コード例 #1
0
# set options
ocp.solver_options.qp_solver = 'FULL_CONDENSING_QPOASES'  #'PARTIAL_CONDENSING_HPIPM' # FULL_CONDENSING_QPOASES
ocp.solver_options.integrator_type = 'ERK'
ocp.solver_options.print_level = 3
ocp.solver_options.nlp_solver_type = 'SQP'  # SQP_RTI, SQP
ocp.solver_options.globalization = 'MERIT_BACKTRACKING'
ocp.solver_options.nlp_solver_max_iter = 5000
ocp.solver_options.nlp_solver_tol_stat = 1e-6
ocp.solver_options.levenberg_marquardt = 0.1
ocp.solver_options.sim_method_num_steps = 15
ocp.solver_options.qp_solver_iter_max = 100

ocp_solver = AcadosOcpSolver(ocp, json_file='acados_ocp.json')

for i, tau in enumerate(np.linspace(0, 1, N)):
    ocp_solver.set(i, 'x', (1 - tau) * x0 + tau * xf)
    ocp_solver.set(i, 'u', np.array([0.1, 0.5]))

simX = np.zeros((N + 1, nx))
simU = np.zeros((N, nu))

status = ocp_solver.solve()

if status != 0:
    ocp_solver.print_statistics()
    raise Exception('acados returned status {}. Exiting.'.format(status))

# get solution
for i in range(N):
    simX[i, :] = ocp_solver.get(i, "x")
    simU[i, :] = ocp_solver.get(i, "u")
コード例 #2
0
ocp.solver_options.nlp_solver_type = 'SQP'  # SQP_RTI, SQP
ocp.solver_options.globalization = 'MERIT_BACKTRACKING'
ocp.solver_options.nlp_solver_max_iter = 500

# set prediction horizon
ocp.solver_options.tf = Tf

ocp_solver = AcadosOcpSolver(ocp, json_file='acados_ocp.json')
ocp_solver.options_set("line_search_use_sufficient_descent", 0)
ocp_solver.options_set("full_step_dual", 1)

simX = np.ndarray((N + 1, nx))
simU = np.ndarray((N, nu))

for i, tau in enumerate(np.linspace(0, 1, N + 1)):
    ocp_solver.set(i, 'x', x0 * (1 - tau) + tau * xf)
status = ocp_solver.solve()

if status != 0:
    ocp_solver.print_statistics(
    )  # encapsulates: stat = ocp_solver.get_stats("statistics")
    # raise Exception('acados returned status {}. Exiting.'.format(status))

# get solution
for i in range(N):
    simX[i, :] = ocp_solver.get(i, "x")
    simU[i, :] = ocp_solver.get(i, "u")
simX[N, :] = ocp_solver.get(N, "x")

ocp_solver.print_statistics(
)  # encapsulates: stat = ocp_solver.get_stats("statistics")
コード例 #3
0
                                            json_file="acados_ocp_par.json")

        simX = np.zeros((Nsim, 6))  #simX_correct)#np.ndarray((Nsim, nx))
        simU = np.ndarray((Nsim, 2))

        x0 = x0_start
        try:
            # simulate
            for i in tqdm(range(Nsim)):

                #print(x0)
                x_noise = x0 + np.diag([1, 0.1, 0.2, 1, 0.1, 0.2
                                        ]) @ np.random.normal(
                                            0, noise_std, x0.shape)
                #print(x_noise)
                acados_solver.set(0, "lbx", x_noise)
                acados_solver.set(0, "ubx", x_noise)
                #acados_solver.set(0, "x", x_noise)
                for j in range(N):
                    acados_solver.set(j, "yref", yref)

                acados_solver.set(N, 'yref', yref_e)
                status = acados_solver.solve()
                if status != 0:
                    raise Exception(
                        "acados returned status {} in closed loop iteration {}."
                        .format(status, i))

                # get solution
                u0 = acados_solver.get(0, "u")
                #print(u0)
コード例 #4
0
class Pmpc(object):
    def __init__(self,
                 N,
                 sys,
                 cost,
                 wref=None,
                 tuning=None,
                 lam_g_ref=None,
                 options={}):
        """ Constructor
        """

        # store construction data
        self.__N = N
        self.__vars = sys['vars']
        self.__nx = sys['vars']['x'].shape[0]
        self.__nu = sys['vars']['u'].shape[0]

        # nonlinear inequalities slacks
        if 'us' in sys['vars']:
            self.__ns = sys['vars']['us'].shape[0]
        else:
            self.__ns = 0

        # mpc slacks
        if 'usc' in sys['vars']:
            self.__nsc = sys['vars']['usc'].shape[0]
            self.__scost = sys['scost']
        else:
            self.__nsc = 0

        # store system dynamics
        self.__F = sys['f']

        # store path constraints
        if 'h' in sys:
            self.__h = sys['h']
        else:
            self.__h = None

        # store slacked nonlinear inequality constraints
        if 'g' in sys:
            self.__gnl = sys['g']
        else:
            self.__gnl = None

        # store system sensitivities around steady state
        self.__S = sys['S']

        self.__cost = cost

        # set options
        self.__options = self.__default_options()
        for option in options:
            if option in self.__options:
                self.__options[option] = options[option]
            else:
                raise ValueError(
                    'Unknown option for Pmpc class instance: "{}"'.format(
                        option))

        # detect cost-type
        if self.__cost.n_in() == 2:

            # cost function of the form: l(x,u)
            self.__type = 'economic'

            # no tuning required
            tuning = None

            if self.__options['hessian_approximation'] == 'gauss_newton':
                self.__options['hessian_approximation'] = 'exact'
                Logger.logger.warning(
                    'Gauss-Newton Hessian approximation cannot be applied for economic MPC problem. Switched to exact Hessian.'
                )

        else:

            # cost function of the form: (w-wref)'*H*(w-wref) + q'w
            self.__type = 'tracking'

            # check if tuning matrices are provided
            assert tuning != None, 'Provide tuning matrices for tracking MPC!'

        # periodicity operator
        self.__p_operator = self.__options['p_operator']

        # construct MPC solver
        self.__construct_solver()

        # periodic indexing
        self.__index = 0
        self.__index_acados = 0

        # create periodic reference
        assert wref != None, 'Provide reference trajectory!'
        self.__create_reference(wref, tuning, lam_g_ref)

        # initialize log
        self.__initialize_log()

        # initialize acados solvers
        self.__acados_ocp_solver = None
        self.__acados_integrator = None

        # solver initial guess
        self.__set_initial_guess()

        return None

    def __default_options(self):

        # default options
        opts = {
            'hessian_approximation':
            'exact',
            'ipopt_presolve':
            False,
            'max_iter':
            2000,
            'p_operator':
            ca.Function('p_operator', [self.__vars['x']], [self.__vars['x']]),
            'slack_flag':
            'none'
        }

        return opts

    def __construct_solver(self):
        """ Construct periodic MPC solver
        """

        # system variables and dimensions
        x = self.__vars['x']
        u = self.__vars['u']

        # NLP parameters

        if self.__type == 'economic':

            # parameters
            self.__p = ct.struct_symMX([
                ct.entry('x0', shape=(self.__nx, 1)),
                ct.entry('xN', shape=(self.__nx, 1))
            ])

            # reassign for brevity
            x0 = self.__p['x0']
            xN = self.__p['xN']

        if self.__type == 'tracking':
            ref_vars = (ct.entry('x', shape=(self.__nx, ),
                                 repeat=self.__N + 1),
                        ct.entry('u', shape=(self.__nu, ), repeat=self.__N))

            if 'us' in self.__vars:
                ref_vars += (ct.entry('us',
                                      shape=(self.__ns, ),
                                      repeat=self.__N), )

            # reference trajectory
            wref = ct.struct_symMX([ref_vars])

            nw = self.__nx + self.__nu + self.__ns
            tuning = ct.struct_symMX([  # tracking tuning
                ct.entry('H', shape=(nw, nw), repeat=self.__N),
                ct.entry('q', shape=(nw, 1), repeat=self.__N)
            ])

            # parameters
            self.__p = ct.struct_symMX([
                ct.entry('x0', shape=(self.__nx, )),
                ct.entry('wref', struct=wref),
                ct.entry('tuning', struct=tuning)
            ])

            # reassign for brevity
            x0 = self.__p['x0']
            wref = self.__p.prefix['wref']
            tuning = self.__p.prefix['tuning']
            xN = wref['x', -1]

        # NLP variables
        variables_entry = (ct.entry('x',
                                    shape=(self.__nx, ),
                                    repeat=self.__N + 1),
                           ct.entry('u', shape=(self.__nu, ), repeat=self.__N))

        if 'us' in self.__vars:
            variables_entry += (ct.entry('us',
                                         shape=(self.__ns, ),
                                         repeat=self.__N), )

        self.__wref = ct.struct_symMX([variables_entry
                                       ])  # structure of reference

        if 'usc' in self.__vars:
            variables_entry += (ct.entry('usc',
                                         shape=(self.__nsc, ),
                                         repeat=self.__N), )

        # nlp variables + bounds
        w = ct.struct_symMX([variables_entry])

        # variable bounds are implemented as inequalities
        self.__lbw = w(-np.inf)
        self.__ubw = w(np.inf)

        # prepare dynamics and path constraints entry
        constraints_entry = (ct.entry('dyn',
                                      shape=(self.__nx, ),
                                      repeat=self.__N), )
        if self.__gnl is not None:
            constraints_entry += (ct.entry('g',
                                           shape=self.__gnl.size1_out(0),
                                           repeat=self.__N), )
        if self.__h is not None:
            constraints_entry += (ct.entry('h',
                                           shape=self.__h.size1_out(0),
                                           repeat=self.__N), )

        # terminal constraint
        nx_term = self.__p_operator.size1_out(0)

        # create general constraints structure
        g_struct = ct.struct_symMX([
            ct.entry('init', shape=(self.__nx, 1)), constraints_entry,
            ct.entry('term', shape=(nx_term, 1))
        ])

        # create symbolic constraint expressions
        map_args = collections.OrderedDict()
        map_args['x0'] = ct.horzcat(*w['x', :-1])
        map_args['p'] = ct.horzcat(*w['u'])
        F_constr = ct.horzsplit(self.__F.map(self.__N)(**map_args)['xf'])

        # generate constraints
        constr = collections.OrderedDict()
        constr['dyn'] = [a - b for a, b in zip(F_constr, w['x', 1:])]
        if 'us' in self.__vars:
            map_args['us'] = ct.horzcat(*w['us'])

        if self.__gnl is not None:
            constr['g'] = ct.horzsplit(
                self.__gnl.map(self.__N)(*map_args.values()))

        if 'usc' in self.__vars:
            map_args['usc'] = ct.horzcat(*w['usc'])

        if self.__h is not None:
            constr['h'] = ct.horzsplit(
                self.__h.map(self.__N)(*map_args.values()))

        repeated_constr = list(
            itertools.chain.from_iterable(zip(*constr.values())))

        term_constraint = self.__p_operator(w['x', -1] - xN)

        self.__g = g_struct(
            ca.vertcat(w['x', 0] - x0, *repeated_constr, term_constraint))

        self.__lbg = g_struct(np.zeros(self.__g.shape))
        self.__ubg = g_struct(np.zeros(self.__g.shape))
        if self.__h is not None:
            self.__ubg['h', :] = np.inf

        # nlp cost
        cost_map = self.__cost.map(self.__N)

        if self.__type == 'economic':

            cost_args = [ct.horzcat(*w['x', :-1]), ct.horzcat(*w['u'])]

        elif self.__type == 'tracking':

            if self.__ns != 0:
                cost_args_w = ct.horzcat(*[
                    ct.vertcat(w['x', k], w['u', k], w['us', k])
                    for k in range(self.__N)
                ])
                cost_args_w_ref = ct.horzcat(*[
                    ct.vertcat(wref['x', k], wref['u', k], wref['us', k])
                    for k in range(self.__N)
                ])
            else:
                cost_args_w = ct.horzcat(*[
                    ct.vertcat(w['x', k], w['u', k]) for k in range(self.__N)
                ])
                cost_args_w_ref = ct.horzcat(*[
                    ct.vertcat(wref['x', k], wref['u', k])
                    for k in range(self.__N)
                ])

            cost_args = [
                cost_args_w, cost_args_w_ref,
                ct.horzcat(*tuning['H']),
                ct.horzcat(*tuning['q'])
            ]

            if self.__options['hessian_approximation'] == 'gauss_newton':

                if 'usc' not in self.__vars:
                    hess_gn = ct.diagcat(*tuning['H'],
                                         ca.DM.zeros(self.__nx, self.__nx))
                else:
                    hess_block = list(
                        itertools.chain.from_iterable(
                            zip(tuning['H'],
                                [ca.DM.zeros(self.__nsc, self.__nsc)] *
                                self.__N)))
                    hess_gn = ct.diagcat(*hess_block,
                                         ca.DM.zeros(self.__nx, self.__nx))

        J = ca.sum2(cost_map(*cost_args))

        # add cost on slacks
        if 'usc' in self.__vars:
            J += ca.sum2(ct.mtimes(self.__scost.T, ct.horzcat(*w['usc'])))

        # create solver
        prob = {'f': J, 'g': self.__g, 'x': w, 'p': self.__p}
        self.__w = w
        self.__g_fun = ca.Function('g_fun', [self.__w, self.__p], [self.__g])

        # create IPOPT-solver instance if needed
        if self.__options['ipopt_presolve']:
            opts = {
                'ipopt': {
                    'linear_solver': 'ma57',
                    'print_level': 0
                },
                'expand': False
            }
            if Logger.logger.getEffectiveLevel() > 10:
                opts['ipopt']['print_level'] = 0
                opts['print_time'] = 0
                opts['ipopt']['sb'] = 'yes'
            self.__solver = ca.nlpsol('solver', 'ipopt', prob, opts)

        # create hessian approximation function
        if self.__options['hessian_approximation'] == 'gauss_newton':
            lam_g = ca.MX.sym('lam_g', self.__g.shape)  # will not be used
            hess_approx = ca.Function('hess_approx',
                                      [self.__w, self.__p, lam_g], [hess_gn])
        elif self.__options['hessian_approximation'] == 'exact':
            hess_approx = 'exact'

        # create sqp solver
        prob['lbg'] = self.__lbg
        prob['ubg'] = self.__ubg
        sqp_opts = {
            'hessian_approximation': hess_approx,
            'max_iter': self.__options['max_iter']
        }
        self.__sqp_solver = sqp_method.Sqp(prob, sqp_opts)

    def step(self, x0):
        """ Compute periodic MPC feedback control for given initial condition.
        """

        # reset periodic indexing if necessary
        self.__index = self.__index % len(self.__ref)

        # update nlp parameters
        p0 = self.__p(0.0)
        p0['x0'] = x0

        if self.__type == 'economic':

            p0['xN'] = self.__ref[self.__index][-x0.shape[0]:]

        elif self.__type == 'tracking':

            p0['wref'] = self.__ref[self.__index]
            p0['tuning', 'H'] = self.__Href[self.__index]
            p0['tuning', 'q'] = self.__qref[self.__index]

        # pre-solve NLP with IPOPT for globalization
        if self.__options['ipopt_presolve']:

            ipopt_sol = self.__solver(x0=self.__w0,
                                      lbg=self.__lbg,
                                      ubg=self.__ubg,
                                      p=p0)

            self.__w0 = self.__w(ipopt_sol['x'])
            self.__lam_g0 = self.__g(ipopt_sol['lam_g'])

        # solve NLP
        sol = self.__sqp_solver.solve(self.__w0.cat, p0.cat, self.__lam_g0.cat)

        # store solution
        self.__g_sol = self.__g(self.__g_fun(sol['x'], p0))
        self.__w_sol = self.__w(sol['x'])
        self.__extract_solver_stats()

        # shift reference
        self.__index += 1

        # update initial guess
        self.__w0, self.__lam_g0 = self.__shift_initial_guess(
            self.__w_sol, self.__g(sol['lam_g']))

        return self.__w_sol['u', 0]

    def step_acados(self, x0):

        # reset periodic indexing if necessary
        self.__index_acados = self.__index_acados % self.__Nref

        # format x0
        x0 = np.squeeze(x0.full())

        # update NLP parameters
        self.__acados_ocp_solver.set(0, "lbx", x0)
        self.__acados_ocp_solver.set(0, "ubx", x0)

        # update reference and tuning matrices
        self.__set_acados_reference()

        # solve
        status = self.__acados_ocp_solver.solve()
        # if status != 0:
        #     raise Exception('acados solver returned status {}. Exiting.'.format(status))

        # save solution
        self.__w_sol_acados = self.__w(0.0)
        for i in range(self.__N):
            self.__w_sol_acados['x', i] = self.__acados_ocp_solver.get(i, "x")
            self.__w_sol_acados['u', i] = self.__acados_ocp_solver.get(
                i, "u")[:self.__nu]
            if 'us' in self.__vars:
                self.__w_sol_acados['us', i] = self.__acados_ocp_solver.get(
                    i, "u")[self.__nu:]
        self.__w_sol_acados['x', self.__N] = self.__acados_ocp_solver.get(
            self.__N, "x")

        # feedback policy
        u0 = self.__acados_ocp_solver.get(0, "u")[:self.__nu]

        # update initial guess
        self.__shift_initial_guess_acados()

        # shift index
        self.__index_acados += 1

        return u0

    def generate(self, dae, name='tunempc', opts={}):
        """ Create embeddable NLP solver
        """

        from acados_template import AcadosModel, AcadosOcp, AcadosOcpSolver, AcadosSimSolver

        # extract dimensions
        nx = self.__nx
        nu = self.__nu + self.__ns  # treat slacks as pseudo-controls

        # extract reference
        ref = self.__ref
        xref = np.squeeze(self.__ref[0][:nx], axis=1)
        uref = np.squeeze(self.__ref[0][nx:nx + nu], axis=1)

        # create acados model
        model = AcadosModel()
        model.x = ca.MX.sym('x', nx)
        model.u = ca.MX.sym('u', nu)
        model.p = []
        model.name = name

        # detect input type
        n_in = dae.n_in()
        if n_in == 2:

            # xdot = f(x, u)
            if 'integrator_type' in opts:
                if opts['integrator_type'] == 'IRK':
                    xdot = ca.MX.sym('xdot', nx)
                    model.xdot = xdot
                    model.f_impl_expr = xdot - dae(model.x,
                                                   model.u[:self.__nu])
                    model.f_expl_expr = xdot
                elif opts['integrator_type'] == 'ERK':
                    model.f_expl_expr = dae(model.x, model.u[:self.__nu])
            else:
                raise ValueError('Provide numerical integrator type!')

        else:

            xdot = ca.MX.sym('xdot', nx)
            model.xdot = xdot
            model.f_expl_expr = xdot

            if n_in == 3:

                # f(xdot, x, u) = 0
                model.f_impl_expr = dae(xdot, model.x, model.u[:self.__nu])

            elif n_in == 4:

                # f(xdot, x, u, z) = 0
                nz = dae.size1_in(3)
                z = ca.MX.sym('z', nz)
                model.z = z
                model.f_impl_expr = dae(xdot, model.x, model.u[:self.__nu], z)
            else:
                raise ValueError(
                    'Invalid number of inputs for system dynamics function.')

        if self.__gnl is not None:
            model.con_h_expr = self.__gnl(model.x, model.u[:self.__nu],
                                          model.u[self.__nu:])

        if self.__type == 'economic':
            model.cost_expr_ext_cost = self.__cost(model.x,
                                                   model.u[:self.__nu])

        # create acados ocp
        ocp = AcadosOcp()
        ocp.model = model
        ny = nx + nu
        ny_e = nx

        # set horizon length
        ocp.dims.N = self.__N

        # set cost module
        if self.__type == 'economic':

            # set cost function type to external (provided in model)
            ocp.cost.cost_type = 'EXTERNAL'
        else:

            # set weighting matrices
            if self.__type == 'tracking':
                ocp.cost.W = self.__Href[0][0]

            # set-up linear least squares cost
            ocp.cost.cost_type = 'LINEAR_LS'
            ocp.cost.W_e = np.zeros((nx, nx))
            ocp.cost.Vx = np.zeros((ny, nx))
            ocp.cost.Vx[:nx, :nx] = np.eye(nx)
            Vu = np.zeros((ny, nu))
            Vu[nx:, :] = np.eye(nu)
            ocp.cost.Vu = Vu
            ocp.cost.Vx_e = np.eye(nx)
            ocp.cost.yref  = np.squeeze(
                ca.vertcat(xref,uref).full() - \
                ct.mtimes(np.linalg.inv(ocp.cost.W),self.__qref[0][0].T).full(), # gradient term
                axis = 1
                )
            ocp.cost.yref_e = np.zeros((ny_e, ))
            if n_in == 4:  # DAE flag
                ocp.cost.Vz = np.zeros((ny, nz))

        # initial condition
        ocp.constraints.x0 = xref

        # set inequality constraints
        ocp.constraints.constr_type = 'BGH'
        if self.__S['C'] is not None:
            C = self.__S['C'][0][:, :nx]
            D = self.__S['C'][0][:, nx:]
            lg = -self.__S['e'][0] + ct.mtimes(C, xref).full() + ct.mtimes(
                D, uref).full()
            ug = 1e8 - self.__S['e'][0] + ct.mtimes(
                C, xref).full() + ct.mtimes(D, uref).full()
            ocp.constraints.lg = np.squeeze(lg, axis=1)
            ocp.constraints.ug = np.squeeze(ug, axis=1)
            ocp.constraints.C = C
            ocp.constraints.D = D

            if 'usc' in self.__vars:
                if 'us' in self.__vars:
                    arg = [
                        self.__vars['x'], self.__vars['u'], self.__vars['us'],
                        self.__vars['usc']
                    ]
                else:
                    arg = [
                        self.__vars['x'], self.__vars['u'], self.__vars['usc']
                    ]
                Jsg = ca.Function(
                    'Jsg', [self.__vars['usc']],
                    [ca.jacobian(self.__h(*arg), self.__vars['usc'])])(0.0)
                self.__Jsg = Jsg.full()[:-self.__nsc, :]
                ocp.constraints.Jsg = self.__Jsg
                ocp.cost.Zl = np.zeros((self.__nsc, ))
                ocp.cost.Zu = np.zeros((self.__nsc, ))
                ocp.cost.zl = np.squeeze(self.__scost.full(), axis=1)
                ocp.cost.zu = np.squeeze(self.__scost.full(), axis=1)

        # set nonlinear equality constraints
        if self.__gnl is not None:
            ocp.constraints.lh = np.zeros(self.__ns, )
            ocp.constraints.uh = np.zeros(self.__ns, )

        # terminal constraint:
        x_term = self.__p_operator(model.x)
        Jbx = ca.Function('Jbx', [model.x],
                          [ca.jacobian(x_term, model.x)])(0.0)
        ocp.constraints.Jbx_e = Jbx.full()
        ocp.constraints.lbx_e = np.squeeze(self.__p_operator(xref).full(),
                                           axis=1)
        ocp.constraints.ubx_e = np.squeeze(self.__p_operator(xref).full(),
                                           axis=1)

        for option in list(opts.keys()):
            setattr(ocp.solver_options, option, opts[option])

        self.__acados_ocp_solver = AcadosOcpSolver(ocp,
                                                   json_file='acados_ocp_' +
                                                   model.name + '.json')
        self.__acados_integrator = AcadosSimSolver(ocp,
                                                   json_file='acados_ocp_' +
                                                   model.name + '.json')

        # set initial guess
        self.__set_acados_initial_guess()

        return self.__acados_ocp_solver, self.__acados_integrator

    def __create_reference(self, wref, tuning, lam_g_ref):
        """ Create periodic reference and tuning data.
        """

        # period of reference
        self.__Nref = len(wref['u'])

        # create reference and tuning sequence
        # for each starting point in period
        ref_pr = []
        ref_du = []
        ref_du_struct = []
        H = []
        q = []

        for k in range(self.__Nref):

            # reference primal solution
            refk = []
            for j in range(self.__N):

                refk += [
                    wref['x', (k + j) % self.__Nref],
                    wref['u', (k + j) % self.__Nref]
                ]

                if 'us' in self.__vars:
                    refk += [wref['us', (k + j) % self.__Nref]]

            refk.append(wref['x', (k + self.__N) % self.__Nref])

            # reference dual solution
            lamgk = self.__g(0.0)
            lamgk['init'] = -lam_g_ref['dyn', (k - 1) % self.__Nref]
            for j in range(self.__N):
                lamgk['dyn', j] = lam_g_ref['dyn', (k + j) % self.__Nref]
                if 'g' in list(lamgk.keys()):
                    lamgk['g', j] = lam_g_ref['g', (k + j) % self.__Nref]
                if 'h' in list(lamgk.keys()):
                    lam_h = [lam_g_ref['h', (k + j) % self.__Nref]]
                    if 'usc' in self.__vars:
                        lam_h += [-self.__scost]  # TODO not entirely correct

                    lamgk['h', j] = ct.vertcat(*lam_h)
            lamgk['term'] = self.__p_operator(
                lam_g_ref['dyn', (k + self.__N - 1) % self.__Nref])

            ref_pr.append(ct.vertcat(*refk))
            ref_du.append(lamgk.cat)
            ref_du_struct.append(lamgk)

            if tuning is not None:
                H.append([
                    tuning['H'][(k + j) % self.__Nref] for j in range(self.__N)
                ])
                q.append([
                    tuning['q'][(k + j) % self.__Nref] for j in range(self.__N)
                ])

        self.__ref = ref_pr
        self.__ref_du = ref_du
        self.__ref_du_struct = ref_du_struct
        self.__Href = H
        self.__qref = q

        return None

    def __initialize_log(self):

        self.__log = {
            'cpu': [],
            'iter': [],
            'f': [],
            'status': [],
            'sol_x': [],
            'lam_x': [],
            'lam_g': [],
            'u0': [],
            'nACtot': [],
            'nAC': [],
            'idx_AC': [],
            'nAS': []
        }

        return None

    def __extract_solver_stats(self):

        info = self.__sqp_solver.stats
        self.__log['cpu'].append(info['t_wall_total'])
        self.__log['iter'].append(info['iter_count'])
        self.__log['status'].append(info['return_status'])
        self.__log['sol_x'].append(info['x'])
        self.__log['lam_g'].append(info['lam_g'])
        self.__log['f'].append(info['f'])
        self.__log['u0'].append(self.__w(info['x'])['u', 0])
        self.__log['nACtot'].append(info['nAC'])
        nAC, idx_AC = self.__detect_AC(self.__g(info['lam_g']))
        self.__log['nAC'].append(nAC)
        self.__log['idx_AC'].append(nAC)
        self.__log['nAS'].append(info['nAS'])

        return None

    def __detect_AC(self, lam_g_opt):

        # optimal active set
        if 'h' in lam_g_opt.keys():
            idx_opt = [
                k for k in range(self.__h.size1_out(0) - self.__nsc)
                if lam_g_opt['h', 0][k] != 0
            ]
            lam_g_ref = self.__g(self.__ref_du[self.__index])
            idx_ref = [
                k for k in range(self.__h.size1_out(0) - self.__nsc)
                if lam_g_ref['h', 0][k] != 0
            ]

        else:
            idx_opt = []
            idx_ref = []

        # get number of active set changes
        nAC = len([k for k in idx_opt if k not in idx_ref])
        nAC += len([k for k in idx_ref if k not in idx_opt])

        return nAC, idx_opt

    def reset(self):

        self.__index = 0
        self.__index_acados = 0
        self.__initialize_log()
        self.__set_initial_guess()

        return None

    def __shift_initial_guess(self, w0, lam_g0):

        w_shifted = self.__w(0.0)
        lam_g_shifted = self.__g(0.0)
        lam_g_shifted['init'] = lam_g0['dyn', 0]

        # shift states and controls
        for i in range(self.__N):

            # shift primal solution
            w_shifted['x', i] = w0['x', i + 1]

            if i < self.__N - 1:
                w_shifted['u', i] = w0['u', i + 1]
                if 'us' in self.__vars:
                    w_shifted['us', i] = w0['us', i + 1]
                if 'usc' in self.__vars:
                    w_shifted['usc', i] = w0['usc', i + 1]

                # shift dual solution
                lam_g_shifted['dyn', i] = lam_g0['dyn', i + 1]
                for constr in ['g', 'h']:
                    if constr in lam_g0.keys():
                        lam_g_shifted[constr, i] = lam_g0[constr, i + 1]

        # copy final interval
        w_shifted['x', self.__N] = w_shifted['x', self.__N - 1]
        w_shifted['u', self.__N - 1] = w_shifted['u', self.__N - 2]
        if 'us' in self.__vars:
            w_shifted['us', self.__N - 1] = w_shifted['us', self.__N - 2]
        if 'usc' in self.__vars:
            w_shifted['usc', self.__N - 1] = w_shifted['usc', self.__N - 2]

        lam_g_shifted['dyn', self.__N - 1] = lam_g_shifted['dyn', self.__N - 2]
        for constr in ['g', 'h']:
            if constr in lam_g0.keys():
                lam_g_shifted[constr,
                              self.__N - 1] = lam_g_shifted[constr,
                                                            self.__N - 2]
        lam_g_shifted['term'] = lam_g0['term']

        return w_shifted, lam_g_shifted

    def __shift_initial_guess_acados(self):

        for i in range(self.__N):
            x_prev = np.squeeze(self.__w_sol_acados['x', i + 1].full(), axis=1)
            self.__acados_ocp_solver.set(i, "x", x_prev)
            if i < self.__N - 1:
                u_prev = np.squeeze(self.__w_sol_acados['u', i + 1].full(),
                                    axis=1)
                if 'us' in self.__vars:
                    u_prev = np.squeeze(ct.vertcat(
                        u_prev, self.__w_sol_acados['us', i + 1]).full(),
                                        axis=1)
                self.__acados_ocp_solver.set(i, "u", u_prev)

        # initial guess in terminal stage on periodic trajectory
        idx = (self.__index_acados + self.__N) % self.__Nref

        # reference
        xref = np.squeeze(self.__ref[(idx + 1) % self.__Nref][:self.__nx],
                          axis=1)
        uref = np.squeeze(self.__ref[idx][self.__nx:self.__nx + self.__nu +
                                          self.__ns],
                          axis=1)
        self.__acados_ocp_solver.set(self.__N, "x", xref)
        self.__acados_ocp_solver.set(self.__N - 1, "u", uref)

        return None

    def __set_initial_guess(self):

        # create initial guess at steady state
        wref = self.__wref(self.__ref[self.__index])
        w0 = self.__w(0.0)
        w0['x'] = wref['x']
        w0['u'] = wref['u']
        if 'us' in self.__vars:
            w0['us'] = wref['us']
        self.__w0 = w0

        # initial guess for multipliers
        self.__lam_g0 = self.__g(self.__ref_du[self.__index])

        # acados solver initialization at reference
        if self.__acados_ocp_solver is not None:
            self.__set_acados_initial_guess()

        return None

    def __set_acados_reference(self):

        for i in range(self.__N):

            # periodic index
            idx = (self.__index_acados + i) % self.__Nref

            # reference
            xref = np.squeeze(self.__ref[idx][:self.__nx], axis=1)
            uref = np.squeeze(self.__ref[idx][self.__nx:self.__nx + self.__nu +
                                              self.__ns],
                              axis=1)

            # construct output reference with gradient term
            yref = np.squeeze(
                ca.vertcat(xref,uref).full() - \
                ct.mtimes(
                    np.linalg.inv(self.__Href[idx][0]), # inverse of weighting matrix
                    self.__qref[idx][0].T).full(), # gradient term
                axis = 1
                )
            self.__acados_ocp_solver.set(i, 'yref', yref)

            # update tuning matrix
            self.__acados_ocp_solver.cost_set(i, 'W', self.__Href[idx][0])

            # update constraint bounds
            C = self.__S['C'][idx][:, :self.__nx]
            D = self.__S['C'][idx][:, self.__nx:]
            lg = -self.__S['e'][idx] + ct.mtimes(C, xref).full() + ct.mtimes(
                D, uref).full()
            ug = 1e8 - self.__S['e'][idx] + ct.mtimes(
                C, xref).full() + ct.mtimes(D, uref).full()
            self.__acados_ocp_solver.constraints_set(i, 'lg',
                                                     np.squeeze(lg, axis=1))
            self.__acados_ocp_solver.constraints_set(i, 'ug',
                                                     np.squeeze(ug, axis=1))

        # update terminal constraint
        idx = (self.__index_acados + self.__N) % self.__Nref
        x_term = np.squeeze(self.__p_operator(self.__ref[idx][:self.__nx]),
                            axis=1)
        self.__acados_ocp_solver.set(self.__N, 'lbx', x_term)
        self.__acados_ocp_solver.set(self.__N, 'ubx', x_term)

        return None

    def __set_acados_initial_guess(self):

        for i in range(self.__N):

            # periodic index
            idx = (self.__index_acados + i) % self.__Nref

            # initialize at reference
            xref = np.squeeze(self.__ref[idx][:self.__nx], axis=1)
            uref = np.squeeze(self.__ref[idx][self.__nx:self.__nx + self.__nu +
                                              self.__ns],
                              axis=1)

            # set initial guess
            self.__acados_ocp_solver.set(i, "x", xref)
            self.__acados_ocp_solver.set(i, "u", uref)

            # set dual initial guess
            ref_dual = self.__ref_du_struct[idx]
            self.__acados_ocp_solver.set(i, "pi",
                                         np.squeeze(ref_dual['dyn', i].full()))

            # the inequalities are internally organized in the following order:
            # [ lbu lbx lg lh ubu ubx ug uh ]
            lam_h = []
            t = []
            if i == 0:
                lam_h.append(ref_dual['init'])  # lbx_0
                t.append(np.zeros((self.__nx, )))
            if 'h' in list(ref_dual.keys()):
                lam_lh = -ref_dual['h',
                                   0][:ref_dual['h', 0].shape[0] - self.__nsc]
                lam_h.append(lam_lh)  # lg
                t.append(self.__S['e'][idx % self.__Nref])
            if 'g' in list(ref_dual.keys()):
                lam_h.append(ref_dual['g', 0])  # lh
                t.append(np.zeros((ref_dual['g', 0].shape[0], )))
            if i == 0:
                lam_h.append(np.zeros((self.__nx, )))  # ubx_0
                t.append(np.zeros((self.__nx, )))
            if 'h' in list(ref_dual.keys()):
                lam_h.append(
                    np.zeros((ref_dual['h', 0].shape[0] - self.__nsc, )))  # ug
                t.append(1e8 *
                         np.ones((ref_dual['h', 0].shape[0] - self.__nsc, 1)) -
                         self.__S['e'][idx])
            if 'g' in list(ref_dual.keys()):
                lam_h.append(np.zeros((ref_dual['g', 0].shape[0], )))  # uh
                t.append(np.zeros((ref_dual['g', 0].shape[0], )))
            if self.__nsc > 0:
                lam_sl = self.__scost - ct.mtimes(lam_lh.T, self.__Jsg).T
                lam_h.append(lam_sl)  # ls
                lam_h.append(self.__scost)  # us
                t.append(np.zeros((self.__nsc, )))  # slg > 0
                t.append(np.zeros((self.__nsc, )))  # sug > 0
            self.__acados_ocp_solver.set(i, "lam",
                                         np.squeeze(ct.vertcat(*lam_h).full()))
            self.__acados_ocp_solver.set(i, "t",
                                         np.squeeze(ct.vertcat(*t).full()))

        # terminal state
        idx = (self.__index_acados + self.__N) % self.__Nref
        xref = np.squeeze(self.__ref[idx][:self.__nx], axis=1)
        self.__acados_ocp_solver.set(self.__N, "x", xref)

        # terminal multipliers
        lam_term = np.squeeze(
            ct.vertcat(ref_dual['term'], np.zeros(
                (ref_dual['term'].shape[0], ))).full())
        self.__acados_ocp_solver.set(self.__N, "lam", lam_term)

        return None

    @property
    def w(self):
        return self.__w

    @property
    def g_sol(self):
        return self.__g_sol

    @property
    def w_sol(self):
        return self.__w_sol

    @property
    def log(self):
        return self.__log

    @property
    def index(self):
        return self.__index

    @property
    def acados_ocp_solver(self):
        return self.__acados_ocp_solver

    @property
    def acados_integrator(self):
        return self.__acados_integrator

    @property
    def w_sol_acados(self):
        return self.__w_sol_acados
コード例 #5
0
ocp.constraints.x0 = np.array([0.0, np.pi, 0.0, 0.0])

ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM'  # FULL_CONDENSING_QPOASES
ocp.solver_options.hessian_approx = 'EXACT'  # GAUSS_NEWTON, EXACT
ocp.solver_options.regularize_method = 'CONVEXIFY'  # GAUSS_NEWTON, EXACT
ocp.solver_options.integrator_type = 'ERK'
ocp.solver_options.print_level = 0
ocp.solver_options.nlp_solver_type = 'SQP'  # SQP_RTI, SQP

# set prediction horizon
ocp.solver_options.tf = Tf

ocp_solver = AcadosOcpSolver(ocp, json_file='acados_ocp.json')

for i in range(N):
    ocp_solver.set(i, "p", np.array([1.0]))

simX = np.ndarray((N + 1, nx))
simU = np.ndarray((N, nu))

status = ocp_solver.solve()

if status != 0:
    raise Exception('acados returned status {}. Exiting.'.format(status))

# get solution
for i in range(N):
    simX[i, :] = ocp_solver.get(i, "x")
    simU[i, :] = ocp_solver.get(i, "u")
simX[N, :] = ocp_solver.get(N, "x")
コード例 #6
0
simX = np.ndarray((N + 1, nx))
simU = np.ndarray((N, nu))

# change options after creating ocp_solver
ocp_solver.options_set("step_length", 0.99999)
ocp_solver.options_set("globalization",
                       "fixed_step")  # fixed_step, merit_backtracking
ocp_solver.options_set("tol_eq", 1e-2)
ocp_solver.options_set("tol_stat", 1e-2)
ocp_solver.options_set("tol_ineq", 1e-2)
ocp_solver.options_set("tol_comp", 1e-2)

# initialize solver
for i in range(N):
    ocp_solver.set(i, "x", x0)
status = ocp_solver.solve()

if status not in [0, 2]:
    raise Exception('acados returned status {}. Exiting.'.format(status))

# get primal solution
for i in range(N):
    simX[i, :] = ocp_solver.get(i, "x")
    simU[i, :] = ocp_solver.get(i, "u")
simX[N, :] = ocp_solver.get(N, "x")

print("inequality multipliers at stage 1")
print(ocp_solver.get(1, "lam"))  # inequality multipliers at stage 1
print("slack values at stage 1")
print(ocp_solver.get(1, "t"))  # slack values at stage 1
コード例 #7
0
class MPC_controller(object):
    def __init__(self,
                 quad_model,
                 quad_constraints,
                 t_horizon,
                 n_nodes,
                 sim_required=False):
        self.model = quad_model
        self.constraints = quad_constraints
        self.g_ = 9.8066
        self.T = t_horizon
        self.N = n_nodes
        self.simulation_required = sim_required

        self.current_pose = None
        self.current_state = None
        self.dt = 0.05
        self.rate = rospy.Rate(1 / self.dt)
        self.time_stamp = None
        self.trajectory_path = None
        self.current_twist = np.zeros(3)
        self.att_command = AttitudeTarget()
        self.att_command.type_mask = 128

        # subscribers
        ## the robot state
        robot_state_sub_ = rospy.Subscriber('/robot_pose', Odometry,
                                            self.robot_state_callback)
        ## trajectory
        robot_trajectory_sub_ = rospy.Subscriber(
            '/robot_trajectory', itm_trajectory_msg,
            self.trajectory_command_callback)
        # publisher
        self.att_setpoint_pub = rospy.Publisher(
            '/mavros/setpoint_raw/attitude', AttitudeTarget, queue_size=1)
        # create a server
        server_ = rospy.Service('uav_mpc_server', SetBool, self.state_server)
        # setup optimizer
        self.quadrotor_optimizer_setup()

        # # It seems that thread cannot ensure the performance of the time
        self.att_thread = Thread(target=self.send_command, args=())
        self.att_thread.daemon = True
        self.att_thread.start()

    def robot_state_callback(self, data):
        # robot state as [x, y, z, vx, vy, vz, [w, x, y, z]]
        self.current_state = np.array([
            data.pose.pose.position.x,
            data.pose.pose.position.y,
            data.pose.pose.position.z,
            data.pose.pose.orientation.w,
            data.pose.pose.orientation.x,
            data.pose.pose.orientation.y,
            data.pose.pose.orientation.z,
            data.twist.twist.linear.x,
            data.twist.twist.linear.y,
            data.twist.twist.linear.z,
        ]).reshape(1, -1)

    def trajectory_command_callback(self, data):
        temp_traj = data.traj
        if data.size != len(temp_traj):
            rospy.logerr('Some data are lost')
        else:
            self.trajectory_path = np.zeros((data.size, 10))
            for i in range(data.size):
                quaternion_ = self.rpy_to_quaternion(
                    [temp_traj[i].roll, temp_traj[i].pitch, temp_traj[i].yaw])
                self.trajectory_path[i] = np.array([
                    temp_traj[i].x,
                    temp_traj[i].y,
                    temp_traj[i].z,
                    quaternion_[0],
                    quaternion_[1],
                    quaternion_[2],
                    quaternion_[3],
                    temp_traj[i].vx,
                    temp_traj[i].vy,
                    temp_traj[i].vz,
                ])

    def quadrotor_optimizer_setup(self, ):
        Q_m_ = np.diag([
            10,
            10,
            10,
            0.3,
            0.3,
            0.3,
            0.3,
            0.05,
            0.05,
            0.05,
        ])  # position, q, v
        P_m_ = np.diag([10, 10, 10, 0.05, 0.05, 0.05])  # only p and v
        R_m_ = np.diag([5.0, 5.0, 5.0, 0.6])

        nx = self.model.x.size()[0]
        self.nx = nx
        nu = self.model.u.size()[0]
        self.nu = nu
        ny = nx + nu
        n_params = self.model.p.size()[0] if isinstance(self.model.p,
                                                        ca.SX) else 0

        acados_source_path = os.environ['ACADOS_SOURCE_DIR']
        sys.path.insert(0, acados_source_path)

        # create OCP
        ocp = AcadosOcp()
        ocp.acados_include_path = acados_source_path + '/include'
        ocp.acados_lib_path = acados_source_path + '/lib'
        ocp.model = self.model
        ocp.dims.N = self.N
        ocp.solver_options.tf = self.T

        # initialize parameters
        ocp.dims.np = n_params
        ocp.parameter_values = np.zeros(n_params)

        # cost type
        ocp.cost.cost_type = 'LINEAR_LS'
        ocp.cost.cost_type_e = 'LINEAR_LS'
        ocp.cost.W = scipy.linalg.block_diag(Q_m_, R_m_)
        ocp.cost.W_e = P_m_

        ocp.cost.Vx = np.zeros((ny, nx))
        ocp.cost.Vx[:nx, :nx] = np.eye(nx)
        ocp.cost.Vu = np.zeros((ny, nu))
        ocp.cost.Vu[-nu:, -nu:] = np.eye(nu)
        ocp.cost.Vx_e = np.zeros((nx - 4, nx))
        # ocp.cost.Vx_e[:6, :6] = np.eye(6)
        ocp.cost.Vx_e[:3, :3] = np.eye(3)
        ocp.cost.Vx_e[-3:, -3:] = np.eye(3)

        # initial reference trajectory_ref
        x_ref = np.zeros(nx)
        x_ref[3] = 1.0
        x_ref_e = np.zeros(nx - 4)
        u_ref = np.zeros(nu)
        u_ref[-1] = self.g_
        ocp.cost.yref = np.concatenate((x_ref, u_ref))
        ocp.cost.yref_e = x_ref_e

        # Set constraints
        ocp.constraints.lbu = np.array([
            self.constraints.roll_rate_min, self.constraints.pitch_rate_min,
            self.constraints.yaw_rate_min, self.constraints.thrust_min
        ])
        ocp.constraints.ubu = np.array([
            self.constraints.roll_rate_max, self.constraints.pitch_rate_max,
            self.constraints.yaw_rate_max, self.constraints.thrust_max
        ])
        ocp.constraints.idxbu = np.array([0, 1, 2, 3])

        # initial state
        ocp.constraints.x0 = x_ref

        # solver options
        ocp.solver_options.qp_solver = 'FULL_CONDENSING_HPIPM'
        ocp.solver_options.hessian_approx = 'GAUSS_NEWTON'
        # explicit Runge-Kutta integrator
        ocp.solver_options.integrator_type = 'ERK'
        ocp.solver_options.print_level = 0
        ocp.solver_options.nlp_solver_type = 'SQP'  # 'SQP_RTI'
        ocp.solver_options.nlp_solver_max_iter = 400

        # compile acados ocp
        ## files are stored in .ros/
        json_file = os.path.join('./' + self.model.name + '_acados_ocp.json')
        self.solver = AcadosOcpSolver(ocp, json_file=json_file)
        if self.simulation_required:
            self.integrator = AcadosSimSolver(ocp, json_file=json_file)

    def mpc_estimation_loop(self, ):
        t1 = time.time()
        if self.trajectory_path is not None and self.current_state is not None:
            current_trajectory = self.trajectory_path
            u_des = np.array([0.0, 0.0, 0.0, self.g_])
            self.solver.set(
                self.N, 'yref',
                np.concatenate(
                    (current_trajectory[-1, :3], current_trajectory[-1, -3:])))
            # self.solver.set(self.N, 'yref', current_trajectory[-1, :6])
            for i in range(self.N):
                self.solver.set(i, 'yref',
                                np.concatenate((current_trajectory[i], u_des)))

            self.solver.set(0, 'lbx', self.current_state.flatten())
            self.solver.set(0, 'ubx', self.current_state.flatten())
            # print(self.current_state)

            status = self.solver.solve()

            if status != 0:
                rospy.logerr("MPC cannot find a proper solution.")
                self.att_command.thrust = 0.5
                self.att_command.body_rate.z = 0.0
                self.att_command.body_rate.x = 0.0
                self.att_command.body_rate.y = 0.0
                # only for debug
                # print(self.trajectory_path)
                # print("----")
                # print(self.current_state)
            else:
                mpc_u_ = self.solver.get(0, 'u')
                # print(mpc_u_)
                # for i in range(self.N):
                #     print(self.solver.get(i, 'x'))
                self.att_command.body_rate.x = mpc_u_[0]
                self.att_command.body_rate.y = mpc_u_[1]
                self.att_command.body_rate.z = mpc_u_[2]
                self.att_command.thrust = mpc_u_[3] / self.g_ - 0.5
            # self.att_setpoint_pub.publish(self.att_command)

        else:
            if self.trajectory_path is None:
                rospy.loginfo("waiting trajectory")
            elif self.current_state is None:
                rospy.loginfo("waiting current state")
            else:
                rospy.loginfo("Unknown error")
        self.rate.sleep()
        # print(time.time()-t1)
        return True

    @staticmethod
    def quaternion_to_rpy(quaternion):
        q0, q1, q2, q3 = quaternion.w, quaternion.x, quaternion.y, quaternion.z
        roll_ = np.arctan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1**2 + q2**2))
        pitch_ = np.arcsin(2 * (q0 * q2 - q3 * q1))
        yaw_ = np.arctan2(2 * (q0 * q3 + q1 * q2), 1 - 2 * (q2**2 + q3**2))
        return roll_, pitch_, yaw_

    @staticmethod
    def rpy_to_quaternion(rqy):
        roll_, pitch_, yaw_ = rqy
        cy = np.cos(yaw_ * 0.5)
        sy = np.sin(yaw_ * 0.5)
        cp = np.cos(pitch_ * 0.5)
        sp = np.sin(pitch_ * 0.5)
        cr = np.cos(roll_ * 0.5)
        sr = np.sin(roll_ * 0.5)

        w_ = cr * cp * cy + sr * sp * sy
        x_ = sr * cp * cy - cr * sp * sy
        y_ = cr * sp * cy + sr * cp * sy
        z_ = cr * cp * sy - sr * sp * cy

        return np.array([w_, x_, y_, z_])

    def state_server(self, req):
        return SetBoolResponse(True, 'MPC is ready')

    def send_command(self, ):
        rate = rospy.Rate(100)  # Hz
        self.att_command.header = Header()

        while not rospy.is_shutdown():
            # t2 = time.time()
            command_ = self.att_command
            # self.att_command.header.stamp = rospy.Time.now()
            self.att_setpoint_pub.publish(command_)
            try:  # prevent garbage in console output when thread is killed
                rate.sleep()
            except rospy.ROSInterruptException:
                pass
コード例 #8
0
                                    '.json')
acados_integrator = AcadosSimSolver(ocp,
                                    json_file='acados_ocp_' + model.name +
                                    '.json')

simX = np.ndarray((N + 1, nx))
simU = np.ndarray((N, nu))

xcurrent = x0
simX[0, :] = xcurrent

# closed loop
for i in range(N):

    # solve ocp
    acados_ocp_solver.set(0, "lbx", xcurrent)
    acados_ocp_solver.set(0, "ubx", xcurrent)

    status = acados_ocp_solver.solve()

    if status != 0:
        raise Exception(
            'acados acados_ocp_solver returned status {}. Exiting.'.format(
                status))

    simU[i, :] = acados_ocp_solver.get(0, "u")

    # simulate system
    acados_integrator.set("x", xcurrent)
    acados_integrator.set("u", simU[i, :])
コード例 #9
0
def main(cost_type='NONLINEAR_LS', hessian_approximation='EXACT', ext_cost_use_num_hess=0,
         integrator_type='ERK'):
    print(f"using: cost_type {cost_type}, integrator_type {integrator_type}")
    # create ocp object to formulate the OCP
    ocp = AcadosOcp()

    # set model
    model = export_pendulum_ode_model()
    ocp.model = model

    Tf = 1.0
    nx = model.x.size()[0]
    nu = model.u.size()[0]
    ny = nx + nu
    ny_e = nx
    N = 20

    ocp.dims.N = N

    # set cost
    Q = 2*np.diag([1e3, 1e3, 1e-2, 1e-2])
    R = 2*np.diag([1e-2])

    x = ocp.model.x
    u = ocp.model.u

    cost_W = scipy.linalg.block_diag(Q, R)

    if cost_type == 'LS':
        ocp.cost.cost_type = 'LINEAR_LS'
        ocp.cost.cost_type_e = 'LINEAR_LS'

        ocp.cost.Vx = np.zeros((ny, nx))
        ocp.cost.Vx[:nx,:nx] = np.eye(nx)

        Vu = np.zeros((ny, nu))
        Vu[4,0] = 1.0
        ocp.cost.Vu = Vu

        ocp.cost.Vx_e = np.eye(nx)

    elif cost_type == 'NONLINEAR_LS':
        ocp.cost.cost_type = 'NONLINEAR_LS'
        ocp.cost.cost_type_e = 'NONLINEAR_LS'

        ocp.model.cost_y_expr = vertcat(x, u)
        ocp.model.cost_y_expr_e = x

    elif cost_type == 'EXTERNAL':
        ocp.cost.cost_type = 'EXTERNAL'
        ocp.cost.cost_type_e = 'EXTERNAL'

        ocp.model.cost_expr_ext_cost = vertcat(x, u).T @ cost_W @ vertcat(x, u)
        ocp.model.cost_expr_ext_cost_e = x.T @ Q @ x

    else:
        raise Exception('Unknown cost_type. Possible values are \'LS\' and \'NONLINEAR_LS\'.')

    if cost_type in ['LS', 'NONLINEAR_LS']:
        ocp.cost.yref = np.zeros((ny, ))
        ocp.cost.yref_e = np.zeros((ny_e, ))
        ocp.cost.W_e = Q
        ocp.cost.W = cost_W

    # set constraints
    Fmax = 80
    ocp.constraints.constr_type = 'BGH'
    ocp.constraints.lbu = np.array([-Fmax])
    ocp.constraints.ubu = np.array([+Fmax])
    x0 = np.array([0.0, np.pi, 0.0, 0.0])
    ocp.constraints.x0 = x0
    ocp.constraints.idxbu = np.array([0])

    ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM' # FULL_CONDENSING_QPOASES
    ocp.solver_options.hessian_approx = hessian_approximation
    ocp.solver_options.regularize_method = 'CONVEXIFY'
    ocp.solver_options.integrator_type = integrator_type
    if ocp.solver_options.integrator_type == 'GNSF':
        import json
        with open('../getting_started/common/' + model.name + '_gnsf_functions.json', 'r') as f:
            gnsf_dict = json.load(f)
        ocp.gnsf_model = gnsf_dict

    ocp.solver_options.qp_solver_cond_N = 5

    # set prediction horizon
    ocp.solver_options.tf = Tf
    ocp.solver_options.nlp_solver_type = 'SQP' # SQP_RTI
    ocp.solver_options.ext_cost_num_hess = ext_cost_use_num_hess

    ocp_solver = AcadosOcpSolver(ocp, json_file = 'acados_ocp.json')

    # set NaNs as input to test reset() -> NOT RECOMMENDED!!!
    # ocp_solver.options_set('print_level', 2)
    for i in range(N):
        ocp_solver.set(i, 'x', np.NaN * np.ones((nx,)))
        ocp_solver.set(i, 'u', np.NaN * np.ones((nu,)))
    status = ocp_solver.solve()
    ocp_solver.print_statistics() # encapsulates: stat = ocp_solver.get_stats("statistics")
    if status == 0:
        raise Exception(f'acados returned status {status}, although NaNs were given.')
    else:
        print(f'acados returned status {status}, which is expected, since NaNs were given.')

    # RESET
    ocp_solver.reset()
    for i in range(N):
        ocp_solver.set(i, 'x', x0)

    if cost_type == 'EXTERNAL':
        # NOTE: hessian is wrt [u,x]
        if ext_cost_use_num_hess:
            for i in range(N):
                ocp_solver.cost_set(i, "ext_cost_num_hess", np.diag([0.04, 4000, 4000, 0.04, 0.04, ]))
            ocp_solver.cost_set(N, "ext_cost_num_hess", np.diag([4000, 4000, 0.04, 0.04, ]))

    simX = np.ndarray((N+1, nx))
    simU = np.ndarray((N, nu))

    status = ocp_solver.solve()

    ocp_solver.print_statistics()
    if status != 0:
        raise Exception(f'acados returned status {status} for cost_type {cost_type}\n'
                        f'integrator_type = {integrator_type}.')

    # get solution
    for i in range(N):
        simX[i,:] = ocp_solver.get(i, "x")
        simU[i,:] = ocp_solver.get(i, "u")
    simX[N,:] = ocp_solver.get(N, "x")
コード例 #10
0
ファイル: test_osqp.py プロジェクト: dkouzoup/acados
ocp.solver_options.qp_solver_iter_max = 2000
# ocp.solver_options.qp_solver_warm_start = 1


# set prediction horizon
ocp.solver_options.tf = Tf

ocp_solver = AcadosOcpSolver(ocp, json_file = 'acados_ocp.json')

# ocp_solver.options_set("qp_solver_warm_start", 1)

simX = np.ndarray((N+1, nx))
simU = np.ndarray((N, nu))

# test setter
ocp_solver.set(0, "u", 0.0)
ocp_solver.set(0, "u", 0)
ocp_solver.set(0, "u", np.array([0]))

status = ocp_solver.solve()

if status != 0:
    ocp_solver.print_statistics() # encapsulates: stat = ocp_solver.get_stats("statistics")
    raise Exception(f'acados returned status {status}.')

# get solution
for i in range(N):
    simX[i,:] = ocp_solver.get(i, "x")
    simU[i,:] = ocp_solver.get(i, "u")
simX[N,:] = ocp_solver.get(N, "x")
ocp.constraints.idxbx_e = np.array(range(nx))
ocp.dims.nbx_e = nx

ocp.solver_options.tf = Tf
ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM' # FULL_CONDENSING_QPOASES
ocp.solver_options.hessian_approx = 'GAUSS_NEWTON'
ocp.solver_options.integrator_type = 'ERK'
ocp.solver_options.nlp_solver_type = 'SQP' # SQP_RTI
ocp_solver = AcadosOcpSolver(ocp, json_file = 'acados_ocp.json')

# initial guess
t_traj = np.linspace(0, Tf, N+1)
x_traj = np.linspace(x0,xT,N+1)
u_traj = np.ones((N,1))+np.random.rand(N,1)*1e-6
for n in range(N+1):
  ocp_solver.set(n, 'x', x_traj[n,:])
for n in range(N):
  ocp_solver.set(n, 'u', u_traj[n])


# solve
status = ocp_solver.solve()

if status != 0:
    raise Exception('acados returned status {}. Exiting.'.format(status))

# get solution
stat_fields = ['time_tot', 'time_lin', 'time_qp', 'time_qp_solver_call', 'time_reg', 'sqp_iter']
for field in stat_fields:
  print(f"{field} : {ocp_solver.get_stats(field)}")
simX = np.ndarray((N + 1, nx))
コード例 #12
0
ファイル: pmpc.py プロジェクト: tongliuzhu/tunempc
class Pmpc(object):
    def __init__(self,
                 N,
                 sys,
                 cost,
                 wref=None,
                 tuning=None,
                 lam_g_ref=None,
                 sensitivities=None,
                 options={}):
        """ Constructor
        """

        # store construction data
        self.__N = N
        self.__vars = sys['vars']
        self.__nx = sys['vars']['x'].shape[0]
        self.__nu = sys['vars']['u'].shape[0]

        # nonlinear inequalities slacks
        if 'us' in sys['vars']:
            self.__ns = sys['vars']['us'].shape[0]
        else:
            self.__ns = 0

        # mpc slacks
        if 'usc' in sys['vars']:
            self.__nsc = sys['vars']['usc'].shape[0]
            self.__scost = sys['scost']
        else:
            self.__nsc = 0

        # store system dynamics
        self.__F = sys['f']

        # store path constraints
        if 'h' in sys:
            self.__h = sys['h']
            h_lin = self.__h(*self.__vars.values())
            self.__h_x_idx = [
                idx for idx in range(h_lin.shape[0])
                if not True in ca.which_depends(
                    h_lin[idx], ct.vertcat(*list(self.__vars.values())[1:]))
            ]
        else:
            self.__h = None

        # store slacked nonlinear inequality constraints
        if 'g' in sys:
            self.__gnl = sys['g']
            self.__detect_state_dependent_constraints()

        else:
            self.__gnl = None
            self.__h_us_idx = []  # no nonlinear state-dependent constraints

        # store system sensitivities around steady state
        self.__S = sys['S']

        self.__cost = cost

        # set options
        self.__options = self.__default_options()
        for option in options:
            if option in self.__options:
                self.__options[option] = options[option]
            else:
                raise ValueError(
                    'Unknown option for Pmpc class instance: "{}"'.format(
                        option))

        # detect cost-type
        if self.__cost.n_in() == 2:

            # cost function of the form: l(x,u)
            self.__type = 'economic'

            # no tuning required
            tuning = None

            if self.__options['hessian_approximation'] == 'gauss_newton':
                self.__options['hessian_approximation'] = 'exact'
                Logger.logger.warning(
                    'Gauss-Newton Hessian approximation cannot be applied for economic MPC problem. Switched to exact Hessian.'
                )

        else:

            # cost function of the form: (w-wref)'*H*(w-wref) + q'w
            self.__type = 'tracking'

            # check if tuning matrices are provided
            assert tuning != None, 'Provide tuning matrices for tracking MPC!'

        # periodicity operator
        self.__p_operator = self.__options['p_operator']
        self.__jac_p_operator = ca.Function('jac_p', [sys['vars']['x']], [
            ca.jacobian(self.__p_operator(sys['vars']['x']), sys['vars']['x'])
        ])
        self.__S = sensitivities

        # construct MPC solver
        self.__construct_solver()

        # periodic indexing
        self.__index = 0
        self.__index_acados = 0

        # create periodic reference
        assert wref != None, 'Provide reference trajectory!'
        self.__create_reference(wref, tuning, lam_g_ref)

        # initialize log
        self.__initialize_log()

        # initialize acados solvers
        self.__acados_ocp_solver = None
        self.__acados_integrator = None

        # solver initial guess
        self.__set_initial_guess()

        return None

    def __default_options(self):

        # default options
        opts = {
            'hessian_approximation':
            'exact',
            'ipopt_presolve':
            False,
            'max_iter':
            2000,
            'p_operator':
            ca.Function('p_operator', [self.__vars['x']], [self.__vars['x']]),
            'slack_flag':
            'none'
        }

        return opts

    def __construct_solver(self):
        """ Construct periodic MPC solver
        """

        # system variables and dimensions
        x = self.__vars['x']
        u = self.__vars['u']

        # NLP parameters

        if self.__type == 'economic':

            # parameters
            self.__p = ct.struct_symMX([
                ct.entry('x0', shape=(self.__nx, 1)),
                ct.entry('xN', shape=(self.__nx, 1))
            ])

            # reassign for brevity
            x0 = self.__p['x0']
            xN = self.__p['xN']

        if self.__type == 'tracking':
            ref_vars = (ct.entry('x', shape=(self.__nx, ),
                                 repeat=self.__N + 1),
                        ct.entry('u', shape=(self.__nu, ), repeat=self.__N))

            if 'us' in self.__vars:
                ref_vars += (ct.entry('us',
                                      shape=(self.__ns, ),
                                      repeat=self.__N), )

            # reference trajectory
            wref = ct.struct_symMX([ref_vars])

            nw = self.__nx + self.__nu + self.__ns
            tuning = ct.struct_symMX([  # tracking tuning
                ct.entry('H', shape=(nw, nw), repeat=self.__N),
                ct.entry('q', shape=(nw, 1), repeat=self.__N)
            ])

            # parameters
            self.__p = ct.struct_symMX([
                ct.entry('x0', shape=(self.__nx, )),
                ct.entry('wref', struct=wref),
                ct.entry('tuning', struct=tuning)
            ])

            # reassign for brevity
            x0 = self.__p['x0']
            wref = self.__p.prefix['wref']
            tuning = self.__p.prefix['tuning']
            xN = wref['x', -1]

        # NLP variables
        variables_entry = (ct.entry('x',
                                    shape=(self.__nx, ),
                                    repeat=self.__N + 1),
                           ct.entry('u', shape=(self.__nu, ), repeat=self.__N))

        if 'us' in self.__vars:
            variables_entry += (ct.entry('us',
                                         shape=(self.__ns, ),
                                         repeat=self.__N), )

        self.__wref = ct.struct_symMX([variables_entry
                                       ])  # structure of reference

        if 'usc' in self.__vars:
            variables_entry += (ct.entry('usc',
                                         shape=(self.__nsc, ),
                                         repeat=self.__N), )

        # nlp variables + bounds
        w = ct.struct_symMX([variables_entry])

        # variable bounds are implemented as inequalities
        self.__lbw = w(-np.inf)
        self.__ubw = w(np.inf)

        # prepare dynamics and path constraints entry
        constraints_entry = (ct.entry('dyn',
                                      shape=(self.__nx, ),
                                      repeat=self.__N), )
        if self.__gnl is not None:
            constraints_entry += (ct.entry('g',
                                           shape=self.__gnl.size1_out(0),
                                           repeat=self.__N), )
        if self.__h is not None:
            constraints_entry += (ct.entry('h',
                                           shape=self.__h.size1_out(0),
                                           repeat=self.__N), )

        # terminal constraint
        self.__nx_term = self.__p_operator.size1_out(0)

        # create general constraints structure
        g_struct = ct.struct_symMX([
            ct.entry('init', shape=(self.__nx, 1)), constraints_entry,
            ct.entry('term', shape=(self.__nx_term, 1))
        ])

        # create symbolic constraint expressions
        map_args = collections.OrderedDict()
        map_args['x0'] = ct.horzcat(*w['x', :-1])
        map_args['p'] = ct.horzcat(*w['u'])
        F_constr = ct.horzsplit(self.__F.map(self.__N)(**map_args)['xf'])

        # generate constraints
        constr = collections.OrderedDict()
        constr['dyn'] = [a - b for a, b in zip(F_constr, w['x', 1:])]
        if 'us' in self.__vars:
            map_args['us'] = ct.horzcat(*w['us'])

        if self.__gnl is not None:
            constr['g'] = ct.horzsplit(
                self.__gnl.map(self.__N)(*map_args.values()))

        if 'usc' in self.__vars:
            map_args['usc'] = ct.horzcat(*w['usc'])

        if self.__h is not None:
            constr['h'] = ct.horzsplit(
                self.__h.map(self.__N)(*map_args.values()))

        repeated_constr = list(
            itertools.chain.from_iterable(zip(*constr.values())))

        term_constraint = self.__p_operator(w['x', -1] - xN)

        self.__g = g_struct(
            ca.vertcat(w['x', 0] - x0, *repeated_constr, term_constraint))

        self.__lbg = g_struct(np.zeros(self.__g.shape))
        self.__ubg = g_struct(np.zeros(self.__g.shape))
        if self.__h is not None:
            self.__ubg['h', :] = np.inf
            for i in self.__h_us_idx + self.__h_x_idx:  # rm constraints the only depend on x at k = 0
                self.__lbg['h', 0, i] = -np.inf

        # nlp cost
        cost_map = self.__cost.map(self.__N)

        if self.__type == 'economic':

            cost_args = [ct.horzcat(*w['x', :-1]), ct.horzcat(*w['u'])]

        elif self.__type == 'tracking':

            if self.__ns != 0:
                cost_args_w = ct.horzcat(*[
                    ct.vertcat(w['x', k], w['u', k], w['us', k])
                    for k in range(self.__N)
                ])
                cost_args_w_ref = ct.horzcat(*[
                    ct.vertcat(wref['x', k], wref['u', k], wref['us', k])
                    for k in range(self.__N)
                ])
            else:
                cost_args_w = ct.horzcat(*[
                    ct.vertcat(w['x', k], w['u', k]) for k in range(self.__N)
                ])
                cost_args_w_ref = ct.horzcat(*[
                    ct.vertcat(wref['x', k], wref['u', k])
                    for k in range(self.__N)
                ])

            cost_args = [
                cost_args_w, cost_args_w_ref,
                ct.horzcat(*tuning['H']),
                ct.horzcat(*tuning['q'])
            ]

            if self.__options['hessian_approximation'] == 'gauss_newton':

                if 'usc' not in self.__vars:
                    hess_gn = ct.diagcat(*tuning['H'],
                                         ca.DM.zeros(self.__nx, self.__nx))
                else:
                    hess_block = list(
                        itertools.chain.from_iterable(
                            zip(tuning['H'],
                                [ca.DM.zeros(self.__nsc, self.__nsc)] *
                                self.__N)))
                    hess_gn = ct.diagcat(*hess_block,
                                         ca.DM.zeros(self.__nx, self.__nx))

        J = ca.sum2(cost_map(*cost_args))

        # add cost on slacks
        if 'usc' in self.__vars:
            J += ca.sum2(ct.mtimes(self.__scost.T, ct.horzcat(*w['usc'])))

        # create solver
        prob = {'f': J, 'g': self.__g, 'x': w, 'p': self.__p}
        self.__w = w
        self.__g_fun = ca.Function('g_fun', [self.__w, self.__p], [self.__g])

        # create IPOPT-solver instance if needed
        if self.__options['ipopt_presolve']:
            opts = {
                'ipopt': {
                    'linear_solver': 'ma57',
                    'print_level': 0
                },
                'expand': False
            }
            if Logger.logger.getEffectiveLevel() > 10:
                opts['ipopt']['print_level'] = 0
                opts['print_time'] = 0
                opts['ipopt']['sb'] = 'yes'
            self.__solver = ca.nlpsol('solver', 'ipopt', prob, opts)

        # create hessian approximation function
        if self.__options['hessian_approximation'] == 'gauss_newton':
            lam_g = ca.MX.sym('lam_g', self.__g.shape)  # will not be used
            hess_approx = ca.Function('hess_approx',
                                      [self.__w, self.__p, lam_g], [hess_gn])
        elif self.__options['hessian_approximation'] == 'exact':
            hess_approx = 'exact'

        # create sqp solver
        prob['lbg'] = self.__lbg
        prob['ubg'] = self.__ubg
        sqp_opts = {
            'hessian_approximation': hess_approx,
            'max_iter': self.__options['max_iter']
        }
        self.__sqp_solver = sqp_method.Sqp(prob, sqp_opts)

    def step(self, x0):
        """ Compute periodic MPC feedback control for given initial condition.
        """

        # reset periodic indexing if necessary
        self.__index = self.__index % len(self.__ref)

        # update nlp parameters
        p0 = self.__p(0.0)
        p0['x0'] = x0

        if self.__type == 'economic':

            p0['xN'] = self.__ref[self.__index][-x0.shape[0]:]

        elif self.__type == 'tracking':

            p0['wref'] = self.__ref[self.__index]
            p0['tuning', 'H'] = self.__Href[self.__index]
            p0['tuning', 'q'] = self.__qref[self.__index]

        # pre-solve NLP with IPOPT for globalization
        if self.__options['ipopt_presolve']:

            ipopt_sol = self.__solver(x0=self.__w0,
                                      lbg=self.__lbg,
                                      ubg=self.__ubg,
                                      p=p0)

            self.__w0 = self.__w(ipopt_sol['x'])
            self.__lam_g0 = self.__g(ipopt_sol['lam_g'])

        # solve NLP
        sol = self.__sqp_solver.solve(self.__w0.cat, p0.cat, self.__lam_g0.cat)

        # store solution
        self.__g_sol = self.__g(self.__g_fun(sol['x'], p0))
        self.__w_sol = self.__w(sol['x'])
        self.__extract_solver_stats()

        # shift reference
        self.__index += 1

        # update initial guess
        self.__w0, self.__lam_g0 = self.__shift_initial_guess(
            self.__w_sol, self.__g(sol['lam_g']))

        return self.__w_sol['u', 0]

    def step_acados(self, x0):

        # reset periodic indexing if necessary
        self.__index_acados = self.__index_acados % self.__Nref

        # format x0
        x0 = np.squeeze(x0.full())

        # update NLP parameters
        self.__acados_ocp_solver.set(0, "lbx", x0)
        self.__acados_ocp_solver.set(0, "ubx", x0)

        # update reference and tuning matrices
        self.__set_acados_reference()

        # solve
        status = self.__acados_ocp_solver.solve()

        # timings
        # np.append(self.__acados_times, self.__acados_ocp_solver.get_stats("time_tot"))
        print("acados timings: total: ", self.__acados_ocp_solver.get_stats("time_tot"), \
            " lin: ", self.__acados_ocp_solver.get_stats("time_lin"), \
            " sim: ", self.__acados_ocp_solver.get_stats("time_sim"), " qp: ", \
                 self.__acados_ocp_solver.get_stats("time_qp"))

        # if status != 0:
        #     raise Exception('acados solver returned status {}. Exiting.'.format(status))

        # save solution
        self.__w_sol_acados = self.__w(0.0)
        for i in range(self.__N):
            self.__w_sol_acados['x', i] = self.__acados_ocp_solver.get(i, "x")
            self.__w_sol_acados['u', i] = self.__acados_ocp_solver.get(
                i, "u")[:self.__nu]
            if 'us' in self.__vars:
                self.__w_sol_acados['us', i] = self.__acados_ocp_solver.get(
                    i, "u")[self.__nu:]
        self.__w_sol_acados['x', self.__N] = self.__acados_ocp_solver.get(
            self.__N, "x")
        self.__extract_acados_solver_stats()

        # feedback policy
        u0 = self.__acados_ocp_solver.get(0, "u")[:self.__nu]

        # update initial guess
        self.__shift_initial_guess_acados()

        # shift index
        self.__index_acados += 1

        return u0

    def generate(self, dae=None, quad=None, name='tunempc', opts={}):
        """ Create embeddable NLP solver
        """

        from acados_template import AcadosModel, AcadosOcp, AcadosOcpSolver, AcadosSimSolver

        # extract dimensions
        nx = self.__nx
        nu = self.__nu + self.__ns  # treat slacks as pseudo-controls

        # extract reference
        ref = self.__ref
        xref = np.squeeze(self.__ref[0][:nx], axis=1)
        uref = np.squeeze(self.__ref[0][nx:nx + nu], axis=1)

        # sampling time
        self.__ts = opts['tf'] / self.__N

        # create acados model
        model = AcadosModel()
        model.x = ca.MX.sym('x', nx)
        model.u = ca.MX.sym('u', nu)
        model.p = []
        model.name = name

        # detect input type
        if dae is None:
            model.f_expl_expr = self.__F(x0=model.x,
                                         p=model.u)['xf'] / self.__ts
            opts['integrator_type'] = 'ERK'
            opts['sim_method_num_stages'] = 1
            opts['sim_method_num_steps'] = 1
        else:
            n_in = dae.n_in()
            if n_in == 2:

                # xdot = f(x, u)
                if 'integrator_type' in opts:
                    if opts['integrator_type'] in ['IRK', 'GNSF']:
                        xdot = ca.MX.sym('xdot', nx)
                        model.xdot = xdot
                        model.f_impl_expr = xdot - dae(model.x,
                                                       model.u[:self.__nu])
                        model.f_expl_expr = xdot
                    elif opts['integrator_type'] == 'ERK':
                        model.f_expl_expr = dae(model.x, model.u[:self.__nu])
                else:
                    raise ValueError('Provide numerical integrator type!')

            else:

                xdot = ca.MX.sym('xdot', nx)
                model.xdot = xdot
                model.f_expl_expr = xdot

                if n_in == 3:

                    # f(xdot, x, u) = 0
                    model.f_impl_expr = dae(xdot, model.x, model.u[:self.__nu])

                elif n_in == 4:

                    # f(xdot, x, u, z) = 0
                    nz = dae.size1_in(3)
                    z = ca.MX.sym('z', nz)
                    model.z = z
                    model.f_impl_expr = dae(xdot, model.x, model.u[:self.__nu],
                                            z)
                else:
                    raise ValueError(
                        'Invalid number of inputs for system dynamics function.'
                    )

        if self.__gnl is not None:
            model.con_h_expr = self.__gnl(model.x, model.u[:self.__nu],
                                          model.u[self.__nu:])

        if self.__type == 'economic':
            if quad is None:
                model.cost_expr_ext_cost = self.__cost(
                    model.x, model.u[:self.__nu]) / self.__ts
            else:
                model.cost_expr_ext_cost = self.__cost(model.x,
                                                       model.u[:self.__nu])

        # create acados ocp
        ocp = AcadosOcp()
        ocp.model = model
        ny = nx + nu
        ny_e = nx

        if 'integrator_type' in opts and opts['integrator_type'] == 'GNSF':
            from acados_template import acados_dae_model_json_dump
            import os
            acados_dae_model_json_dump(model)
            # Set up Octave to be able to run the following:
            ## if using a virtual python env, the following lines can be added to the env/bin/activate script:
            # export OCTAVE_PATH=$OCTAVE_PATH:$ACADOS_INSTALL_DIR/external/casadi-octave
            # export OCTAVE_PATH=$OCTAVE_PATH:$ACADOS_INSTALL_DIR/interfaces/acados_matlab_octave/
            # export OCTAVE_PATH=$OCTAVE_PATH:$ACADOS_INSTALL_DIR/interfaces/acados_matlab_octave/acados_template_mex/
            # echo
            # echo "OCTAVE_PATH=$OCTAVE_PATH"
            status = os.system(
                "octave --eval \"convert({})\"".format("\'" + model.name +
                                                       "_acados_dae.json\'"))
            # load gnsf from json
            with open(model.name + '_gnsf_functions.json', 'r') as f:
                import json
                gnsf_dict = json.load(f)
            ocp.gnsf_model = gnsf_dict

        # set horizon length
        ocp.dims.N = self.__N

        # set cost module
        if self.__type == 'economic':

            # set cost function type to external (provided in model)
            ocp.cost.cost_type = 'EXTERNAL'

            if quad is not None:
                ocp.solver_options.cost_discretization = 'INTEGRATOR'

        elif self.__type == 'tracking':

            # set weighting matrices
            ocp.cost.W = self.__Href[0][0]

            # set-up linear least squares cost
            ocp.cost.cost_type = 'LINEAR_LS'
            ocp.cost.W_e = np.zeros((nx, nx))
            ocp.cost.Vx = np.zeros((ny, nx))
            ocp.cost.Vx[:nx, :nx] = np.eye(nx)
            Vu = np.zeros((ny, nu))
            Vu[nx:, :] = np.eye(nu)
            ocp.cost.Vu = Vu
            ocp.cost.Vx_e = np.eye(nx)
            ocp.cost.yref  = np.squeeze(
                ca.vertcat(xref,uref).full() - \
                ct.mtimes(np.linalg.inv(ocp.cost.W),self.__qref[0][0].T).full(), # gradient term
                axis = 1
                )
            ocp.cost.yref_e = np.zeros((ny_e, ))
            if n_in == 4:  # DAE flag
                ocp.cost.Vz = np.zeros((ny, nz))

        # if 'custom_hessian' in opts:
        #     self.__custom_hessian = opts['custom_hessian']

        # initial condition
        ocp.constraints.x0 = xref

        # set inequality constraints
        ocp.constraints.constr_type = 'BGH'
        if self.__S['C'] is not None:
            C = self.__S['C'][0][:, :nx]
            D = self.__S['C'][0][:, nx:]
            lg = -self.__S['e'][0] + ct.mtimes(C, xref).full() + ct.mtimes(
                D, uref).full()
            ug = 1e8 - self.__S['e'][0] + ct.mtimes(
                C, xref).full() + ct.mtimes(D, uref).full()
            ocp.constraints.lg = np.squeeze(lg, axis=1)
            ocp.constraints.ug = np.squeeze(ug, axis=1)
            ocp.constraints.C = C
            ocp.constraints.D = D

            if 'usc' in self.__vars:
                if 'us' in self.__vars:
                    arg = [
                        self.__vars['x'], self.__vars['u'], self.__vars['us'],
                        self.__vars['usc']
                    ]
                else:
                    arg = [
                        self.__vars['x'], self.__vars['u'], self.__vars['usc']
                    ]
                Jsg = ca.Function(
                    'Jsg', [self.__vars['usc']],
                    [ca.jacobian(self.__h(*arg), self.__vars['usc'])])(0.0)
                self.__Jsg = Jsg.full()[:-self.__nsc, :]
                ocp.constraints.Jsg = self.__Jsg
                ocp.cost.Zl = np.zeros((self.__nsc, ))
                ocp.cost.Zu = np.zeros((self.__nsc, ))
                ocp.cost.zl = np.squeeze(self.__scost.full(),
                                         axis=1) / self.__ts
                ocp.cost.zu = np.squeeze(self.__scost.full(),
                                         axis=1) / self.__ts

        # set nonlinear equality constraints
        if self.__gnl is not None:
            ocp.constraints.lh = np.zeros(self.__ns, )
            ocp.constraints.uh = np.zeros(self.__ns, )

        # terminal constraint:
        x_term = self.__p_operator(model.x)
        Jbx = ca.Function('Jbx', [model.x],
                          [ca.jacobian(x_term, model.x)])(0.0)
        ocp.constraints.Jbx_e = Jbx.full()
        ocp.constraints.lbx_e = np.squeeze(self.__p_operator(xref).full(),
                                           axis=1)
        ocp.constraints.ubx_e = np.squeeze(self.__p_operator(xref).full(),
                                           axis=1)

        for option in list(opts.keys()):
            if hasattr(ocp.solver_options, option):
                setattr(ocp.solver_options, option, opts[option])

        self.__acados_ocp_solver = AcadosOcpSolver(ocp,
                                                   json_file='acados_ocp_' +
                                                   model.name + '.json')
        self.__acados_integrator = AcadosSimSolver(ocp,
                                                   json_file='acados_ocp_' +
                                                   model.name + '.json')

        # set initial guess
        self.__set_acados_initial_guess()

        return self.__acados_ocp_solver, self.__acados_integrator

    def __create_reference(self, wref, tuning, lam_g_ref):
        """ Create periodic reference and tuning data.
        """

        # period of reference
        self.__Nref = len(wref['u'])

        # create reference and tuning sequence
        # for each starting point in period
        ref_pr = []
        ref_du = []
        ref_du_struct = []
        H = []
        q = []

        for k in range(self.__Nref):

            # reference primal solution
            refk = []
            for j in range(self.__N):

                refk += [
                    wref['x', (k + j) % self.__Nref],
                    wref['u', (k + j) % self.__Nref]
                ]

                if 'us' in self.__vars:
                    refk += [wref['us', (k + j) % self.__Nref]]

            refk.append(wref['x', (k + self.__N) % self.__Nref])

            # reference dual solution
            lamgk = self.__g(0.0)
            lamgk['init'] = -lam_g_ref['dyn', (k - 1) % self.__Nref]
            for j in range(self.__N):
                lamgk['dyn', j] = lam_g_ref['dyn', (k + j) % self.__Nref]
                if 'g' in list(lamgk.keys()):
                    lamgk['g', j] = lam_g_ref['g', (k + j) % self.__Nref]
                if 'h' in list(lamgk.keys()):
                    lam_h = [lam_g_ref['h', (k + j) % self.__Nref]]
                    if 'usc' in self.__vars:
                        lam_h += [-self.__scost]  # TODO not entirely correct

                    lamgk['h', j] = ct.vertcat(*lam_h)
            lamgk['term'] = self.__p_operator(
                lam_g_ref['dyn', (k + self.__N - 1) % self.__Nref])

            # adjust dual solution of terminal constraint is projected
            if self.__nx_term != self.__nx:

                # find new terminal multiplier
                A_m = []
                b_m = []
                A_factor = ca.DM.eye(self.__nx)
                for j in range(self.__N):
                    A_m.append(
                        ct.mtimes(
                            ct.mtimes(
                                self.__S['B'][(self.__N - j - 1) %
                                              self.__Nref].T, A_factor),
                            self.__jac_p_operator(ca.DM.ones(self.__nx, 1)).T))
                    b_m.append(
                        ct.mtimes(
                            ct.mtimes(
                                self.__S['B'][(self.__N - j - 1) %
                                              self.__Nref].T, A_factor),
                            lam_g_ref['dyn',
                                      (k + self.__N - 1) % self.__Nref]))
                    A_factor = ct.mtimes(
                        self.__S['A'][(self.__N - j - 1) % self.__Nref].T,
                        A_factor)
                A_m = ct.vertcat(*A_m)
                b_m = ct.vertcat(*b_m)
                LI_indeces = [
                ]  # indeces of first full rank number linearly independent rows
                R0 = 0
                for i in range(A_m.shape[0]):
                    R = np.linalg.matrix_rank(A_m[LI_indeces + [i], :])
                    if R > R0:
                        LI_indeces.append(i)
                        R0 = R
                lamgk['term'] = ca.solve(A_m[LI_indeces, :],
                                         b_m[LI_indeces, :])

                # recursively update dynamics multipliers
                delta_lam = -lam_g_ref['dyn', (k + self.__N - 1) %
                                       self.__Nref] + ct.mtimes(
                                           self.__jac_p_operator(
                                               ca.DM.ones(self.__nx, 1)).T,
                                           lamgk['term'])
                lamgk['dyn', self.__N - 1] += delta_lam
                for j in range(1, self.__N + 1):
                    delta_lam = ct.mtimes(
                        self.__S['A'][(self.__N - j) % self.__Nref].T,
                        delta_lam)
                    if j < self.__N:
                        lamgk['dyn', self.__N - 1 - j] += delta_lam
                    else:
                        lamgk['init'] += -delta_lam

            ref_pr.append(ct.vertcat(*refk))
            ref_du.append(lamgk.cat)
            ref_du_struct.append(lamgk)

            if tuning is not None:
                H.append([
                    tuning['H'][(k + j) % self.__Nref] for j in range(self.__N)
                ])
                q.append([
                    tuning['q'][(k + j) % self.__Nref] for j in range(self.__N)
                ])

        self.__ref = ref_pr
        self.__ref_du = ref_du
        self.__ref_du_struct = ref_du_struct
        self.__Href = H
        self.__qref = q

        return None

    def __initialize_log(self):

        self.__log = {
            'cpu': [],
            'iter': [],
            'f': [],
            'status': [],
            'sol_x': [],
            'lam_x': [],
            'lam_g': [],
            'u0': [],
            'nACtot': [],
            'nAC': [],
            'idx_AC': [],
            'nAS': []
        }

        self.__log_acados = {
            'time_tot': [],
            'time_lin': [],
            'time_sim': [],
            'time_qp': [],
            'sqp_iter': [],
            'time_reg': [],
            'time_qp_xcond': [],
            'time_qp_solver_call': [],
        }

        return None

    def __extract_solver_stats(self):

        info = self.__sqp_solver.stats
        self.__log['cpu'].append(info['t_wall_total'])
        self.__log['iter'].append(info['iter_count'])
        self.__log['status'].append(info['return_status'])
        self.__log['sol_x'].append(info['x'])
        self.__log['lam_g'].append(info['lam_g'])
        self.__log['f'].append(info['f'])
        self.__log['u0'].append(self.__w(info['x'])['u', 0])
        self.__log['nACtot'].append(info['nAC'])
        nAC, idx_AC = self.__detect_AC(self.__g(info['lam_g']))
        self.__log['nAC'].append(nAC)
        self.__log['idx_AC'].append(nAC)
        self.__log['nAS'].append(info['nAS'])

        return None

    def __extract_acados_solver_stats(self):

        for key in list(self.__log_acados.keys()):
            self.__log_acados[key].append(
                self.__acados_ocp_solver.get_stats(key))

        return None

    def __detect_AC(self, lam_g_opt):

        # optimal active set
        if 'h' in lam_g_opt.keys():
            idx_opt = [
                k for k in range(self.__h.size1_out(0) - self.__nsc)
                if lam_g_opt['h', 0][k] != 0
            ]
            lam_g_ref = self.__g(self.__ref_du[self.__index])
            idx_ref = [
                k for k in range(self.__h.size1_out(0) - self.__nsc)
                if lam_g_ref['h', 0][k] != 0
            ]

        else:
            idx_opt = []
            idx_ref = []

        # get number of active set changes
        nAC = len([k for k in idx_opt if k not in idx_ref])
        nAC += len([k for k in idx_ref if k not in idx_opt])

        return nAC, idx_opt

    def reset(self):

        self.__index = 0
        self.__index_acados = 0
        self.__initialize_log()
        self.__set_initial_guess()

        return None

    def __shift_initial_guess(self, w0, lam_g0):

        w_shifted = self.__w(0.0)
        lam_g_shifted = self.__g(0.0)
        lam_g_shifted['init'] = lam_g0['dyn', 0]

        # shift states and controls
        for i in range(self.__N):

            # shift primal solution
            w_shifted['x', i] = w0['x', i + 1]

            if i < self.__N - 1:
                w_shifted['u', i] = w0['u', i + 1]
                if 'us' in self.__vars:
                    w_shifted['us', i] = w0['us', i + 1]
                if 'usc' in self.__vars:
                    w_shifted['usc', i] = w0['usc', i + 1]

                # shift dual solution
                lam_g_shifted['dyn', i] = lam_g0['dyn', i + 1]
                for constr in ['g', 'h']:
                    if constr in lam_g0.keys():
                        lam_g_shifted[constr, i] = lam_g0[constr, i + 1]

        # copy final interval
        w_shifted['x', self.__N] = w_shifted['x', self.__N - 1]
        w_shifted['u', self.__N - 1] = w_shifted['u', self.__N - 2]
        if 'us' in self.__vars:
            w_shifted['us', self.__N - 1] = w_shifted['us', self.__N - 2]
        if 'usc' in self.__vars:
            w_shifted['usc', self.__N - 1] = w_shifted['usc', self.__N - 2]

        lam_g_shifted['dyn', self.__N - 1] = lam_g_shifted['dyn', self.__N - 2]
        for constr in ['g', 'h']:
            if constr in lam_g0.keys():
                lam_g_shifted[constr,
                              self.__N - 1] = lam_g_shifted[constr,
                                                            self.__N - 2]
        lam_g_shifted['term'] = lam_g0['term']

        return w_shifted, lam_g_shifted

    def __shift_initial_guess_acados(self):

        for i in range(self.__N):
            x_prev = np.squeeze(self.__w_sol_acados['x', i + 1].full(), axis=1)
            self.__acados_ocp_solver.set(i, "x", x_prev)
            if i < self.__N - 1:
                u_prev = np.squeeze(self.__w_sol_acados['u', i + 1].full(),
                                    axis=1)
                if 'us' in self.__vars:
                    u_prev = np.squeeze(ct.vertcat(
                        u_prev, self.__w_sol_acados['us', i + 1]).full(),
                                        axis=1)
                self.__acados_ocp_solver.set(i, "u", u_prev)

        # initial guess in terminal stage on periodic trajectory
        idx = (self.__index_acados + self.__N) % self.__Nref

        # reference
        xref = np.squeeze(self.__ref[(idx + 1) % self.__Nref][:self.__nx],
                          axis=1)
        uref = np.squeeze(self.__ref[idx][self.__nx:self.__nx + self.__nu +
                                          self.__ns],
                          axis=1)
        self.__acados_ocp_solver.set(self.__N, "x", xref)
        self.__acados_ocp_solver.set(self.__N - 1, "u", uref)

        return None

    def __set_initial_guess(self):

        # create initial guess at steady state
        wref = self.__wref(self.__ref[self.__index])
        w0 = self.__w(0.0)
        w0['x'] = wref['x']
        w0['u'] = wref['u']
        if 'us' in self.__vars:
            w0['us'] = wref['us']
        self.__w0 = w0

        # initial guess for multipliers
        self.__lam_g0 = self.__g(self.__ref_du[self.__index])

        # acados solver initialization at reference
        if self.__acados_ocp_solver is not None:
            self.__set_acados_initial_guess()

        return None

    def __set_acados_reference(self):

        for i in range(self.__N):

            # periodic index
            idx = (self.__index_acados + i) % self.__Nref

            # reference
            xref = np.squeeze(self.__ref[idx][:self.__nx], axis=1)
            uref = np.squeeze(self.__ref[idx][self.__nx:self.__nx + self.__nu +
                                              self.__ns],
                              axis=1)

            if self.__type == 'tracking':

                # construct output reference with gradient term
                yref = np.squeeze(
                    ca.vertcat(xref,uref).full() - \
                    ct.mtimes(
                        np.linalg.inv(self.__Href[idx][0]/self.__ts), # inverse of weighting matrix
                        self.__qref[idx][0].T).full()/self.__ts, # gradient term
                    axis = 1
                    )
                self.__acados_ocp_solver.set(i, 'yref', yref)

                # update tuning matrix
                self.__acados_ocp_solver.cost_set(
                    i, 'W', self.__Href[idx][0] / self.__ts)

            # set custom hessians if applicable
            # if self.__acados_ocp_solver.acados_ocp.solver_options.ext_cost_custom_hessian:
            #     self.__acados_ocp_solver.cost_set(i, "cost_custom_hess", self.__custom_hessian[idx])

            # update constraint bounds
            if self.__h is not None:
                C = self.__S['C'][idx][:, :self.__nx]
                D = self.__S['C'][idx][:, self.__nx:]
                lg = -self.__S['e'][idx] + ct.mtimes(
                    C, xref).full() + ct.mtimes(D, uref).full()
                ug = 1e8 - self.__S['e'][idx] + ct.mtimes(
                    C, xref).full() + ct.mtimes(D, uref).full()

                # remove constraints that depend on states only from first shooting node
                if i == 0:
                    for k in range(D.shape[0]):
                        if k in self.__h_us_idx + self.__h_x_idx:
                            lg[k] += -1e8

                self.__acados_ocp_solver.constraints_set(
                    i, 'lg', np.squeeze(lg, axis=1))
                self.__acados_ocp_solver.constraints_set(
                    i, 'ug', np.squeeze(ug, axis=1))

        # update terminal constraint
        idx = (self.__index_acados + self.__N) % self.__Nref
        x_term = np.squeeze(self.__p_operator(self.__ref[idx][:self.__nx]),
                            axis=1)
        self.__acados_ocp_solver.set(self.__N, 'lbx', x_term)
        self.__acados_ocp_solver.set(self.__N, 'ubx', x_term)

        return None

    def __set_acados_initial_guess(self):

        # dual reference solution
        ref_dual = self.__ref_du_struct[self.__index_acados % self.__Nref]

        for i in range(self.__N):

            # periodic index
            idx = (self.__index_acados + i) % self.__Nref

            # initialize at reference
            xref = np.squeeze(self.__ref[idx][:self.__nx], axis=1)
            uref = np.squeeze(self.__ref[idx][self.__nx:self.__nx + self.__nu +
                                              self.__ns],
                              axis=1)

            # set initial guess
            self.__acados_ocp_solver.set(i, "x", xref)
            self.__acados_ocp_solver.set(i, "u", uref)

            # set dual initial guess
            self.__acados_ocp_solver.set(i, "pi",
                                         np.squeeze(ref_dual['dyn', i].full()))

            # the inequalities are internally organized in the following order:
            # [ lbu lbx lg lh ubu ubx ug uh ]
            lam_h = []
            t = []
            if i == 0:
                lam_x0 = copy.deepcopy(ref_dual['init'])
                if 'h' in list(ref_dual.keys()):
                    lam_lh0 = -ref_dual['h', i][:ref_dual['h', i].shape[0] -
                                                self.__nsc]
                    t_lh0 = copy.deepcopy(self.__S['e'][idx % self.__Nref])
                    if i == 0:
                        # set unused constraints at i=0 to be inactive
                        C = self.__S['C'][idx][:, :self.__nx]
                        D = self.__S['C'][idx][:, self.__nx:]
                        for k in range(D.shape[0]):
                            if k in self.__h_us_idx + self.__h_x_idx:
                                lam_x0 += -ct.mtimes(lam_lh0[k], C[k, :])
                                lam_lh0[k] = 0.0
                                t_lh0[k] += 1e8
                lam_lx0 = -copy.deepcopy(lam_x0)
                for k in range(self.__nx):
                    if lam_lx0[k] < 0.0:
                        lam_lx0[k] = 0.0  # assign multiplier to upper bound
                lam_h.append(lam_lx0)  # lbx_0
                t.append(np.zeros((self.__nx, )))
            if 'h' in list(ref_dual.keys()):
                if i == 0:
                    lam_lh = lam_lh0
                    t_lh = t_lh0
                else:
                    lam_lh = -ref_dual['h', i][:ref_dual['h', i].shape[0] -
                                               self.__nsc]
                    t_lh = copy.deepcopy(self.__S['e'][idx % self.__Nref])
                lam_h.append(lam_lh)  # lg
                t.append(t_lh)
            if 'g' in list(ref_dual.keys()):
                lam_lg0 = -ref_dual['g', i]
                lam_ug0 = np.zeros(lam_lg0.shape)
                for k in range(lam_lg0.shape[0]):
                    if lam_lg0[k] < 0.0:
                        lam_ug0[k] = -lam_lg0[k]
                        lam_lg0[k] = 0.0
                lam_h.append(lam_lg0)  # lh
                t.append(np.zeros((ref_dual['g', i].shape[0], )))
            if i == 0:
                lam_ux0 = copy.deepcopy(lam_x0)
                for k in range(self.__nx):
                    if lam_ux0[k] < 0.0:
                        lam_ux0[k] = 0.0  # assign multiplier to lower bound
                lam_h.append(lam_ux0)  # ubx_0
                t.append(np.zeros((self.__nx, )))
            if 'h' in list(ref_dual.keys()):
                lam_h.append(
                    np.zeros((ref_dual['h', i].shape[0] - self.__nsc, )))  # ug
                t.append(1e8 *
                         np.ones((ref_dual['h', i].shape[0] - self.__nsc, 1)) -
                         self.__S['e'][idx])
            if 'g' in list(ref_dual.keys()):
                lam_h.append(lam_ug0)  # uh
                t.append(np.zeros((ref_dual['g', i].shape[0], )))
            if self.__nsc > 0:
                lam_sl = self.__scost - ct.mtimes(lam_lh.T, self.__Jsg).T
                lam_h.append(lam_sl)  # ls
                lam_h.append(self.__scost)  # us
                t.append(np.zeros((self.__nsc, )))  # slg > 0
                t.append(np.zeros((self.__nsc, )))  # sug > 0
            if len(lam_h) != 0:
                self.__acados_ocp_solver.set(
                    i, "lam", np.squeeze(ct.vertcat(*lam_h).full()))
                self.__acados_ocp_solver.set(i, "t",
                                             np.squeeze(ct.vertcat(*t).full()))

        # terminal state
        idx = (self.__index_acados + self.__N) % self.__Nref
        xref = np.squeeze(self.__ref[idx][:self.__nx], axis=1)
        self.__acados_ocp_solver.set(self.__N, "x", xref)

        # terminal multipliers
        lam_lterm = -ref_dual['term']
        lam_uterm = np.zeros((ref_dual['term'].shape[0], ))
        for k in range(lam_lterm.shape[0]):
            if lam_lterm[k] < 0.0:
                lam_uterm[k] = -lam_lterm[k]
                lam_lterm[k] = 0.0
        lam_term = np.squeeze(ct.vertcat(lam_lterm, lam_uterm).full())
        self.__acados_ocp_solver.set(self.__N, "lam", lam_term)

        return None

    def __detect_state_dependent_constraints(self):
        """ Detect which nonlinear equalities depend on states but not on controls.
        """

        g_nl = self.__gnl(self.__vars['x'], self.__vars['u'],
                          self.__vars['us'])
        self.__gnl_x_idx = []
        for i in range(g_nl.shape[0]):
            if not True in ca.which_depends(g_nl[i], self.__vars['u'], 1):
                self.__gnl_x_idx.append(i)
        self.__h_us_idx = [
            idx + self.__h.size1_out(0) - self.__ns for idx in self.__gnl_x_idx
        ]

        return None

    @property
    def w(self):
        return self.__w

    @property
    def g_sol(self):
        return self.__g_sol

    @property
    def w_sol(self):
        return self.__w_sol

    @property
    def log(self):
        return self.__log

    @property
    def log_acados(self):
        return self.__log_acados

    @property
    def index(self):
        return self.__index

    @property
    def acados_ocp_solver(self):
        return self.__acados_ocp_solver

    @property
    def acados_integrator(self):
        return self.__acados_integrator

    @property
    def w_sol_acados(self):
        return self.__w_sol_acados
コード例 #13
0
class QuadOptimizer:
    def __init__(self,
                 quad_model,
                 quad_constraints,
                 t_horizon,
                 n_nodes,
                 sim_required=False,
                 max_hight=1.0):
        self.model = quad_model
        self.constraints = quad_constraints
        self.g = 9.8066
        self.T = t_horizon
        self.N = n_nodes
        self.simulation_required = sim_required

        robot_name_ = rospy.get_param("~robot_name", "bebop1_r")
        self.current_pose = None
        self.current_state = np.zeros((13, 1))
        self.dt = 0.02
        self.rate = rospy.Rate(1 / self.dt)
        self.time_stamp = None
        self.trajectory_path = None
        self.current_twist = np.zeros(3)
        self.att_command = AttitudeTarget()
        self.att_command.type_mask = 3
        self.pendulum_state = np.zeros(4)

        # subscribers
        # the robot state
        robot_state_sub_ = rospy.Subscriber('/robot_pose', Odometry,
                                            self.robot_state_callback)
        # pendulum state
        pendulum_state_sub_ = rospy.Subscriber('/pendulum_pose', Odometry,
                                               self.pendulum_state_callback)
        # trajectory
        robot_trajectory_sub_ = rospy.Subscriber(
            '/robot_trajectory', itm_trajectory_msg,
            self.trajectory_command_callback)
        # publisher
        self.att_setpoint_pub = rospy.Publisher(
            '/mavros/setpoint_raw/attitude', AttitudeTarget, queue_size=1)
        # create a server
        server_ = rospy.Service('uav_mpc_server', SetBool, self.state_server)

        # setup optimizer
        self.quadrotor_optimizer_setup()

        # # It seems that thread cannot ensure the performance of the time
        self.att_thread = Thread(target=self.send_command, args=())
        self.att_thread.daemon = True
        self.att_thread.start()

    def robot_state_callback(self, data):
        # robot state as [x, y, z, vx, vy, vz, roll, pitch, yaw]
        roll, pitch, yaw = self.quaternion_to_rpy(data.pose.pose.orientation)

        # self.current_state[:6] = np.array([data.pose.pose.position.x, data.pose.pose.position.y, data.pose.pose.position.z,
        #                                 data.twist.twist.linear.x, data.twist.twist.linear.y, data.twist.twist.linear.z]).reshape(6,1)
        # self.current_state[-3:] = np.array([roll, pitch, yaw]).reshape(3,1)

        self.current_state = np.array([
            data.pose.pose.position.x, data.pose.pose.position.y,
            data.pose.pose.position.z, data.twist.twist.linear.x,
            data.twist.twist.linear.y, data.twist.twist.linear.z,
            data.pose.pose.position.x, data.pose.pose.position.y, 0., 0., roll,
            pitch, yaw
        ],
                                      dtype=np.float64)

    def pendulum_state_callback(self, data):
        # pendulum state as [x, y, z, vx, vy, vz, s, r, ds, dr, roll, pitch, yaw]
        s, r = data.pose.pose.position.x, data.pose.pose.position.y
        ds, dr = data.twist.twist.linear.x, data.twist.twist.linear.y
        # self.current_state[7:10] = np.array([s, r, ds, dr]).reshape(4, 1)
        self.pendulum_state = np.array([s, r, ds, dr])  # .reshape(4, 1)

        # self.current_state_pendulum = np.array([self.current_state[0], self.current_state[1], self.current_state[2],
        #                                 self.current_state[3], self.current_state[4], self.current_state[5],
        #                                 s, r, ds, dr,
        #                                 self.current_state[10], self.current_state[11], self.current_state[12]], dtype=np.float64)

    def trajectory_command_callback(self, data):
        temp_traj = data.traj
        if data.size != len(temp_traj):
            rospy.logerr('Some data are lost')
        else:
            self.trajectory_path = np.zeros((data.size, 13))
            for i in range(data.size):
                self.trajectory_path[i] = np.array([
                    temp_traj[i].x,
                    temp_traj[i].y,
                    temp_traj[i].z,
                    temp_traj[i].vx,
                    temp_traj[i].vy,
                    temp_traj[i].vz,
                    temp_traj[i].load_x,
                    temp_traj[i].load_y,
                    temp_traj[i].load_vx,
                    temp_traj[i].load_vy,
                    temp_traj[i].roll,
                    temp_traj[i].pitch,
                    temp_traj[i].yaw,
                ])

    def quadrotor_optimizer_setup(self, ):
        # Q_m_ = np.diag([80.0, 80.0, 120.0, 20.0, 20.0,
        #                 30.0, 10.0, 10.0, 0.0])  # position, velocity, roll, pitch, (not yaw)

        # P_m_ = np.diag([86.21, 86.21, 120.95,
        #                 6.94, 6.94, 11.04])  # only p and v
        # P_m_[0, 3] = 6.45
        # P_m_[3, 0] = 6.45
        # P_m_[1, 4] = 6.45
        # P_m_[4, 1] = 6.45
        # P_m_[2, 5] = 10.95
        # P_m_[5, 2] = 10.95
        # R_m_ = np.diag([50.0, 60.0, 1.0])
        Q_m_ = np.diag(
            [
                10.0,
                10.0,
                10.0,
                3e-1,
                3e-1,
                3e-1,
                #3e-1, 3e-1, 3e-2, 3e-2,
                100.0,
                100.0,
                1e-3,
                1e-3,
                10.5,
                10.5,
                10.5
            ]
        )  # position, velocity, load_position, load_velocity, [roll, pitch, yaw]

        P_m_ = np.diag([
            10.0, 10.0, 10.0, 0.05, 0.05, 0.05
            # 10.0, 10.0, 10.0,
            # 0.05, 0.05, 0.05
        ])  # only p and v
        # P_m_[0, 8] = 6.45
        # P_m_[8, 0] = 6.45
        # P_m_[1, 9] = 6.45
        # P_m_[9, 1] = 6.45
        # P_m_[2, 10] = 10.95
        # P_m_[10, 2] = 10.95
        R_m_ = np.diag([3.0, 3.0, 3.0, 1.0])

        nx = self.model.x.size()[0]
        self.nx = nx
        nu = self.model.u.size()[0]
        self.nu = nu
        ny = nx + nu
        n_params = self.model.p.size()[0] if isinstance(self.model.p,
                                                        ca.SX) else 0

        acados_source_path = os.environ['ACADOS_SOURCE_DIR']
        sys.path.insert(0, acados_source_path)

        # create OCP
        ocp = AcadosOcp()
        ocp.acados_include_path = acados_source_path + '/include'
        ocp.acados_lib_path = acados_source_path + '/lib'
        ocp.model = self.model
        ocp.dims.N = self.N
        ocp.solver_options.tf = self.T

        # initialize parameters
        ocp.dims.np = n_params
        ocp.parameter_values = np.zeros(n_params)

        # cost type
        ocp.cost.cost_type = 'LINEAR_LS'
        ocp.cost.cost_type_e = 'LINEAR_LS'
        ocp.cost.W = scipy.linalg.block_diag(Q_m_, R_m_)
        ocp.cost.W_e = P_m_  # np.zeros((nx-3, nx-3))

        ocp.cost.Vx = np.zeros((ny, nx))
        ocp.cost.Vx[:nx, :nx] = np.eye(nx)
        ocp.cost.Vu = np.zeros((ny, nu))
        ocp.cost.Vu[-nu:, -nu:] = np.eye(nu)
        ocp.cost.Vx_e = np.zeros((nx - 7, nx))  # only consider p and v
        ocp.cost.Vx_e[:nx - 7, :nx - 7] = np.eye(nx - 7)

        # initial reference trajectory_ref
        x_ref = np.zeros(nx)
        x_ref_e = np.zeros(nx - 7)
        u_ref = np.zeros(nu)
        u_ref[-1] = self.g
        ocp.cost.yref = np.concatenate((x_ref, u_ref))
        ocp.cost.yref_e = x_ref_e

        # Set constraints
        ocp.constraints.lbu = np.array([
            self.constraints.roll_min, self.constraints.pitch_min,
            self.constraints.yaw_min, self.constraints.thrust_min
        ])
        ocp.constraints.ubu = np.array([
            self.constraints.roll_max, self.constraints.pitch_max,
            self.constraints.yaw_max, self.constraints.thrust_max
        ])
        ocp.constraints.idxbu = np.array([0, 1, 2, 3])

        # initial state
        ocp.constraints.x0 = x_ref

        # solver options
        ocp.solver_options.qp_solver = 'FULL_CONDENSING_HPIPM'
        ocp.solver_options.hessian_approx = 'GAUSS_NEWTON'
        # explicit Runge-Kutta integrator
        ocp.solver_options.integrator_type = 'ERK'
        ocp.solver_options.print_level = 0
        ocp.solver_options.nlp_solver_type = 'SQP'  # 'SQP_RTI'

        ocp.solver_options.levenberg_marquardt = 0.12  # 0.0

        # compile acados ocp
        json_file = os.path.join('./' + self.model.name + '_acados_ocp.json')
        self.solver = AcadosOcpSolver(ocp, json_file=json_file)
        if self.simulation_required:
            self.integrator = AcadosSimSolver(ocp, json_file=json_file)

    def mpc_estimation_loop(self, mpc_iter):
        if self.trajectory_path is not None and self.current_state is not None:
            t1 = time.time()
            # dt = 0.1
            current_trajectory = self.trajectory_path

            u_des = np.array([0.0, 0.0, 0.0, self.g])
            new_state = self.current_state
            # new_state[6:10] = self.pendulum_state
            new_state[6] = self.pendulum_state[0] - self.current_state[0]
            new_state[7] = self.pendulum_state[1] - self.current_state[1]
            new_state[8] = self.pendulum_state[2] - self.current_state[3]
            new_state[9] = self.pendulum_state[3] - self.current_state[4]

            simX[mpc_iter] = new_state  # mpc_iter+1 ?
            simD[mpc_iter] = current_trajectory[0]

            l = 0.1
            #print(np.rad2deg(np.arcsin(new_state[6]/l)))

            # print()
            # print("current state: ")
            # np.set_printoptions(suppress=True)
            # print(new_state)

            # print()
            # print("current trajectory: ")
            # print(current_trajectory[-1])

            tra = current_trajectory[0]
            # error_xyz = np.linalg.norm(np.array([new_state[0] - tra[0], new_state[1] - tra[1], new_state[2] - tra[2]]))
            # print(error_xyz)

            self.solver.set(self.N, 'yref', current_trajectory[-1, :6])
            for i in range(self.N):
                self.solver.set(
                    i, 'yref',
                    np.concatenate([current_trajectory[i].flatten(), u_des]))

            # self.solver.set(0, 'lbx', self.current_state)
            # self.solver.set(0, 'ubx', self.current_state)
            self.solver.set(0, 'lbx', new_state)
            self.solver.set(0, 'ubx', new_state)

            status = self.solver.solve()

            tarr[mpc_iter] = time.time() - t1

            if status != 0:
                rospy.logerr("MPC cannot find a proper solution.")
                # self.solver.print_statistics()
                print()
                print("current state: ")
                np.set_printoptions(suppress=True)
                print(new_state)

                print()
                print("current trajectory: ")
                print(current_trajectory[0])

                self.att_command.orientation = Quaternion(
                    *self.rpy_to_quaternion(0.0, 0.0, 0.0, w_first=False))
                #self.att_command.thrust = 0.5
                self.att_command.thrust = 0.62
                self.att_command.body_rate.z = 0.0
            else:
                # print()
                # print("predicted trajectory:")
                # for i in range(self.N):
                #     print(self.solver.get(i, 'x'))
                mpc_u_ = self.solver.get(0, 'u')
                simU[mpc_iter] = mpc_u_
                quat_local_ = self.rpy_to_quaternion(mpc_u_[0],
                                                     mpc_u_[1],
                                                     mpc_u_[2],
                                                     w_first=False)
                self.att_command.orientation.x = quat_local_[0]
                self.att_command.orientation.y = quat_local_[1]
                self.att_command.orientation.z = quat_local_[2]
                self.att_command.orientation.w = quat_local_[3]
                # print(self.att_command.orientation)
                #self.att_command.thrust = mpc_u_[3]/9.8066 - 0.5
                # self.att_command.thrust = mpc_u_[3]/9.8066 - 0.38
                self.att_command.thrust = mpc_u_[3] / 9.8066 * 0.6175
                # print()
                # print("mpc_u: ")
                # print(mpc_u_)
                # print()
                # print("---------------------------------------")
                # print(self.att_command.thrust)
                # yaw_command_ = self.yaw_command(current_yaw_, trajectory_path_[1, -1], 0.0)
                # yaw_command_ = self.yaw_controller(trajectory_path_[1, -1]-current_yaw_)
                # self.att_command.angular.z = yaw_command_
                #self.att_command.body_rate.z = 0.0

            # self.att_setpoint_pub.publish(self.att_command)
            # print("time: ")
            # print(time.time()-time_1)

        else:
            if self.trajectory_path is None:
                rospy.loginfo("waiting trajectory")
            elif self.current_state is None:
                rospy.loginfo("waiting current state")
            else:
                rospy.loginfo("Unknown error")
        self.rate.sleep()
        return True

    @staticmethod
    def quaternion_to_rpy(quaternion):
        q0, q1, q2, q3 = quaternion.w, quaternion.x, quaternion.y, quaternion.z
        roll_ = np.arctan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1**2 + q2**2))
        pitch_ = np.arcsin(2 * (q0 * q2 - q3 * q1))
        yaw_ = np.arctan2(2 * (q0 * q3 + q1 * q2), 1 - 2 * (q2**2 + q3**2))
        return roll_, pitch_, yaw_

    @staticmethod
    def state_server(req):
        return SetBoolResponse(True, 'MPC is ready')

    @staticmethod
    def rpy_to_quaternion(r, p, y, w_first=True):
        cy = np.cos(y * 0.5)
        sy = np.sin(y * 0.5)
        cp = np.cos(p * 0.5)
        sp = np.sin(p * 0.5)
        cr = np.cos(r * 0.5)
        sr = np.sin(r * 0.5)

        qw = cr * cp * cy + sr * sp * sy
        qx = sr * cp * cy - cr * sp * sy
        qy = cr * sp * cy + sr * cp * sy
        qz = cr * cp * sy - sr * sp * cy
        if w_first:
            return np.array([qw, qx, qy, qz])
        else:
            return np.array([qx, qy, qz, qw])

    def send_command(self, ):
        rate = rospy.Rate(100)  # Hz
        self.att_command.header = Header()

        while not rospy.is_shutdown():
            # t2 = time.time()
            command_ = self.att_command
            # self.att_command.header.stamp = rospy.Time.now()
            self.att_setpoint_pub.publish(command_)
            try:  # prevent garbage in console output when thread is killed
                rate.sleep()
            except rospy.ROSInterruptException:
                pass
コード例 #14
0
def solve_marathos_ocp(setting):

    globalization = setting['globalization']
    line_search_use_sufficient_descent = setting[
        'line_search_use_sufficient_descent']
    globalization_use_SOC = setting['globalization_use_SOC']
    qp_solver = setting['qp_solver']

    # create ocp object to formulate the OCP
    ocp = AcadosOcp()

    # set model
    model = export_linear_mass_model()
    ocp.model = model

    nx = model.x.size()[0]
    nu = model.u.size()[0]
    ny = nu

    # discretization
    Tf = 2
    N = 20
    shooting_nodes = np.linspace(0, Tf, N + 1)
    ocp.dims.N = N

    # set cost
    Q = 2 * np.diag([])
    R = 2 * np.diag([1e1, 1e1])

    ocp.cost.W_e = Q
    ocp.cost.W = scipy.linalg.block_diag(Q, R)

    ocp.cost.cost_type = 'LINEAR_LS'
    ocp.cost.cost_type_e = 'LINEAR_LS'

    ocp.cost.Vx = np.zeros((ny, nx))

    Vu = np.eye((nu))
    ocp.cost.Vu = Vu
    ocp.cost.yref = np.zeros((ny, ))

    # set constraints
    Fmax = 5
    ocp.constraints.lbu = -Fmax * np.ones((nu, ))
    ocp.constraints.ubu = +Fmax * np.ones((nu, ))
    ocp.constraints.idxbu = np.array(range(nu))
    x0 = np.array([1e-1, 1.1, 0, 0])
    ocp.constraints.x0 = x0

    # terminal constraint
    x_goal = np.array([0, -1.1, 0, 0])
    ocp.constraints.idxbx_e = np.array(range(nx))
    ocp.constraints.lbx_e = x_goal
    ocp.constraints.ubx_e = x_goal

    if SOFTEN_TERMINAL:
        ocp.constraints.idxsbx_e = np.array(range(nx))
        ocp.cost.zl_e = 1e4 * np.ones(nx)
        ocp.cost.zu_e = 1e4 * np.ones(nx)
        ocp.cost.Zl_e = 1e6 * np.ones(nx)
        ocp.cost.Zu_e = 1e6 * np.ones(nx)

    # add obstacle
    if OBSTACLE:
        obs_rad = 1.0
        obs_x = 0.0
        obs_y = 0.0
        circle = (obs_x, obs_y, obs_rad)
        ocp.constraints.uh = np.array([100.0])  # doenst matter
        ocp.constraints.lh = np.array([obs_rad**2])
        x_square = model.x[0]**OBSTACLE_POWER + model.x[1]**OBSTACLE_POWER
        ocp.model.con_h_expr = x_square
        # copy for terminal
        ocp.constraints.uh_e = ocp.constraints.uh
        ocp.constraints.lh_e = ocp.constraints.lh
        ocp.model.con_h_expr_e = ocp.model.con_h_expr
    else:
        circle = None

    # soften
    if OBSTACLE and SOFTEN_OBSTACLE:
        ocp.constraints.idxsh = np.array([0])
        ocp.constraints.idxsh_e = np.array([0])
        Zh = 1e6 * np.ones(1)
        zh = 1e4 * np.ones(1)
        ocp.cost.zl = zh
        ocp.cost.zu = zh
        ocp.cost.Zl = Zh
        ocp.cost.Zu = Zh
        ocp.cost.zl_e = np.concatenate((ocp.cost.zl_e, zh))
        ocp.cost.zu_e = np.concatenate((ocp.cost.zu_e, zh))
        ocp.cost.Zl_e = np.concatenate((ocp.cost.Zl_e, Zh))
        ocp.cost.Zu_e = np.concatenate((ocp.cost.Zu_e, Zh))

    # set options
    ocp.solver_options.qp_solver = qp_solver  # FULL_CONDENSING_QPOASES
    # PARTIAL_CONDENSING_HPIPM, FULL_CONDENSING_QPOASES, FULL_CONDENSING_HPIPM,
    # PARTIAL_CONDENSING_QPDUNES, PARTIAL_CONDENSING_OSQP
    ocp.solver_options.hessian_approx = 'GAUSS_NEWTON'
    ocp.solver_options.integrator_type = 'ERK'
    # ocp.solver_options.print_level = 1
    ocp.solver_options.nlp_solver_type = 'SQP'  # SQP_RTI, SQP
    ocp.solver_options.globalization = globalization
    ocp.solver_options.alpha_min = 0.01
    # ocp.solver_options.__initialize_t_slacks = 0
    # ocp.solver_options.levenberg_marquardt = 1e-2
    ocp.solver_options.qp_solver_cond_N = 0
    ocp.solver_options.print_level = 1
    ocp.solver_options.nlp_solver_max_iter = 200
    ocp.solver_options.qp_solver_iter_max = 400
    # NOTE: this is needed for PARTIAL_CONDENSING_HPIPM to get expected behavior
    qp_tol = 5e-7
    ocp.solver_options.qp_solver_tol_stat = qp_tol
    ocp.solver_options.qp_solver_tol_eq = qp_tol
    ocp.solver_options.qp_solver_tol_ineq = qp_tol
    ocp.solver_options.qp_solver_tol_comp = qp_tol
    ocp.solver_options.qp_solver_ric_alg = 1
    # ocp.solver_options.qp_solver_cond_ric_alg = 1

    # set prediction horizon
    ocp.solver_options.tf = Tf

    ocp_solver = AcadosOcpSolver(ocp, json_file=f'{model.name}_ocp.json')
    ocp_solver.options_set('line_search_use_sufficient_descent',
                           line_search_use_sufficient_descent)
    ocp_solver.options_set('globalization_use_SOC', globalization_use_SOC)
    ocp_solver.options_set('full_step_dual', 1)

    if INITIALIZE:  # initialize solver
        # [ocp_solver.set(i, "x", x0 + (i/N) * (x_goal-x0)) for i in range(N+1)]
        [ocp_solver.set(i, "x", x0) for i in range(N + 1)]
        # [ocp_solver.set(i, "u", 2*(np.random.rand(2) - 0.5)) for i in range(N)]

    # solve
    status = ocp_solver.solve()
    ocp_solver.print_statistics(
    )  # encapsulates: stat = ocp_solver.get_stats("statistics")
    sqp_iter = ocp_solver.get_stats('sqp_iter')[0]
    print(f'acados returned status {status}.')

    # ocp_solver.store_iterate(f'it{ocp.solver_options.nlp_solver_max_iter}_{model.name}.json')

    # get solution
    simX = np.array([ocp_solver.get(i, "x") for i in range(N + 1)])
    simU = np.array([ocp_solver.get(i, "u") for i in range(N)])
    pi_multiplier = [ocp_solver.get(i, "pi") for i in range(N)]
    print(f"cost function value = {ocp_solver.get_cost()}")

    # print summary
    print(f"solved Marathos test problem with settings {setting}")
    print(
        f"cost function value = {ocp_solver.get_cost()} after {sqp_iter} SQP iterations"
    )
    # print(f"alphas: {alphas[:iter]}")
    # print(f"total number of QP iterations: {sum(qp_iters[:iter])}")
    # max_infeasibility = np.max(residuals[1:3])
    # print(f"max infeasibility: {max_infeasibility}")

    # checks
    if status != 0:
        raise Exception(f"acados solver returned status {status} != 0.")
    if globalization == "FIXED_STEP":
        if sqp_iter != 18:
            raise Exception(
                f"acados solver took {sqp_iter} iterations, expected 18.")
    elif globalization == "MERIT_BACKTRACKING":
        if globalization_use_SOC == 1 and line_search_use_sufficient_descent == 0 and sqp_iter not in range(
                21, 23):
            raise Exception(
                f"acados solver took {sqp_iter} iterations, expected range(21, 23)."
            )
        elif globalization_use_SOC == 1 and line_search_use_sufficient_descent == 1 and sqp_iter not in range(
                21, 24):
            raise Exception(
                f"acados solver took {sqp_iter} iterations, expected range(21, 24)."
            )
        elif globalization_use_SOC == 0 and line_search_use_sufficient_descent == 0 and sqp_iter not in range(
                155, 165):
            raise Exception(
                f"acados solver took {sqp_iter} iterations, expected range(155, 165)."
            )
        elif globalization_use_SOC == 0 and line_search_use_sufficient_descent == 1 and sqp_iter not in range(
                160, 175):
            raise Exception(
                f"acados solver took {sqp_iter} iterations, expected range(160, 175)."
            )

    if PLOT:
        plot_linear_mass_system_X_state_space(simX,
                                              circle=circle,
                                              x_goal=x_goal)
        plot_linear_mass_system_U(shooting_nodes, simU)
        # plot_linear_mass_system_X(shooting_nodes, simX)

    # import pdb; pdb.set_trace()
    print(f"\n\n----------------------\n")
コード例 #15
0
def main(use_cython=True):
    # (very) simple crane model
    beta = 0.001
    k = 0.9
    a_max = 10
    dt_max = 2.0

    # states
    p1 = SX.sym('p1')
    v1 = SX.sym('v1')
    p2 = SX.sym('p2')
    v2 = SX.sym('v2')

    x = vertcat(p1, v1, p2, v2)

    # controls
    a = SX.sym('a')
    dt = SX.sym('dt')

    u = vertcat(a, dt)

    f_expl = dt * vertcat(v1, a, v2, -beta * v2 - k * (p2 - p1))

    model = AcadosModel()

    model.f_expl_expr = f_expl
    model.x = x
    model.u = u
    model.name = 'crane_time_opt'

    # create ocp object to formulate the OCP

    x0 = np.array([2.0, 0.0, 2.0, 0.0])
    xf = np.array([0.0, 0.0, 0.0, 0.0])

    ocp = AcadosOcp()
    ocp.model = model

    # N - maximum number of bangs
    N = 7
    Tf = N
    nx = model.x.size()[0]
    nu = model.u.size()[0]

    # set dimensions
    ocp.dims.N = N

    # set cost
    ocp.cost.cost_type = 'EXTERNAL'
    ocp.cost.cost_type_e = 'EXTERNAL'

    ocp.model.cost_expr_ext_cost = dt
    ocp.model.cost_expr_ext_cost_e = 0

    ocp.constraints.lbu = np.array([-a_max, 0.0])
    ocp.constraints.ubu = np.array([+a_max, dt_max])
    ocp.constraints.idxbu = np.array([0, 1])

    ocp.constraints.x0 = x0
    ocp.constraints.lbx_e = xf
    ocp.constraints.ubx_e = xf
    ocp.constraints.idxbx_e = np.array([0, 1, 2, 3])

    # set prediction horizon
    ocp.solver_options.tf = Tf

    # set options
    ocp.solver_options.qp_solver = 'FULL_CONDENSING_QPOASES'  #'PARTIAL_CONDENSING_HPIPM' # FULL_CONDENSING_QPOASES
    ocp.solver_options.integrator_type = 'ERK'
    ocp.solver_options.print_level = 3
    ocp.solver_options.nlp_solver_type = 'SQP'  # SQP_RTI, SQP
    ocp.solver_options.globalization = 'MERIT_BACKTRACKING'
    ocp.solver_options.nlp_solver_max_iter = 5000
    ocp.solver_options.nlp_solver_tol_stat = 1e-6
    ocp.solver_options.levenberg_marquardt = 0.1
    ocp.solver_options.sim_method_num_steps = 15
    ocp.solver_options.qp_solver_iter_max = 100
    ocp.code_export_directory = 'c_generated_code'
    ocp.solver_options.hessian_approx = 'EXACT'
    ocp.solver_options.exact_hess_constr = 0
    ocp.solver_options.exact_hess_dyn = 0

    if use_cython:
        AcadosOcpSolver.generate(ocp, json_file='acados_ocp.json')
        AcadosOcpSolver.build(ocp.code_export_directory, with_cython=True)
        ocp_solver = AcadosOcpSolver.create_cython_solver('acados_ocp.json')
    else:  # ctypes
        ## Note: skip generate and build assuming this is done before (in cython run)
        ocp_solver = AcadosOcpSolver(ocp,
                                     json_file='acados_ocp.json',
                                     build=False,
                                     generate=False)

    ocp_solver.reset()

    for i, tau in enumerate(np.linspace(0, 1, N)):
        ocp_solver.set(i, 'x', (1 - tau) * x0 + tau * xf)
        ocp_solver.set(i, 'u', np.array([0.1, 0.5]))

    simX = np.zeros((N + 1, nx))
    simU = np.zeros((N, nu))

    status = ocp_solver.solve()

    if status != 0:
        ocp_solver.print_statistics()
        raise Exception(f'acados returned status {status}.')

    # get solution
    for i in range(N):
        simX[i, :] = ocp_solver.get(i, "x")
        simU[i, :] = ocp_solver.get(i, "u")
    simX[N, :] = ocp_solver.get(N, "x")

    dts = simU[:, 1]

    print(
        "acados solved OCP successfully, creating integrator to simulate the solution"
    )

    # simulate on finer grid
    sim = AcadosSim()

    # set model
    sim.model = model

    # set options
    sim.solver_options.integrator_type = 'ERK'
    sim.solver_options.num_stages = 4
    sim.solver_options.num_steps = 3
    sim.solver_options.T = 1.0  # dummy value

    dt_approx = 0.0005

    dts_fine = np.zeros((N, ))
    Ns_fine = np.zeros((N, ), dtype='int16')

    # compute number of simulation steps for bang interval + dt_fine
    for i in range(N):
        N_approx = max(int(dts[i] / dt_approx), 1)
        dts_fine[i] = dts[i] / N_approx
        Ns_fine[i] = int(round(dts[i] / dts_fine[i]))

    N_fine = int(np.sum(Ns_fine))

    simU_fine = np.zeros((N_fine, nu))
    ts_fine = np.zeros((N_fine + 1, ))
    simX_fine = np.zeros((N_fine + 1, nx))
    simX_fine[0, :] = x0

    acados_integrator = AcadosSimSolver(sim)

    k = 0
    for i in range(N):
        u = simU[i, 0]
        acados_integrator.set("u", np.hstack((u, np.ones(1, ))))

        # set simulation time
        acados_integrator.set("T", dts_fine[i])

        for j in range(Ns_fine[i]):
            acados_integrator.set("x", simX_fine[k, :])
            status = acados_integrator.solve()
            if status != 0:
                raise Exception(f'acados returned status {status}.')

            simX_fine[k + 1, :] = acados_integrator.get("x")
            simU_fine[k, :] = u
            ts_fine[k + 1] = ts_fine[k] + dts_fine[i]

            k += 1

    # visualize
    if os.environ.get('ACADOS_ON_TRAVIS'):
        plt.figure()

        state_labels = ['p1', 'v1', 'p2', 'v2']

        for i, l in enumerate(state_labels):
            plt.subplot(5, 1, i + 1)

            plt.plot(ts_fine, simX_fine[:, i], label='time optimal solution')
            plt.grid(True)
            plt.ylabel(l)
            if i == 0:
                plt.legend(loc=1)

        plt.subplot(5, 1, 5)
        plt.step(ts_fine,
                 np.hstack((simU_fine[:, 0], simU_fine[-1, 0])),
                 '-',
                 where='post')
        plt.grid(True)
        plt.ylabel('a')
        plt.xlabel('t')

        plt.show()
コード例 #16
0
def solve_marathos_problem_with_setting(setting):

    globalization = setting['globalization']
    line_search_use_sufficient_descent = setting[
        'line_search_use_sufficient_descent']
    globalization_use_SOC = setting['globalization_use_SOC']

    # create ocp object to formulate the OCP
    ocp = AcadosOcp()

    # set model
    model = AcadosModel()
    x1 = SX.sym('x1')
    x2 = SX.sym('x2')
    x = vertcat(x1, x2)

    # dynamics: identity
    model.disc_dyn_expr = x
    model.x = x
    model.u = SX.sym('u', 0, 0)  # [] / None doesnt work
    model.p = []
    model.name = f'marathos_problem'
    ocp.model = model

    # discretization
    Tf = 1
    N = 1
    ocp.dims.N = N
    ocp.solver_options.tf = Tf

    # cost
    ocp.cost.cost_type_e = 'EXTERNAL'
    ocp.model.cost_expr_ext_cost_e = x1

    # constarints
    ocp.model.con_h_expr = x1**2 + x2**2
    ocp.constraints.lh = np.array([1.0])
    ocp.constraints.uh = np.array([1.0])
    # # soften
    # ocp.constraints.idxsh = np.array([0])
    # ocp.cost.zl = 1e5 * np.array([1])
    # ocp.cost.zu = 1e5 * np.array([1])
    # ocp.cost.Zl = 1e5 * np.array([1])
    # ocp.cost.Zu = 1e5 * np.array([1])

    # add bounds on x
    # nx = 2
    # ocp.constraints.idxbx_0 = np.array(range(nx))
    # ocp.constraints.lbx_0 = -2 * np.ones((nx))
    # ocp.constraints.ubx_0 = 2 * np.ones((nx))

    # set options
    ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM'  # FULL_CONDENSING_QPOASES
    # PARTIAL_CONDENSING_HPIPM, FULL_CONDENSING_QPOASES, FULL_CONDENSING_HPIPM,
    # PARTIAL_CONDENSING_QPDUNES, PARTIAL_CONDENSING_OSQP
    ocp.solver_options.hessian_approx = 'EXACT'
    ocp.solver_options.integrator_type = 'DISCRETE'
    # ocp.solver_options.print_level = 1
    ocp.solver_options.tol = TOL
    ocp.solver_options.nlp_solver_type = 'SQP'  # SQP_RTI, SQP
    ocp.solver_options.globalization = globalization
    ocp.solver_options.alpha_min = 1e-2
    # ocp.solver_options.__initialize_t_slacks = 0
    # ocp.solver_options.regularize_method = 'CONVEXIFY'
    ocp.solver_options.levenberg_marquardt = 1e-1
    # ocp.solver_options.print_level = 2
    SQP_max_iter = 300
    ocp.solver_options.qp_solver_iter_max = 400
    ocp.solver_options.regularize_method = 'MIRROR'
    # ocp.solver_options.exact_hess_constr = 0
    ocp.solver_options.line_search_use_sufficient_descent = line_search_use_sufficient_descent
    ocp.solver_options.globalization_use_SOC = globalization_use_SOC
    ocp.solver_options.eps_sufficient_descent = 1e-1
    ocp.solver_options.qp_tol = 5e-7

    if FOR_LOOPING:  # call solver in for loop to get all iterates
        ocp.solver_options.nlp_solver_max_iter = 1
        ocp_solver = AcadosOcpSolver(ocp, json_file=f'{model.name}.json')
    else:
        ocp.solver_options.nlp_solver_max_iter = SQP_max_iter
        ocp_solver = AcadosOcpSolver(ocp, json_file=f'{model.name}.json')

    # initialize solver
    rad_init = 0.1  #0.1 #np.pi / 4
    xinit = np.array([np.cos(rad_init), np.sin(rad_init)])
    # xinit = np.array([0.82120912, 0.58406911])
    [ocp_solver.set(i, "x", xinit) for i in range(N + 1)]

    # solve
    if FOR_LOOPING:  # call solver in for loop to get all iterates
        iterates = np.zeros((SQP_max_iter + 1, 2))
        iterates[0, :] = xinit
        alphas = np.zeros((SQP_max_iter, ))
        qp_iters = np.zeros((SQP_max_iter, ))
        iter = SQP_max_iter
        residuals = np.zeros((4, SQP_max_iter))

        # solve
        for i in range(SQP_max_iter):
            status = ocp_solver.solve()
            ocp_solver.print_statistics(
            )  # encapsulates: stat = ocp_solver.get_stats("statistics")
            # print(f'acados returned status {status}.')
            iterates[i + 1, :] = ocp_solver.get(0, "x")
            if status in [0, 4]:
                iter = i
                break
            alphas[i] = ocp_solver.get_stats('alpha')[1]
            qp_iters[i] = ocp_solver.get_stats('qp_iter')[1]
            residuals[:, i] = ocp_solver.get_stats('residuals')

    else:
        ocp_solver.solve()
        ocp_solver.print_statistics()
        iter = ocp_solver.get_stats('sqp_iter')[0]
        alphas = ocp_solver.get_stats('alpha')[1:]
        qp_iters = ocp_solver.get_stats('qp_iter')
        residuals = ocp_solver.get_stats('statistics')[1:5, 1:iter]

    # get solution
    solution = ocp_solver.get(0, "x")

    # print summary
    print(f"solved Marathos test problem with settings {setting}")
    print(
        f"cost function value = {ocp_solver.get_cost()} after {iter} SQP iterations"
    )
    print(f"alphas: {alphas[:iter]}")
    print(f"total number of QP iterations: {sum(qp_iters[:iter])}")
    max_infeasibility = np.max(residuals[1:3])
    print(f"max infeasibility: {max_infeasibility}")

    # compare to analytical solution
    exact_solution = np.array([-1, 0])
    sol_err = max(np.abs(solution - exact_solution))

    # checks
    if sol_err > TOL * 1e1:
        raise Exception(
            f"error of numerical solution wrt exact solution = {sol_err} > tol = {TOL*1e1}"
        )
    else:
        print(f"matched analytical solution with tolerance {TOL}")

    try:
        if globalization == 'FIXED_STEP':
            # import pdb; pdb.set_trace()
            if max_infeasibility < 5.0:
                raise Exception(
                    f"Expected max_infeasibility > 5.0 when using full step SQP on Marathos problem"
                )
            if iter != 10:
                raise Exception(
                    f"Expected 10 SQP iterations when using full step SQP on Marathos problem, got {iter}"
                )
            if any(alphas[:iter] != 1.0):
                raise Exception(
                    f"Expected all alphas = 1.0 when using full step SQP on Marathos problem"
                )
        elif globalization == 'MERIT_BACKTRACKING':
            if max_infeasibility > 0.5:
                raise Exception(
                    f"Expected max_infeasibility < 0.5 when using globalized SQP on Marathos problem"
                )
            if globalization_use_SOC == 0:
                if FOR_LOOPING and iter != 57:
                    raise Exception(
                        f"Expected 57 SQP iterations when using globalized SQP without SOC on Marathos problem, got {iter}"
                    )
            elif line_search_use_sufficient_descent == 1:
                if iter not in range(29, 37):
                    # NOTE: got 29 locally and 36 on Github actions.
                    # On Github actions the inequality constraint was numerically violated in the beginning.
                    # This leads to very different behavior, since the merit gradient is so different.
                    # Github actions:  merit_grad = -1.669330e+00, merit_grad_cost = -1.737950e-01, merit_grad_dyn = 0.000000e+00, merit_grad_ineq = -1.495535e+00
                    # Jonathan Laptop: merit_grad = -1.737950e-01, merit_grad_cost = -1.737950e-01, merit_grad_dyn = 0.000000e+00, merit_grad_ineq = 0.000000e+00
                    raise Exception(
                        f"Expected SQP iterations in range(29, 37) when using globalized SQP with SOC on Marathos problem, got {iter}"
                    )
            else:
                if iter != 12:
                    raise Exception(
                        f"Expected 12 SQP iterations when using globalized SQP with SOC on Marathos problem, got {iter}"
                    )
    except Exception as inst:
        if FOR_LOOPING and globalization == "MERIT_BACKTRACKING":
            print(
                "\nAcados globalized OCP solver behaves different when for looping due to different merit function weights.",
                "Following exception is not raised\n")
            print(inst, "\n")
        else:
            raise (inst)

    if PLOT:
        plt.figure()
        axs = plt.plot(solution[0], solution[1], 'x', label='solution')

        if FOR_LOOPING:  # call solver in for loop to get all iterates
            cm = plt.cm.get_cmap('RdYlBu')
            axs = plt.scatter(iterates[:iter + 1, 0],
                              iterates[:iter + 1, 1],
                              c=range(iter + 1),
                              s=35,
                              cmap=cm,
                              label='iterates')
            plt.colorbar(axs)

        ts = np.linspace(0, 2 * np.pi, 100)
        plt.plot(1 * np.cos(ts) + 0, 1 * np.sin(ts) - 0, 'r')
        plt.axis('square')
        plt.legend()
        plt.title(
            f"Marathos problem with N = {N}, x formulation, SOC {globalization_use_SOC}"
        )
        plt.show()

    print(f"\n\n----------------------\n")
コード例 #17
0
ファイル: armijo_test.py プロジェクト: schwieni/acados
def solve_armijo_problem_with_setting(setting):
    globalization = setting['globalization']
    line_search_use_sufficient_descent = setting[
        'line_search_use_sufficient_descent']
    globalization_use_SOC = setting['globalization_use_SOC']

    # create ocp object to formulate the OCP
    ocp = AcadosOcp()

    # set model
    model = AcadosModel()
    x = SX.sym('x')

    # dynamics: identity
    model.disc_dyn_expr = x
    model.x = x
    model.u = SX.sym('u', 0, 0)  # [] / None doesnt work
    model.p = []
    model.name = f'armijo_problem'
    ocp.model = model

    # discretization
    Tf = 1
    N = 1
    ocp.dims.N = N
    ocp.solver_options.tf = Tf

    # cost
    ocp.cost.cost_type_e = 'EXTERNAL'
    ocp.model.cost_expr_ext_cost_e = x @ x
    ocp.model.cost_expr_ext_cost_custom_hess_e = 1.0  # 2.0 is the actual hessian

    # constarints
    ocp.constraints.idxbx = np.array([0])
    ocp.constraints.lbx = np.array([-10.0])
    ocp.constraints.ubx = np.array([10.0])

    # options
    ocp.solver_options.qp_solver = 'FULL_CONDENSING_QPOASES'  # 'PARTIAL_CONDENSING_HPIPM' # FULL_CONDENSING_QPOASES
    ocp.solver_options.hessian_approx = 'EXACT'
    ocp.solver_options.integrator_type = 'DISCRETE'
    ocp.solver_options.print_level = 0
    ocp.solver_options.tol = TOL
    ocp.solver_options.nlp_solver_type = 'SQP'  # SQP_RTI, SQP
    ocp.solver_options.globalization = globalization
    ocp.solver_options.alpha_reduction = 0.9
    ocp.solver_options.line_search_use_sufficient_descent = line_search_use_sufficient_descent
    ocp.solver_options.globalization_use_SOC = globalization_use_SOC
    ocp.solver_options.eps_sufficient_descent = 5e-1
    SQP_max_iter = 200
    ocp.solver_options.qp_solver_iter_max = 400
    ocp.solver_options.nlp_solver_max_iter = SQP_max_iter

    # create solver
    ocp_solver = AcadosOcpSolver(ocp, json_file=f'{model.name}.json')

    # initialize solver
    xinit = np.array([1.0])
    [ocp_solver.set(i, "x", xinit) for i in range(N + 1)]

    # get stats
    status = ocp_solver.solve()
    ocp_solver.print_statistics()
    iter = ocp_solver.get_stats('sqp_iter')[0]
    alphas = ocp_solver.get_stats('alpha')[1:]
    qp_iters = ocp_solver.get_stats('qp_iter')
    print(f"acados ocp solver returned status {status}")

    # get solution
    solution = ocp_solver.get(0, "x")
    print(f"found solution {solution}")

    # print summary
    print(f"solved Armijo test problem with settings {setting}")
    print(
        f"cost function value = {ocp_solver.get_cost()} after {iter} SQP iterations"
    )
    print(f"alphas: {alphas[:iter]}")
    print(f"total number of QP iterations: {sum(qp_iters[:iter])}")

    # compare to analytical solution
    exact_solution = np.array([0.0])
    sol_err = max(np.abs(solution - exact_solution))
    print(f"error wrt analytical solution {sol_err}")

    # checks
    if ocp.model.cost_expr_ext_cost_custom_hess_e == 1.0:
        if globalization == 'MERIT_BACKTRACKING':
            if sol_err > TOL * 1e1:
                raise Exception(
                    f"error of numerical solution wrt exact solution = {sol_err} > tol = {TOL*1e1}"
                )
            else:
                print(f"matched analytical solution with tolerance {TOL}")
            if status != 0:
                raise Exception(
                    f"acados solver returned status {status} != 0.")

            if line_search_use_sufficient_descent == 1:
                if iter > 22:
                    raise Exception(f"acados ocp solver took {iter} iterations." + \
                        "Expected <= 22 iterations for globalized SQP method with aggressive eps_sufficient_descent condition on Armijo test problem.")
            else:
                if iter < 64:
                    raise Exception(f"acados ocp solver took {iter} iterations." + \
                        "Expected > 64 iterations for globalized SQP method without sufficient descent condition on Armijo test problem.")

        elif globalization == 'FIXED_STEP':
            if status != 2:
                raise Exception(
                    f"acados solver returned status {status} != 2. Expected maximum iterations for full-step SQP on Armijo test problem."
                )
            else:
                print(
                    f"Sucess: Expected maximum iterations for full-step SQP on Armijo test problem."
                )

    print(f"\n\n----------------------\n")
コード例 #18
0
ファイル: flight_acados.py プロジェクト: tanwars/AA203-GoD
wpts = np.loadtxt(wpfile)
num_wpts = wpts.shape[0]

# looping for waypoint navigation
pt_reached = -1
curr_wpt_state = np.zeros((n, ))
while (pt_reached < num_wpts - 1):
    curr_wpt = wpts[pt_reached + 1, :]
    curr_wpt_state[0:3] = curr_wpt
    yref = np.hstack((curr_wpt_state, ue))
    yref_e = curr_wpt_state

    x = get_drone_state((client.getMultirotorState()).kinematics_estimated, n)

    for num1 in range(N):
        ocp_solver.set(num1, "yref", yref)
    ocp_solver.set(N, "yref", yref_e)

    # print('hereout1')
    # ocp_solver = AcadosOcpSolver(ocp, json_file = 'acados_ocp.json')
    # print('hereout2')

    iter_num = 0

    while (not_reached(curr_wpt_state, x, dist_check) and iter_num < max_iter):
        # get control
        status = ocp_solver.solve()
        # print('here%d'%iter_num)
        if status != 0:
            raise Exception(
                'acados returned status {}. Exiting.'.format(status))
コード例 #19
0
simU = np.ndarray((Nsim, nu))
simX_horizon = np.ndarray((Nsim, N, nx))

tcomp_sum = 0
tcomp_max = 0
time_iterations = np.zeros(Nsim)
cost_integral = 0

# simulate
for i in tqdm(range(Nsim)):

    actual_time = i * (T / Nsim)

    # update reference
    for j in range(N):
        acados_solver.set(j, "yref", yref)
        step_time = actual_time + j * (T / Nsim)
        acados_solver.set(j, 'y_ref', target_phase1)

    step_time = actual_time + N * (T / Nsim)
    acados_solver.set(N, 'y_ref', target_phase1[:4])

    # solve ocp
    t = time.time()

    status = acados_solver.solve()
    #print(acados_solver.get_residuals())
    #acados_solver.print_statistics()
    if status != 0:
        print("acados returned status {} in closed loop iteration {}.".format(
            status, i))
コード例 #20
0
    actual_time = i * (T / Nsim)

    x_noise = x0 + np.random.normal(0, noise_std, x0.shape)

    tau = -Kp_theta * (target_position[2] - x_noise[2]) - Kd_theta * (
        target_position[5] - x_noise[5]) - Kp_phi * (
            target_position[0] - x_noise[0]) - Kd_phi * (target_position[3] -
                                                         x_noise[3])
    f = mb * g * np.cos(
        x_noise[2]) + Kp_l * (target_position[1] - x_noise[1]) + Kd_l * (
            target_position[4] - x_noise[4])

    # update reference
    for j in range(N):
        acados_solver.set(j, "p", np.array([tau, f]))

    # solve ocp
    t = time.time()

    status = acados_solver.solve()
    if status != 0:
        raise Exception(
            "acados returned status {} in closed loop iteration {}.".format(
                status, i))

    elapsed = time.time() - t
    time_iterations[i] = elapsed

    # manage timings
    tcomp_sum += elapsed
コード例 #21
0
simU = np.ndarray((Nsim, nu))
simX_horizon = np.ndarray((Nsim, N, nx))

tcomp_sum = 0
tcomp_max = 0
time_iterations = np.zeros(Nsim)
cost_integral = 0

# simulate
for i in tqdm(range(Nsim)):

    actual_time = i * (T / Nsim)

    # update reference
    for j in range(N):
        acados_solver.set(j, "yref", yref)
        step_time = actual_time + j * (T / Nsim)
        if step_time < t1:
            acados_solver.set(j, 'y_ref', target_phase1)
        elif step_time < t2:
            acados_solver.set(j, 'y_ref', target_phase2)
        elif step_time < t3:
            acados_solver.set(j, 'y_ref', target_phase3)
        elif step_time < t4:
            acados_solver.set(j, 'y_ref', target_phase4)
        else:
            acados_solver.set(j, 'y_ref', target_phase5)

        if step_time > t2 and step_time < t3:
            acados_solver.constraints_set(j, 'lh', lower_flying)
            acados_solver.constraints_set(j, 'uh', upper_flying)
コード例 #22
0
def run_closed_loop_experiment(FORMULATION):
    # create ocp object to formulate the OCP
    ocp = AcadosOcp()

    # set model
    model = export_pendulum_ode_model()
    ocp.model = model

    Tf = 1.0
    nx = model.x.size()[0]
    nu = model.u.size()[0]
    ny = nx + nu
    ny_e = nx
    N = 20

    # set dimensions
    # NOTE: all dimensions but N ar detected
    ocp.dims.N = N

    # set cost module
    ocp.cost.cost_type = 'LINEAR_LS'
    ocp.cost.cost_type_e = 'LINEAR_LS'

    Q = 2 * np.diag([1e3, 1e3, 1e-2, 1e-2])
    R = 2 * np.diag([1e-2])

    ocp.cost.W = scipy.linalg.block_diag(Q, R)

    ocp.cost.Vx = np.zeros((ny, nx))
    ocp.cost.Vx[:nx, :nx] = np.eye(nx)

    Vu = np.zeros((ny, nu))
    Vu[4, 0] = 1.0
    ocp.cost.Vu = Vu

    ocp.cost.Vx_e = np.eye(nx)
    ocp.cost.W_e = Q

    ocp.cost.yref = np.zeros((ny, ))
    ocp.cost.yref_e = np.zeros((ny_e, ))

    ocp.cost.zl = 2000 * np.ones((1, ))
    ocp.cost.Zl = 1 * np.ones((1, ))
    ocp.cost.zu = 2000 * np.ones((1, ))
    ocp.cost.Zu = 1 * np.ones((1, ))

    # set constraints
    Fmax = 80
    vmax = 5

    x0 = np.array([0.0, np.pi, 0.0, 0.0])
    ocp.constraints.x0 = x0

    # bound on u
    ocp.constraints.lbu = np.array([-Fmax])
    ocp.constraints.ubu = np.array([+Fmax])
    ocp.constraints.idxbu = np.array([0])
    if FORMULATION == 0:
        # soft bound on x
        ocp.constraints.lbx = np.array([-vmax])
        ocp.constraints.ubx = np.array([+vmax])
        ocp.constraints.idxbx = np.array([2])  # v is x[2]
        # indices of slacked constraints within bx
        ocp.constraints.idxsbx = np.array([0])

    elif FORMULATION == 1:
        # soft bound on x, using constraint h
        v1 = ocp.model.x[2]
        ocp.model.con_h_expr = v1

        ocp.constraints.lh = np.array([-vmax])
        ocp.constraints.uh = np.array([+vmax])
        # indices of slacked constraints within h
        ocp.constraints.idxsh = np.array([0])

    # set options
    ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM'
    ocp.solver_options.hessian_approx = 'GAUSS_NEWTON'
    ocp.solver_options.integrator_type = 'ERK'
    ocp.solver_options.tf = Tf
    ocp.solver_options.nlp_solver_type = 'SQP'
    ocp.solver_options.tol = 1e-1 * tol

    json_filename = 'pendulum_soft_constraints.json'
    acados_ocp_solver = AcadosOcpSolver(ocp, json_file=json_filename)
    acados_integrator = AcadosSimSolver(ocp, json_file=json_filename)

    # closed loop
    Nsim = 20
    simX = np.ndarray((Nsim + 1, nx))
    simU = np.ndarray((Nsim, nu))
    xcurrent = x0

    for i in range(Nsim):
        simX[i, :] = xcurrent

        # solve ocp
        acados_ocp_solver.set(0, "lbx", xcurrent)
        acados_ocp_solver.set(0, "ubx", xcurrent)

        status = acados_ocp_solver.solve()
        if status != 0:
            raise Exception(
                'acados acados_ocp_solver returned status {}. Exiting.'.format(
                    status))

        simU[i, :] = acados_ocp_solver.get(0, "u")

        # simulate system
        acados_integrator.set("x", xcurrent)
        acados_integrator.set("u", simU[i, :])

        status = acados_integrator.solve()
        if status != 0:
            raise Exception(
                'acados integrator returned status {}. Exiting.'.format(
                    status))

        # update state
        xcurrent = acados_integrator.get("x")

    simX[Nsim, :] = xcurrent

    # get slack values at stage 1
    sl = acados_ocp_solver.get(1, "sl")
    su = acados_ocp_solver.get(1, "su")
    print("sl", sl, "su", su)

    # plot results
    # plot_pendulum(np.linspace(0, Tf, N+1), Fmax, simU, simX, latexify=False)

    # store results
    np.savetxt('test_results/simX_soft_formulation_' + str(FORMULATION), simX)
    np.savetxt('test_results/simU_soft_formulation_' + str(FORMULATION), simU)

    print("soft constraint example: ran formulation", FORMULATION,
          "successfully.")
コード例 #23
0
def main(discretization='shooting_nodes'):
    # create ocp object to formulate the OCP
    ocp = AcadosOcp()

    # set model
    model = export_pendulum_ode_model()
    ocp.model = model

    integrator_type = 'LIFTED_IRK'  # ERK, IRK, GNSF, LIFTED_IRK

    if integrator_type == 'GNSF':
        acados_dae_model_json_dump(model)
        # structure detection in Matlab/Octave -> produces 'pendulum_ode_gnsf_functions.json'
        status = os.system('octave detect_gnsf_from_json.m')
        # load gnsf from json
        with open(model.name + '_gnsf_functions.json', 'r') as f:
            gnsf_dict = json.load(f)
        ocp.gnsf_model = gnsf_dict

    Tf = 1.0
    nx = model.x.size()[0]
    nu = model.u.size()[0]
    ny = nx + nu
    ny_e = nx
    N = 15

    # discretization
    ocp.dims.N = N
    # shooting_nodes = np.linspace(0, Tf, N+1)

    time_steps = np.linspace(0, 1, N)
    time_steps = Tf * time_steps / sum(time_steps)

    shooting_nodes = np.zeros((N + 1, ))
    for i in range(len(time_steps)):
        shooting_nodes[i + 1] = shooting_nodes[i] + time_steps[i]

    # nonuniform discretizations can be defined either by shooting_nodes or time_steps:
    if discretization == 'shooting_nodes':
        ocp.solver_options.shooting_nodes = shooting_nodes
    elif discretization == 'time_steps':
        ocp.solver_options.time_steps = time_steps
    else:
        raise NotImplementedError(
            f"discretization type {discretization} not supported.")

    # set num_steps
    ocp.solver_options.sim_method_num_steps = 2 * np.ones((N, ))
    ocp.solver_options.sim_method_num_steps[0] = 3

    # set num_stages
    ocp.solver_options.sim_method_num_stages = 2 * np.ones((N, ))
    ocp.solver_options.sim_method_num_stages[0] = 4

    # set cost
    Q = 2 * np.diag([1e3, 1e3, 1e-2, 1e-2])
    R = 2 * np.diag([1e-2])

    ocp.cost.W_e = Q
    ocp.cost.W = scipy.linalg.block_diag(Q, R)

    ocp.cost.cost_type = 'LINEAR_LS'
    ocp.cost.cost_type_e = 'LINEAR_LS'

    ocp.cost.Vx = np.zeros((ny, nx))
    ocp.cost.Vx[:nx, :nx] = np.eye(nx)

    Vu = np.zeros((ny, nu))
    Vu[4, 0] = 1.0
    ocp.cost.Vu = Vu

    ocp.cost.Vx_e = np.eye(nx)

    ocp.cost.yref = np.zeros((ny, ))
    ocp.cost.yref_e = np.zeros((ny_e, ))

    # set constraints
    Fmax = 80
    ocp.constraints.lbu = np.array([-Fmax])
    ocp.constraints.ubu = np.array([+Fmax])

    x0 = np.array([0.0, np.pi, 0.0, 0.0])
    ocp.constraints.x0 = x0
    ocp.constraints.idxbu = np.array([0])

    ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM'  # FULL_CONDENSING_QPOASES
    ocp.solver_options.hessian_approx = 'GAUSS_NEWTON'
    ocp.solver_options.integrator_type = integrator_type
    ocp.solver_options.print_level = 0
    ocp.solver_options.nlp_solver_type = 'SQP'  # SQP_RTI, SQP

    # set prediction horizon
    ocp.solver_options.tf = Tf
    ocp.solver_options.initialize_t_slacks = 1

    # Set additional options for Simulink interface:
    acados_path = get_acados_path()
    json_path = os.path.join(acados_path,
                             'interfaces/acados_template/acados_template')
    with open(json_path + '/simulink_default_opts.json', 'r') as f:
        simulink_opts = json.load(f)
    ocp_solver = AcadosOcpSolver(ocp,
                                 json_file='acados_ocp.json',
                                 simulink_opts=simulink_opts)

    # ocp_solver = AcadosOcpSolver(ocp, json_file = 'acados_ocp.json')

    simX = np.ndarray((N + 1, nx))
    simU = np.ndarray((N, nu))

    # change options after creating ocp_solver
    ocp_solver.options_set("step_length", 0.99999)
    ocp_solver.options_set("globalization",
                           "fixed_step")  # fixed_step, merit_backtracking
    ocp_solver.options_set("tol_eq", TOL)
    ocp_solver.options_set("tol_stat", TOL)
    ocp_solver.options_set("tol_ineq", TOL)
    ocp_solver.options_set("tol_comp", TOL)

    # initialize solver
    for i in range(N):
        ocp_solver.set(i, "x", x0)
    status = ocp_solver.solve()

    if status not in [0, 2]:
        raise Exception('acados returned status {}. Exiting.'.format(status))

    # get primal solution
    for i in range(N):
        simX[i, :] = ocp_solver.get(i, "x")
        simU[i, :] = ocp_solver.get(i, "u")
    simX[N, :] = ocp_solver.get(N, "x")

    print("inequality multipliers at stage 1")
    print(ocp_solver.get(1, "lam"))  # inequality multipliers at stage 1
    print("slack values at stage 1")
    print(ocp_solver.get(1, "t"))  # slack values at stage 1
    print("multipliers of dynamic conditions between stage 1 and 2")
    print(ocp_solver.get(
        1, "pi"))  # multipliers of dynamic conditions between stage 1 and 2

    # initialize ineq multipliers and slacks at stage 1
    ocp_solver.set(1, "lam", np.zeros(2, ))
    ocp_solver.set(1, "t", np.zeros(2, ))

    ocp_solver.print_statistics(
    )  # encapsulates: stat = ocp_solver.get_stats("statistics")

    # timings
    time_tot = ocp_solver.get_stats("time_tot")
    time_lin = ocp_solver.get_stats("time_lin")
    time_sim = ocp_solver.get_stats("time_sim")
    time_qp = ocp_solver.get_stats("time_qp")

    print(
        f"timings OCP solver: total: {1e3*time_tot}ms, lin: {1e3*time_lin}ms, sim: {1e3*time_sim}ms, qp: {1e3*time_qp}ms"
    )
    # print("simU", simU)
    # print("simX", simX)
    iterate_filename = f'final_iterate_{discretization}.json'
    ocp_solver.store_iterate(filename=iterate_filename, overwrite=True)

    plot_pendulum(shooting_nodes, Fmax, simU, simX, latexify=False)
    del ocp_solver
コード例 #24
0
acados_integrator = AcadosSimSolver(ocp,
                                    json_file='acados_ocp_' + model.name +
                                    '.json')
acados_integrator.set("p", p)

Nsim = 200

simX = nmp.zeros((Nsim + 1, nx))
simU = nmp.zeros((Nsim, nu))

simX[0, :] = x0

for i in range(Nsim):
    # solve ocp
    acados_ocp_solver.set(0, "lbx", x0)
    acados_ocp_solver.set(0, "ubx", x0)
    # update params
    for j in range(N):
        acados_ocp_solver.set(j, "p", p)

    # update trajectory
    t0 = i * dt
    for j in range(N):
        tCurr = t0 + j * dt
        if tCurr <= 2:
            # roll = 1 pitch = -1 yaw = 0
            # q = 0.770 0.421 -0.421 0.230
            acados_ocp_solver.set(
                j, "y_ref",
                nmp.array([
コード例 #25
0
def run_nominal_control(chain_params):
    # create ocp object to formulate the OCP
    ocp = AcadosOcp()

    # chain parameters
    n_mass = chain_params["n_mass"]
    M = chain_params["n_mass"] - 2 # number of intermediate masses
    Ts = chain_params["Ts"]
    Tsim = chain_params["Tsim"]
    N = chain_params["N"]
    u_init = chain_params["u_init"]
    with_wall = chain_params["with_wall"]
    yPosWall = chain_params["yPosWall"]
    m = chain_params["m"]
    D = chain_params["D"]
    L = chain_params["L"]
    perturb_scale = chain_params["perturb_scale"]

    nlp_iter = chain_params["nlp_iter"]
    nlp_tol = chain_params["nlp_tol"]
    save_results = chain_params["save_results"]
    show_plots = chain_params["show_plots"]
    seed = chain_params["seed"]

    np.random.seed(seed)

    nparam = 3*M
    W = perturb_scale * np.eye(nparam)

    # export model
    model = export_disturbed_chain_mass_model(n_mass, m, D, L)

    # set model
    ocp.model = model

    nx = model.x.size()[0]
    nu = model.u.size()[0]
    ny = nx + nu
    ny_e = nx
    Tf = N * Ts

    # initial state
    xPosFirstMass = np.zeros((3,1))
    xEndRef = np.zeros((3,1))
    xEndRef[0] = L * (M+1) * 6
    pos0_x = np.linspace(xPosFirstMass[0], xEndRef[0], n_mass)

    xrest = compute_steady_state(n_mass, m, D, L, xPosFirstMass, xEndRef)

    x0 = xrest

    # set dimensions
    ocp.dims.N = N

    # set cost module
    ocp.cost.cost_type = 'LINEAR_LS'
    ocp.cost.cost_type_e = 'LINEAR_LS'

    Q = 2*np.diagflat( np.ones((nx, 1)) )
    q_diag = np.ones((nx,1))
    strong_penalty = M+1
    q_diag[3*M] = strong_penalty
    q_diag[3*M+1] = strong_penalty
    q_diag[3*M+2] = strong_penalty
    Q = 2*np.diagflat( q_diag )

    R = 2*np.diagflat( 1e-2 * np.ones((nu, 1)) )

    ocp.cost.W = scipy.linalg.block_diag(Q, R)
    ocp.cost.W_e = Q

    ocp.cost.Vx = np.zeros((ny, nx))
    ocp.cost.Vx[:nx,:nx] = np.eye(nx)

    Vu = np.zeros((ny, nu))
    Vu[nx:nx+nu, :] = np.eye(nu)
    ocp.cost.Vu = Vu

    ocp.cost.Vx_e = np.eye(nx)

    # import pdb; pdb.set_trace()
    yref = np.vstack((xrest, np.zeros((nu,1)))).flatten()
    ocp.cost.yref = yref
    ocp.cost.yref_e = xrest.flatten()

    # set constraints
    umax = 1*np.ones((nu,))

    ocp.constraints.constr_type = 'BGH'
    ocp.constraints.lbu = -umax
    ocp.constraints.ubu = umax
    ocp.constraints.x0 = x0.reshape((nx,))
    ocp.constraints.idxbu = np.array(range(nu))

    # disturbances
    nparam = 3*M
    ocp.parameter_values = np.zeros((nparam,))

    # wall constraint
    if with_wall:
        nbx = M + 1
        Jbx = np.zeros((nbx,nx))
        for i in range(nbx):
            Jbx[i, 3*i+1] = 1.0

        ocp.constraints.Jbx = Jbx
        ocp.constraints.lbx = yPosWall * np.ones((nbx,))
        ocp.constraints.ubx = 1e9 * np.ones((nbx,))

        # slacks
        ocp.constraints.Jsbx = np.eye(nbx)
        L2_pen = 1e3
        L1_pen = 1
        ocp.cost.Zl = L2_pen * np.ones((nbx,))
        ocp.cost.Zu = L2_pen * np.ones((nbx,))
        ocp.cost.zl = L1_pen * np.ones((nbx,))
        ocp.cost.zu = L1_pen * np.ones((nbx,))


    # solver options
    ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM' # FULL_CONDENSING_QPOASES
    ocp.solver_options.hessian_approx = 'GAUSS_NEWTON'
    ocp.solver_options.integrator_type = 'IRK'
    ocp.solver_options.nlp_solver_type = 'SQP' # SQP_RTI
    ocp.solver_options.nlp_solver_max_iter = nlp_iter

    ocp.solver_options.sim_method_num_stages = 2
    ocp.solver_options.sim_method_num_steps = 2
    ocp.solver_options.qp_solver_cond_N = N
    ocp.solver_options.qp_tol = nlp_tol
    ocp.solver_options.tol = nlp_tol
    # ocp.solver_options.nlp_solver_tol_eq = 1e-9

    # set prediction horizon
    ocp.solver_options.tf = Tf

    acados_ocp_solver = AcadosOcpSolver(ocp, json_file = 'acados_ocp_' + model.name + '.json')

    # acados_integrator = AcadosSimSolver(ocp, json_file = 'acados_ocp_' + model.name + '.json')
    acados_integrator = export_chain_mass_integrator(n_mass, m, D, L)

    #%% get initial state from xrest
    xcurrent = x0.reshape((nx,))
    for i in range(5):
        acados_integrator.set("x", xcurrent)
        acados_integrator.set("u", u_init)

        status = acados_integrator.solve()
        if status != 0:
            raise Exception('acados integrator returned status {}. Exiting.'.format(status))

        # update state
        xcurrent = acados_integrator.get("x")

    #%% actual simulation
    N_sim = int(np.floor(Tsim/Ts))
    simX = np.ndarray((N_sim+1, nx))
    simU = np.ndarray((N_sim, nu))
    wall_dist = np.zeros((N_sim,))

    timings = np.zeros((N_sim,))

    simX[0,:] = xcurrent

    # closed loop
    for i in range(N_sim):

        # solve ocp
        acados_ocp_solver.set(0, "lbx", xcurrent)
        acados_ocp_solver.set(0, "ubx", xcurrent)

        status = acados_ocp_solver.solve()
        timings[i] = acados_ocp_solver.get_stats("time_tot")[0]

        if status != 0:
            raise Exception('acados acados_ocp_solver returned status {} in time step {}. Exiting.'.format(status, i))

        simU[i,:] = acados_ocp_solver.get(0, "u")
        print("control at time", i, ":", simU[i,:])

        # simulate system
        acados_integrator.set("x", xcurrent)
        acados_integrator.set("u", simU[i,:])

        pertubation = sampleFromEllipsoid(np.zeros((nparam,)), W)
        acados_integrator.set("p", pertubation)

        status = acados_integrator.solve()
        if status != 0:
            raise Exception('acados integrator returned status {}. Exiting.'.format(status))

        # update state
        xcurrent = acados_integrator.get("x")
        simX[i+1,:] = xcurrent

        # xOcpPredict = acados_ocp_solver.get(1, "x")
        # print("model mismatch = ", str(np.max(xOcpPredict - xcurrent)))
        yPos = xcurrent[range(1,3*M+1,3)]
        wall_dist[i] = np.min(yPos - yPosWall)
        print("time i = ", str(i), " dist2wall ", str(wall_dist[i]))

    print("dist2wall (minimum over simulation) ", str(np.min(wall_dist)))

    #%% plot results
    if os.environ.get('ACADOS_ON_TRAVIS') is None and show_plots:
        plot_chain_control_traj(simU)
        plot_chain_position_traj(simX, yPosWall=yPosWall)
        plot_chain_velocity_traj(simX)

        animate_chain_position(simX, xPosFirstMass, yPosWall=yPosWall)
        # animate_chain_position_3D(simX, xPosFirstMass)

        plt.show()