SQP_max_iter + 1, 2)) iterates[0, :] = xinit alphas = np.zeros((SQP_max_iter, )) qp_iters = np.zeros((SQP_max_iter, )) iter = SQP_max_iter residuals = np.zeros((4, SQP_max_iter)) # solve for i in range(SQP_max_iter): status = ocp_solver.solve() ocp_solver.print_statistics( ) # encapsulates: stat = ocp_solver.get_stats("statistics") # print(f'acados returned status {status}.') iterates[i + 1, :] = ocp_solver.get(0, "x") if status in [0, 4]: iter = i break alphas[i] = ocp_solver.get_stats('alpha')[1] qp_iters[i] = ocp_solver.get_stats('qp_iter')[1] residuals[:, i] = ocp_solver.get_stats('residuals') else: ocp_solver.solve() ocp_solver.print_statistics() iter = ocp_solver.get_stats('sqp_iter')[0] alphas = ocp_solver.get_stats('alpha')[1:] qp_iters = ocp_solver.get_stats('qp_iter') residuals = ocp_solver.get_stats('statistics')[1:5, 1:iter] # get solution solution = ocp_solver.get(0, "x") # print summary print(f"solved Marathos test problem with settings {setting}") print( f"cost function value = {ocp_solver.get_cost()} after {iter} SQP iterations" ) print(f"alphas: {alphas[:iter]}") print(f"total number of QP iterations: {sum(qp_iters[:iter])}") max_infeasibility = np.max(residuals[1:3]) print(f"max infeasibility: {max_infeasibility}") # compare to analytical solution exact_solution = np.array([-1, 0]) sol_err = max(np.abs(solution - exact_solution)) # checks if sol_err > TOL * 1e1: raise Exception( f"error of numerical solution wrt exact solution = {sol_err} > tol = {TOL*1e1}" ) else: print(f"matched analytical solution with tolerance {TOL}") try: if globalization == 'FIXED_STEP': # import pdb; pdb.set_trace() if max_infeasibility < 5.0: raise Exception( f"Expected max_infeasibility > 5.0 when using full step SQP on Marathos problem" ) if iter != 10: raise Exception( f"Expected 10 SQP iterations when using full step SQP on Marathos problem, got {iter}" ) if any(alphas[:iter] != 1.0): raise Exception( f"Expected all alphas = 1.0 when using full step SQP on Marathos problem" ) elif globalization == 'MERIT_BACKTRACKING': if max_infeasibility > 0.5: raise Exception( f"Expected max_infeasibility < 0.5 when using globalized SQP on Marathos problem" ) if globalization_use_SOC == 0: if FOR_LOOPING and iter != 57: raise Exception( f"Expected 57 SQP iterations when using globalized SQP without SOC on Marathos problem, got {iter}" ) elif line_search_use_sufficient_descent == 1: if iter not in range(29, 37): # NOTE: got 29 locally and 36 on Github actions. # On Github actions the inequality constraint was numerically violated in the beginning. # This leads to very different behavior, since the merit gradient is so different. # Github actions: merit_grad = -1.669330e+00, merit_grad_cost = -1.737950e-01, merit_grad_dyn = 0.000000e+00, merit_grad_ineq = -1.495535e+00 # Jonathan Laptop: merit_grad = -1.737950e-01, merit_grad_cost = -1.737950e-01, merit_grad_dyn = 0.000000e+00, merit_grad_ineq = 0.000000e+00 raise Exception( f"Expected SQP iterations in range(29, 37) when using globalized SQP with SOC on Marathos problem, got {iter}" ) else: if iter != 12: raise Exception( f"Expected 12 SQP iterations when using globalized SQP with SOC on Marathos problem, got {iter}" ) except Exception as inst: if FOR_LOOPING and globalization == "MERIT_BACKTRACKING": print( "\nAcados globalized OCP solver behaves different when for looping due to different merit function weights.", "Following exception is not raised\n") print(inst, "\n") else: raise (inst) if PLOT: plt.figure() axs = plt.plot(solution[0], solution[1], 'x', label='solution') if FOR_LOOPING: # call solver in for loop to get all iterates cm = plt.cm.get_cmap('RdYlBu') axs = plt.scatter(iterates[:iter + 1, 0], iterates[:iter + 1, 1], c=range(iter + 1), s=35, cmap=cm, label='iterates') plt.colorbar(axs) ts = np.linspace(0, 2 * np.pi, 100) plt.plot(1 * np.cos(ts) + 0, 1 * np.sin(ts) - 0, 'r') plt.axis('square') plt.legend() plt.title( f"Marathos problem with N = {N}, x formulation, SOC {globalization_use_SOC}" ) plt.show() print(f"\n\n----------------------\n")
def solve_armijo_problem_with_setting(setting): globalization = setting['globalization'] line_search_use_sufficient_descent = setting[ 'line_search_use_sufficient_descent'] globalization_use_SOC = setting['globalization_use_SOC'] # create ocp object to formulate the OCP ocp = AcadosOcp() # set model model = AcadosModel() x = SX.sym('x') # dynamics: identity model.disc_dyn_expr = x model.x = x model.u = SX.sym('u', 0, 0) # [] / None doesnt work model.p = [] model.name = f'armijo_problem' ocp.model = model # discretization Tf = 1 N = 1 ocp.dims.N = N ocp.solver_options.tf = Tf # cost ocp.cost.cost_type_e = 'EXTERNAL' ocp.model.cost_expr_ext_cost_e = x @ x ocp.model.cost_expr_ext_cost_custom_hess_e = 1.0 # 2.0 is the actual hessian # constarints ocp.constraints.idxbx = np.array([0]) ocp.constraints.lbx = np.array([-10.0]) ocp.constraints.ubx = np.array([10.0]) # options ocp.solver_options.qp_solver = 'FULL_CONDENSING_QPOASES' # 'PARTIAL_CONDENSING_HPIPM' # FULL_CONDENSING_QPOASES ocp.solver_options.hessian_approx = 'EXACT' ocp.solver_options.integrator_type = 'DISCRETE' ocp.solver_options.print_level = 0 ocp.solver_options.tol = TOL ocp.solver_options.nlp_solver_type = 'SQP' # SQP_RTI, SQP ocp.solver_options.globalization = globalization ocp.solver_options.alpha_reduction = 0.9 ocp.solver_options.line_search_use_sufficient_descent = line_search_use_sufficient_descent ocp.solver_options.globalization_use_SOC = globalization_use_SOC ocp.solver_options.eps_sufficient_descent = 5e-1 SQP_max_iter = 200 ocp.solver_options.qp_solver_iter_max = 400 ocp.solver_options.nlp_solver_max_iter = SQP_max_iter # create solver ocp_solver = AcadosOcpSolver(ocp, json_file=f'{model.name}.json') # initialize solver xinit = np.array([1.0]) [ocp_solver.set(i, "x", xinit) for i in range(N + 1)] # get stats status = ocp_solver.solve() ocp_solver.print_statistics() iter = ocp_solver.get_stats('sqp_iter')[0] alphas = ocp_solver.get_stats('alpha')[1:] qp_iters = ocp_solver.get_stats('qp_iter') print(f"acados ocp solver returned status {status}") # get solution solution = ocp_solver.get(0, "x") print(f"found solution {solution}") # print summary print(f"solved Armijo test problem with settings {setting}") print( f"cost function value = {ocp_solver.get_cost()} after {iter} SQP iterations" ) print(f"alphas: {alphas[:iter]}") print(f"total number of QP iterations: {sum(qp_iters[:iter])}") # compare to analytical solution exact_solution = np.array([0.0]) sol_err = max(np.abs(solution - exact_solution)) print(f"error wrt analytical solution {sol_err}") # checks if ocp.model.cost_expr_ext_cost_custom_hess_e == 1.0: if globalization == 'MERIT_BACKTRACKING': if sol_err > TOL * 1e1: raise Exception( f"error of numerical solution wrt exact solution = {sol_err} > tol = {TOL*1e1}" ) else: print(f"matched analytical solution with tolerance {TOL}") if status != 0: raise Exception( f"acados solver returned status {status} != 0.") if line_search_use_sufficient_descent == 1: if iter > 22: raise Exception(f"acados ocp solver took {iter} iterations." + \ "Expected <= 22 iterations for globalized SQP method with aggressive eps_sufficient_descent condition on Armijo test problem.") else: if iter < 64: raise Exception(f"acados ocp solver took {iter} iterations." + \ "Expected > 64 iterations for globalized SQP method without sufficient descent condition on Armijo test problem.") elif globalization == 'FIXED_STEP': if status != 2: raise Exception( f"acados solver returned status {status} != 2. Expected maximum iterations for full-step SQP on Armijo test problem." ) else: print( f"Sucess: Expected maximum iterations for full-step SQP on Armijo test problem." ) print(f"\n\n----------------------\n")
wpts = np.loadtxt(wpfile) num_wpts = wpts.shape[0] # looping for waypoint navigation pt_reached = -1 curr_wpt_state = np.zeros((n, )) while (pt_reached < num_wpts - 1): curr_wpt = wpts[pt_reached + 1, :] curr_wpt_state[0:3] = curr_wpt yref = np.hstack((curr_wpt_state, ue)) yref_e = curr_wpt_state x = get_drone_state((client.getMultirotorState()).kinematics_estimated, n) for num1 in range(N): ocp_solver.set(num1, "yref", yref) ocp_solver.set(N, "yref", yref_e) # print('hereout1') # ocp_solver = AcadosOcpSolver(ocp, json_file = 'acados_ocp.json') # print('hereout2') iter_num = 0 while (not_reached(curr_wpt_state, x, dist_check) and iter_num < max_iter): # get control status = ocp_solver.solve() # print('here%d'%iter_num) if status != 0: raise Exception( 'acados returned status {}. Exiting.'.format(status))
simU = np.ndarray((Nsim, nu)) simX_horizon = np.ndarray((Nsim, N, nx)) tcomp_sum = 0 tcomp_max = 0 time_iterations = np.zeros(Nsim) cost_integral = 0 # simulate for i in tqdm(range(Nsim)): actual_time = i * (T / Nsim) # update reference for j in range(N): acados_solver.set(j, "yref", yref) step_time = actual_time + j * (T / Nsim) acados_solver.set(j, 'y_ref', target_phase1) step_time = actual_time + N * (T / Nsim) acados_solver.set(N, 'y_ref', target_phase1[:4]) # solve ocp t = time.time() status = acados_solver.solve() #print(acados_solver.get_residuals()) #acados_solver.print_statistics() if status != 0: print("acados returned status {} in closed loop iteration {}.".format( status, i))
actual_time = i * (T / Nsim) x_noise = x0 + np.random.normal(0, noise_std, x0.shape) tau = -Kp_theta * (target_position[2] - x_noise[2]) - Kd_theta * ( target_position[5] - x_noise[5]) - Kp_phi * ( target_position[0] - x_noise[0]) - Kd_phi * (target_position[3] - x_noise[3]) f = mb * g * np.cos( x_noise[2]) + Kp_l * (target_position[1] - x_noise[1]) + Kd_l * ( target_position[4] - x_noise[4]) # update reference for j in range(N): acados_solver.set(j, "p", np.array([tau, f])) # solve ocp t = time.time() status = acados_solver.solve() if status != 0: raise Exception( "acados returned status {} in closed loop iteration {}.".format( status, i)) elapsed = time.time() - t time_iterations[i] = elapsed # manage timings tcomp_sum += elapsed
simU = np.ndarray((Nsim, nu)) simX_horizon = np.ndarray((Nsim, N, nx)) tcomp_sum = 0 tcomp_max = 0 time_iterations = np.zeros(Nsim) cost_integral = 0 # simulate for i in tqdm(range(Nsim)): actual_time = i * (T / Nsim) # update reference for j in range(N): acados_solver.set(j, "yref", yref) step_time = actual_time + j * (T / Nsim) if step_time < t1: acados_solver.set(j, 'y_ref', target_phase1) elif step_time < t2: acados_solver.set(j, 'y_ref', target_phase2) elif step_time < t3: acados_solver.set(j, 'y_ref', target_phase3) elif step_time < t4: acados_solver.set(j, 'y_ref', target_phase4) else: acados_solver.set(j, 'y_ref', target_phase5) if step_time > t2 and step_time < t3: acados_solver.constraints_set(j, 'lh', lower_flying) acados_solver.constraints_set(j, 'uh', upper_flying)
def run_closed_loop_experiment(FORMULATION): # create ocp object to formulate the OCP ocp = AcadosOcp() # set model model = export_pendulum_ode_model() ocp.model = model Tf = 1.0 nx = model.x.size()[0] nu = model.u.size()[0] ny = nx + nu ny_e = nx N = 20 # set dimensions # NOTE: all dimensions but N ar detected ocp.dims.N = N # set cost module ocp.cost.cost_type = 'LINEAR_LS' ocp.cost.cost_type_e = 'LINEAR_LS' Q = 2 * np.diag([1e3, 1e3, 1e-2, 1e-2]) R = 2 * np.diag([1e-2]) ocp.cost.W = scipy.linalg.block_diag(Q, R) ocp.cost.Vx = np.zeros((ny, nx)) ocp.cost.Vx[:nx, :nx] = np.eye(nx) Vu = np.zeros((ny, nu)) Vu[4, 0] = 1.0 ocp.cost.Vu = Vu ocp.cost.Vx_e = np.eye(nx) ocp.cost.W_e = Q ocp.cost.yref = np.zeros((ny, )) ocp.cost.yref_e = np.zeros((ny_e, )) ocp.cost.zl = 2000 * np.ones((1, )) ocp.cost.Zl = 1 * np.ones((1, )) ocp.cost.zu = 2000 * np.ones((1, )) ocp.cost.Zu = 1 * np.ones((1, )) # set constraints Fmax = 80 vmax = 5 x0 = np.array([0.0, np.pi, 0.0, 0.0]) ocp.constraints.x0 = x0 # bound on u ocp.constraints.lbu = np.array([-Fmax]) ocp.constraints.ubu = np.array([+Fmax]) ocp.constraints.idxbu = np.array([0]) if FORMULATION == 0: # soft bound on x ocp.constraints.lbx = np.array([-vmax]) ocp.constraints.ubx = np.array([+vmax]) ocp.constraints.idxbx = np.array([2]) # v is x[2] # indices of slacked constraints within bx ocp.constraints.idxsbx = np.array([0]) elif FORMULATION == 1: # soft bound on x, using constraint h v1 = ocp.model.x[2] ocp.model.con_h_expr = v1 ocp.constraints.lh = np.array([-vmax]) ocp.constraints.uh = np.array([+vmax]) # indices of slacked constraints within h ocp.constraints.idxsh = np.array([0]) # set options ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM' ocp.solver_options.hessian_approx = 'GAUSS_NEWTON' ocp.solver_options.integrator_type = 'ERK' ocp.solver_options.tf = Tf ocp.solver_options.nlp_solver_type = 'SQP' ocp.solver_options.tol = 1e-1 * tol json_filename = 'pendulum_soft_constraints.json' acados_ocp_solver = AcadosOcpSolver(ocp, json_file=json_filename) acados_integrator = AcadosSimSolver(ocp, json_file=json_filename) # closed loop Nsim = 20 simX = np.ndarray((Nsim + 1, nx)) simU = np.ndarray((Nsim, nu)) xcurrent = x0 for i in range(Nsim): simX[i, :] = xcurrent # solve ocp acados_ocp_solver.set(0, "lbx", xcurrent) acados_ocp_solver.set(0, "ubx", xcurrent) status = acados_ocp_solver.solve() if status != 0: raise Exception( 'acados acados_ocp_solver returned status {}. Exiting.'.format( status)) simU[i, :] = acados_ocp_solver.get(0, "u") # simulate system acados_integrator.set("x", xcurrent) acados_integrator.set("u", simU[i, :]) status = acados_integrator.solve() if status != 0: raise Exception( 'acados integrator returned status {}. Exiting.'.format( status)) # update state xcurrent = acados_integrator.get("x") simX[Nsim, :] = xcurrent # get slack values at stage 1 sl = acados_ocp_solver.get(1, "sl") su = acados_ocp_solver.get(1, "su") print("sl", sl, "su", su) # plot results # plot_pendulum(np.linspace(0, Tf, N+1), Fmax, simU, simX, latexify=False) # store results np.savetxt('test_results/simX_soft_formulation_' + str(FORMULATION), simX) np.savetxt('test_results/simU_soft_formulation_' + str(FORMULATION), simU) print("soft constraint example: ran formulation", FORMULATION, "successfully.")
def main(discretization='shooting_nodes'): # create ocp object to formulate the OCP ocp = AcadosOcp() # set model model = export_pendulum_ode_model() ocp.model = model integrator_type = 'LIFTED_IRK' # ERK, IRK, GNSF, LIFTED_IRK if integrator_type == 'GNSF': acados_dae_model_json_dump(model) # structure detection in Matlab/Octave -> produces 'pendulum_ode_gnsf_functions.json' status = os.system('octave detect_gnsf_from_json.m') # load gnsf from json with open(model.name + '_gnsf_functions.json', 'r') as f: gnsf_dict = json.load(f) ocp.gnsf_model = gnsf_dict Tf = 1.0 nx = model.x.size()[0] nu = model.u.size()[0] ny = nx + nu ny_e = nx N = 15 # discretization ocp.dims.N = N # shooting_nodes = np.linspace(0, Tf, N+1) time_steps = np.linspace(0, 1, N) time_steps = Tf * time_steps / sum(time_steps) shooting_nodes = np.zeros((N + 1, )) for i in range(len(time_steps)): shooting_nodes[i + 1] = shooting_nodes[i] + time_steps[i] # nonuniform discretizations can be defined either by shooting_nodes or time_steps: if discretization == 'shooting_nodes': ocp.solver_options.shooting_nodes = shooting_nodes elif discretization == 'time_steps': ocp.solver_options.time_steps = time_steps else: raise NotImplementedError( f"discretization type {discretization} not supported.") # set num_steps ocp.solver_options.sim_method_num_steps = 2 * np.ones((N, )) ocp.solver_options.sim_method_num_steps[0] = 3 # set num_stages ocp.solver_options.sim_method_num_stages = 2 * np.ones((N, )) ocp.solver_options.sim_method_num_stages[0] = 4 # set cost Q = 2 * np.diag([1e3, 1e3, 1e-2, 1e-2]) R = 2 * np.diag([1e-2]) ocp.cost.W_e = Q ocp.cost.W = scipy.linalg.block_diag(Q, R) ocp.cost.cost_type = 'LINEAR_LS' ocp.cost.cost_type_e = 'LINEAR_LS' ocp.cost.Vx = np.zeros((ny, nx)) ocp.cost.Vx[:nx, :nx] = np.eye(nx) Vu = np.zeros((ny, nu)) Vu[4, 0] = 1.0 ocp.cost.Vu = Vu ocp.cost.Vx_e = np.eye(nx) ocp.cost.yref = np.zeros((ny, )) ocp.cost.yref_e = np.zeros((ny_e, )) # set constraints Fmax = 80 ocp.constraints.lbu = np.array([-Fmax]) ocp.constraints.ubu = np.array([+Fmax]) x0 = np.array([0.0, np.pi, 0.0, 0.0]) ocp.constraints.x0 = x0 ocp.constraints.idxbu = np.array([0]) ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM' # FULL_CONDENSING_QPOASES ocp.solver_options.hessian_approx = 'GAUSS_NEWTON' ocp.solver_options.integrator_type = integrator_type ocp.solver_options.print_level = 0 ocp.solver_options.nlp_solver_type = 'SQP' # SQP_RTI, SQP # set prediction horizon ocp.solver_options.tf = Tf ocp.solver_options.initialize_t_slacks = 1 # Set additional options for Simulink interface: acados_path = get_acados_path() json_path = os.path.join(acados_path, 'interfaces/acados_template/acados_template') with open(json_path + '/simulink_default_opts.json', 'r') as f: simulink_opts = json.load(f) ocp_solver = AcadosOcpSolver(ocp, json_file='acados_ocp.json', simulink_opts=simulink_opts) # ocp_solver = AcadosOcpSolver(ocp, json_file = 'acados_ocp.json') simX = np.ndarray((N + 1, nx)) simU = np.ndarray((N, nu)) # change options after creating ocp_solver ocp_solver.options_set("step_length", 0.99999) ocp_solver.options_set("globalization", "fixed_step") # fixed_step, merit_backtracking ocp_solver.options_set("tol_eq", TOL) ocp_solver.options_set("tol_stat", TOL) ocp_solver.options_set("tol_ineq", TOL) ocp_solver.options_set("tol_comp", TOL) # initialize solver for i in range(N): ocp_solver.set(i, "x", x0) status = ocp_solver.solve() if status not in [0, 2]: raise Exception('acados returned status {}. Exiting.'.format(status)) # get primal solution for i in range(N): simX[i, :] = ocp_solver.get(i, "x") simU[i, :] = ocp_solver.get(i, "u") simX[N, :] = ocp_solver.get(N, "x") print("inequality multipliers at stage 1") print(ocp_solver.get(1, "lam")) # inequality multipliers at stage 1 print("slack values at stage 1") print(ocp_solver.get(1, "t")) # slack values at stage 1 print("multipliers of dynamic conditions between stage 1 and 2") print(ocp_solver.get( 1, "pi")) # multipliers of dynamic conditions between stage 1 and 2 # initialize ineq multipliers and slacks at stage 1 ocp_solver.set(1, "lam", np.zeros(2, )) ocp_solver.set(1, "t", np.zeros(2, )) ocp_solver.print_statistics( ) # encapsulates: stat = ocp_solver.get_stats("statistics") # timings time_tot = ocp_solver.get_stats("time_tot") time_lin = ocp_solver.get_stats("time_lin") time_sim = ocp_solver.get_stats("time_sim") time_qp = ocp_solver.get_stats("time_qp") print( f"timings OCP solver: total: {1e3*time_tot}ms, lin: {1e3*time_lin}ms, sim: {1e3*time_sim}ms, qp: {1e3*time_qp}ms" ) # print("simU", simU) # print("simX", simX) iterate_filename = f'final_iterate_{discretization}.json' ocp_solver.store_iterate(filename=iterate_filename, overwrite=True) plot_pendulum(shooting_nodes, Fmax, simU, simX, latexify=False) del ocp_solver
acados_integrator = AcadosSimSolver(ocp, json_file='acados_ocp_' + model.name + '.json') acados_integrator.set("p", p) Nsim = 200 simX = nmp.zeros((Nsim + 1, nx)) simU = nmp.zeros((Nsim, nu)) simX[0, :] = x0 for i in range(Nsim): # solve ocp acados_ocp_solver.set(0, "lbx", x0) acados_ocp_solver.set(0, "ubx", x0) # update params for j in range(N): acados_ocp_solver.set(j, "p", p) # update trajectory t0 = i * dt for j in range(N): tCurr = t0 + j * dt if tCurr <= 2: # roll = 1 pitch = -1 yaw = 0 # q = 0.770 0.421 -0.421 0.230 acados_ocp_solver.set( j, "y_ref", nmp.array([
def run_nominal_control(chain_params): # create ocp object to formulate the OCP ocp = AcadosOcp() # chain parameters n_mass = chain_params["n_mass"] M = chain_params["n_mass"] - 2 # number of intermediate masses Ts = chain_params["Ts"] Tsim = chain_params["Tsim"] N = chain_params["N"] u_init = chain_params["u_init"] with_wall = chain_params["with_wall"] yPosWall = chain_params["yPosWall"] m = chain_params["m"] D = chain_params["D"] L = chain_params["L"] perturb_scale = chain_params["perturb_scale"] nlp_iter = chain_params["nlp_iter"] nlp_tol = chain_params["nlp_tol"] save_results = chain_params["save_results"] show_plots = chain_params["show_plots"] seed = chain_params["seed"] np.random.seed(seed) nparam = 3*M W = perturb_scale * np.eye(nparam) # export model model = export_disturbed_chain_mass_model(n_mass, m, D, L) # set model ocp.model = model nx = model.x.size()[0] nu = model.u.size()[0] ny = nx + nu ny_e = nx Tf = N * Ts # initial state xPosFirstMass = np.zeros((3,1)) xEndRef = np.zeros((3,1)) xEndRef[0] = L * (M+1) * 6 pos0_x = np.linspace(xPosFirstMass[0], xEndRef[0], n_mass) xrest = compute_steady_state(n_mass, m, D, L, xPosFirstMass, xEndRef) x0 = xrest # set dimensions ocp.dims.N = N # set cost module ocp.cost.cost_type = 'LINEAR_LS' ocp.cost.cost_type_e = 'LINEAR_LS' Q = 2*np.diagflat( np.ones((nx, 1)) ) q_diag = np.ones((nx,1)) strong_penalty = M+1 q_diag[3*M] = strong_penalty q_diag[3*M+1] = strong_penalty q_diag[3*M+2] = strong_penalty Q = 2*np.diagflat( q_diag ) R = 2*np.diagflat( 1e-2 * np.ones((nu, 1)) ) ocp.cost.W = scipy.linalg.block_diag(Q, R) ocp.cost.W_e = Q ocp.cost.Vx = np.zeros((ny, nx)) ocp.cost.Vx[:nx,:nx] = np.eye(nx) Vu = np.zeros((ny, nu)) Vu[nx:nx+nu, :] = np.eye(nu) ocp.cost.Vu = Vu ocp.cost.Vx_e = np.eye(nx) # import pdb; pdb.set_trace() yref = np.vstack((xrest, np.zeros((nu,1)))).flatten() ocp.cost.yref = yref ocp.cost.yref_e = xrest.flatten() # set constraints umax = 1*np.ones((nu,)) ocp.constraints.constr_type = 'BGH' ocp.constraints.lbu = -umax ocp.constraints.ubu = umax ocp.constraints.x0 = x0.reshape((nx,)) ocp.constraints.idxbu = np.array(range(nu)) # disturbances nparam = 3*M ocp.parameter_values = np.zeros((nparam,)) # wall constraint if with_wall: nbx = M + 1 Jbx = np.zeros((nbx,nx)) for i in range(nbx): Jbx[i, 3*i+1] = 1.0 ocp.constraints.Jbx = Jbx ocp.constraints.lbx = yPosWall * np.ones((nbx,)) ocp.constraints.ubx = 1e9 * np.ones((nbx,)) # slacks ocp.constraints.Jsbx = np.eye(nbx) L2_pen = 1e3 L1_pen = 1 ocp.cost.Zl = L2_pen * np.ones((nbx,)) ocp.cost.Zu = L2_pen * np.ones((nbx,)) ocp.cost.zl = L1_pen * np.ones((nbx,)) ocp.cost.zu = L1_pen * np.ones((nbx,)) # solver options ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM' # FULL_CONDENSING_QPOASES ocp.solver_options.hessian_approx = 'GAUSS_NEWTON' ocp.solver_options.integrator_type = 'IRK' ocp.solver_options.nlp_solver_type = 'SQP' # SQP_RTI ocp.solver_options.nlp_solver_max_iter = nlp_iter ocp.solver_options.sim_method_num_stages = 2 ocp.solver_options.sim_method_num_steps = 2 ocp.solver_options.qp_solver_cond_N = N ocp.solver_options.qp_tol = nlp_tol ocp.solver_options.tol = nlp_tol # ocp.solver_options.nlp_solver_tol_eq = 1e-9 # set prediction horizon ocp.solver_options.tf = Tf acados_ocp_solver = AcadosOcpSolver(ocp, json_file = 'acados_ocp_' + model.name + '.json') # acados_integrator = AcadosSimSolver(ocp, json_file = 'acados_ocp_' + model.name + '.json') acados_integrator = export_chain_mass_integrator(n_mass, m, D, L) #%% get initial state from xrest xcurrent = x0.reshape((nx,)) for i in range(5): acados_integrator.set("x", xcurrent) acados_integrator.set("u", u_init) status = acados_integrator.solve() if status != 0: raise Exception('acados integrator returned status {}. Exiting.'.format(status)) # update state xcurrent = acados_integrator.get("x") #%% actual simulation N_sim = int(np.floor(Tsim/Ts)) simX = np.ndarray((N_sim+1, nx)) simU = np.ndarray((N_sim, nu)) wall_dist = np.zeros((N_sim,)) timings = np.zeros((N_sim,)) simX[0,:] = xcurrent # closed loop for i in range(N_sim): # solve ocp acados_ocp_solver.set(0, "lbx", xcurrent) acados_ocp_solver.set(0, "ubx", xcurrent) status = acados_ocp_solver.solve() timings[i] = acados_ocp_solver.get_stats("time_tot")[0] if status != 0: raise Exception('acados acados_ocp_solver returned status {} in time step {}. Exiting.'.format(status, i)) simU[i,:] = acados_ocp_solver.get(0, "u") print("control at time", i, ":", simU[i,:]) # simulate system acados_integrator.set("x", xcurrent) acados_integrator.set("u", simU[i,:]) pertubation = sampleFromEllipsoid(np.zeros((nparam,)), W) acados_integrator.set("p", pertubation) status = acados_integrator.solve() if status != 0: raise Exception('acados integrator returned status {}. Exiting.'.format(status)) # update state xcurrent = acados_integrator.get("x") simX[i+1,:] = xcurrent # xOcpPredict = acados_ocp_solver.get(1, "x") # print("model mismatch = ", str(np.max(xOcpPredict - xcurrent))) yPos = xcurrent[range(1,3*M+1,3)] wall_dist[i] = np.min(yPos - yPosWall) print("time i = ", str(i), " dist2wall ", str(wall_dist[i])) print("dist2wall (minimum over simulation) ", str(np.min(wall_dist))) #%% plot results if os.environ.get('ACADOS_ON_TRAVIS') is None and show_plots: plot_chain_control_traj(simU) plot_chain_position_traj(simX, yPosWall=yPosWall) plot_chain_velocity_traj(simX) animate_chain_position(simX, xPosFirstMass, yPosWall=yPosWall) # animate_chain_position_3D(simX, xPosFirstMass) plt.show()