コード例 #1
0
    def create_CID_to_RLE_LUT():

        def interpolate_1d(x, xp, fp):
            return numpy.interp(x, xp, fp)

        LUT_1D_XP = [-0.190000000000000,
                     0.010000000000000,
                     0.028000000000000,
                     0.054000000000000,
                     0.095000000000000,
                     0.145000000000000,
                     0.220000000000000,
                     0.300000000000000,
                     0.400000000000000,
                     0.500000000000000,
                     0.600000000000000]

        LUT_1D_FP = [-6.000000000000000,
                     -2.721718645000000,
                     -2.521718645000000,
                     -2.321718645000000,
                     -2.121718645000000,
                     -1.921718645000000,
                     -1.721718645000000,
                     -1.521718645000000,
                     -1.321718645000000,
                     -1.121718645000000,
                     -0.926545676714876]

        REF_PT = ((7120 - 1520) / 8000 * (100 / 55) -
                  math.log(0.18, 10))

        def cid_to_rle(x):
            if x <= 0.6:
                return interpolate_1d(x, LUT_1D_XP, LUT_1D_FP)
            return (100 / 55) * x - REF_PT

        def fit(value, from_min, from_max, to_min, to_max):
            if from_min == from_max:
                raise ValueError('from_min == from_max')
            return (value - from_min) / (from_max - from_min) * (
                to_max - to_min) + to_min

        num_samples = 2 ** 12
        domain = (-0.19, 3)
        data = []
        for i in xrange(num_samples):
            x = i / (num_samples - 1)
            x = fit(x, 0, 1, domain[0], domain[1])
            data.append(cid_to_rle(x))

        lut = 'ADX_CID_to_RLE.spi1d'
        write_SPI_1d(os.path.join(lut_directory, lut),
                     domain[0],
                     domain[1],
                     data,
                     num_samples, 1)

        return lut
コード例 #2
0
def create_transfer_colorspace(name='transfer',
                               transfer_function_name='transfer_function',
                               transfer_function=lambda x: x,
                               lut_directory='/tmp',
                               lut_resolution_1d=1024,
                               aliases=[]):
    """
    Object description.

    Parameters
    ----------
    parameter : type
        Parameter description.

    Returns
    -------
    type
         Return value description.
    """

    cs = ColorSpace(name)
    cs.description = 'The %s color space' % name
    cs.aliases = aliases
    cs.equality_group = name
    cs.family = 'Utility'
    cs.is_data = False

    # A linear space needs allocation variables
    cs.allocation_type = ocio.Constants.ALLOCATION_UNIFORM
    cs.allocation_vars = [0, 1]

    # Sample the transfer function
    data = array.array('f', '\0' * lut_resolution_1d * 4)
    for c in range(lut_resolution_1d):
        data[c] = transfer_function(c / (lut_resolution_1d - 1))

    # Write the sampled data to a LUT
    lut = '%s_to_linear.spi1d' % transfer_function_name
    genlut.write_SPI_1d(
        os.path.join(lut_directory, lut),
        0,
        1,
        data,
        lut_resolution_1d,
        1)

    # Create the 'to_reference' transforms
    cs.to_reference_transforms = []
    cs.to_reference_transforms.append({
        'type': 'lutFile',
        'path': lut,
        'interpolation': 'linear',
        'direction': 'forward'})

    # Create the 'from_reference' transforms
    cs.from_reference_transforms = []

    return cs
コード例 #3
0
def create_v_log(gamut,
                 transfer_function,
                 lut_directory,
                 lut_resolution_1d,
                 aliases):
    """
    Object description.

    Panasonic V-Log to ACES.

    Parameters
    ----------
    parameter : type
        Parameter description.

    Returns
    -------
    type
         Return value description.
    """

    name = '%s - %s' % (transfer_function, gamut)
    if transfer_function == '':
        name = 'Linear - %s' % gamut
    if gamut == '':
        name = 'Curve - %s' % transfer_function

    cs = ColorSpace(name)
    cs.description = name
    cs.aliases = aliases
    cs.equality_group = ''
    cs.family = 'Input/Panasonic'
    cs.is_data = False

    # A linear space needs allocation variables
    if transfer_function == '':
        cs.allocation_type = ocio.Constants.ALLOCATION_LG2
        cs.allocation_vars = [-8, 5, 0.00390625]

    def v_log_to_linear(x):
        cut_inv = 0.181
        b = 0.00873
        c = 0.241514
        d = 0.598206

        if x <= cut_inv:
            return (x - 0.125) / 5.6
        else:
            return pow(10, (x - d) / c) - b

    cs.to_reference_transforms = []

    if transfer_function == 'V-Log':
        data = array.array('f', '\0' * lut_resolution_1d * 4)
        for c in range(lut_resolution_1d):
            data[c] = v_log_to_linear(float(c) / (lut_resolution_1d - 1))

        lut = '%s_to_linear.spi1d' % transfer_function
        genlut.write_SPI_1d(
            os.path.join(lut_directory, lut),
            0.0,
            1.0,
            data,
            lut_resolution_1d,
            1)

        cs.to_reference_transforms.append({
            'type': 'lutFile',
            'path': lut,
            'interpolation': 'linear',
            'direction': 'forward'})

    if gamut == 'V-Gamut':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': [0.724382758, 0.166748484, 0.108497411, 0.0,
                       0.021354009, 0.985138372, -0.006319092, 0.0,
                       -0.009234278, -0.00104295, 1.010272625, 0.0,
                       0, 0, 0, 1.0],
            'direction': 'forward'})

    cs.from_reference_transforms = []
    return cs
コード例 #4
0
def create_c_log(gamut,
                 transfer_function,
                 lut_directory,
                 lut_resolution_1d,
                 aliases):
    """
    Creates colorspace covering the conversion from CLog to ACES, with various transfer 
    functions and encoding gamuts covered

    Parameters
    ----------
    gamut : str
        The name of the encoding gamut to use.
    transfer_function : str
        The name of the transfer function to use
    lut_directory : str or unicode 
        The directory to use when generating LUTs
    lut_resolution_1d : int
        The resolution of generated 1D LUTs
    aliases : list of str
        Aliases for this colorspace

    Returns
    -------
    ColorSpace
         A ColorSpace container class referencing the LUTs, matrices and identifying
         information for the requested colorspace.    
    """

    name = '%s - %s' % (transfer_function, gamut)
    if transfer_function == '':
        name = 'Linear - Canon %s' % gamut
    if gamut == '':
        name = 'Curve - %s' % transfer_function

    cs = ColorSpace(name)
    cs.description = name
    cs.aliases = aliases
    cs.equality_group = ''
    cs.family = 'Input/Canon'
    cs.is_data = False

    # A linear space needs allocation variables.
    if transfer_function == '':
        cs.allocation_type = ocio.Constants.ALLOCATION_LG2
        cs.allocation_vars = [-8, 5, 0.00390625]

    def legal_to_full(code_value):
        return (code_value - 64) / (940 - 64)

    def c_log_to_linear(code_value):
        # log = fullToLegal(c1 * log10(c2*linear + 1) + c3)
        # linear = (pow(10, (legalToFul(log) - c3)/c1) - 1)/c2
        c1 = 0.529136
        c2 = 10.1596
        c3 = 0.0730597

        linear = (pow(10, (legal_to_full(code_value) - c3) / c1) - 1) / c2
        linear *= 0.9

        return linear

    def c_log2_to_linear(code_value):
        # log = fullToLegal(c1 * log10(c2*linear + 1) + c3)
        # linear = (pow(10, (legalToFul(log) - c3)/c1) - 1)/c2
        c1 = 0.281863093
        c2 = 87.09937546
        c3 = 0.035388128

        linear = (pow(10, (legal_to_full(code_value) - c3) / c1) - 1) / c2
        linear *= 0.9

        return linear

    cs.to_reference_transforms = []

    if transfer_function:
        if transfer_function == 'Canon-Log':
            data = array.array('f', '\0' * lut_resolution_1d * 4)
            for c in range(lut_resolution_1d):
                data[c] = c_log_to_linear(1023 * c / (lut_resolution_1d - 1))
        elif transfer_function == 'Canon-Log2':
            data = array.array('f', '\0' * lut_resolution_1d * 4)
            for c in range(lut_resolution_1d):
                data[c] = c_log2_to_linear(1023 * c / (lut_resolution_1d - 1))

        lut = '%s_to_linear.spi1d' % transfer_function
        genlut.write_SPI_1d(
            os.path.join(lut_directory, lut),
            0,
            1,
            data,
            lut_resolution_1d,
            1)

        cs.to_reference_transforms.append({
            'type': 'lutFile',
            'path': lut,
            'interpolation': 'linear',
            'direction': 'forward'})

    if gamut == 'Rec. 709 Daylight':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': [0.561538969, 0.402060105, 0.036400926, 0,
                       0.092739623, 0.924121198, -0.016860821, 0,
                       0.084812961, 0.006373835, 0.908813204, 0,
                       0, 0, 0, 1],
            'direction': 'forward'})
    elif gamut == 'Rec. 709 Tungsten':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': [0.566996399, 0.365079418, 0.067924183, 0,
                       0.070901044, 0.880331008, 0.048767948, 0,
                       0.073013542, -0.066540862, 0.99352732, 0,
                       0, 0, 0, 1],
            'direction': 'forward'})
    elif gamut == 'DCI-P3 Daylight':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': [0.607160575, 0.299507286, 0.093332140, 0,
                       0.004968120, 1.050982224, -0.055950343, 0,
                       -0.007839939, 0.000809127, 1.007030813, 0,
                       0, 0, 0, 1],
            'direction': 'forward'})
    elif gamut == 'DCI-P3 Tungsten':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': [0.650279125, 0.253880169, 0.095840706, 0,
                       -0.026137986, 1.017900530, 0.008237456, 0,
                       0.007757558, -0.063081669, 1.055324110, 0,
                       0, 0, 0, 1],
            'direction': 'forward'})
    elif gamut == 'Cinema Gamut Daylight':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': [0.763064455, 0.149021161, 0.087914384, 0,
                       0.003657457, 1.10696038, -0.110617837, 0,
                       -0.009407794, -0.218383305, 1.227791099, 0,
                       0, 0, 0, 1],
            'direction': 'forward'})
    elif gamut == 'Cinema Gamut Tungsten':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': [0.817416293, 0.090755698, 0.091828009, 0,
                       -0.035361374, 1.065690585, -0.030329211, 0,
                       0.010390366, -0.299271107, 1.288880741, 0,
                       0, 0, 0, 1],
            'direction': 'forward'})
    elif gamut == 'Rec. 2020 Daylight':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': [0.678891151, 0.158868422, 0.162240427, 0,
                       0.045570831, 0.860712772, 0.093716397, 0,
                       -0.000485710, 0.025060196, 0.975425515, 0,
                       0, 0, 0, 1],
            'direction': 'forward'})
    elif gamut == 'Rec. 2020 Tungsten':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': [0.724488568, 0.115140904, 0.160370529, 0,
                       0.010659276, 0.839605344, 0.149735380, 0,
                       0.014560161, 0.028562057, 1.014001897, 0,
                       0, 0, 0, 1],
            'direction': 'forward'})

    cs.from_reference_transforms = []
    return cs
コード例 #5
0
def create_matrix_plus_transfer_colorspace(
        name='matrix_plus_transfer',
        transfer_function_name='transfer_function',
        transfer_function=lambda x: x,
        lut_directory='/tmp',
        lut_resolution_1d=1024,
        from_reference_values=None,
        to_reference_values=None,
        aliases=None):
    """
    Object description.

    Parameters
    ----------
    parameter : type
        Parameter description.

    Returns
    -------
    type
         Return value description.
    """

    if from_reference_values is None:
        from_reference_values = []

    if to_reference_values is None:
        to_reference_values = []

    if aliases is None:
        aliases = []

    cs = ColorSpace(name)
    cs.description = 'The %s color space' % name
    cs.aliases = aliases
    cs.equality_group = name
    cs.family = 'Utility'
    cs.is_data = False

    # A linear space needs allocation variables.
    cs.allocation_type = ocio.Constants.ALLOCATION_UNIFORM
    cs.allocation_vars = [0, 1]

    # Sampling the transfer function.
    data = array.array('f', '\0' * lut_resolution_1d * 4)
    for c in range(lut_resolution_1d):
        data[c] = transfer_function(c / (lut_resolution_1d - 1))

    # Writing the sampled data to a *LUT*.
    lut = '%s_to_linear.spi1d' % transfer_function_name
    genlut.write_SPI_1d(
        os.path.join(lut_directory, lut),
        0,
        1,
        data,
        lut_resolution_1d,
        1)

    # Creating the *to_reference* transforms.
    cs.to_reference_transforms = []
    if to_reference_values:
        cs.to_reference_transforms.append({
            'type': 'lutFile',
            'path': lut,
            'interpolation': 'linear',
            'direction': 'forward'})

        for matrix in to_reference_values:
            cs.to_reference_transforms.append({
                'type': 'matrix',
                'matrix': mat44_from_mat33(matrix),
                'direction': 'forward'})

    # Creating the *from_reference* transforms.
    cs.from_reference_transforms = []
    if from_reference_values:
        for matrix in from_reference_values:
            cs.from_reference_transforms.append({
                'type': 'matrix',
                'matrix': mat44_from_mat33(matrix),
                'direction': 'forward'})

        cs.from_reference_transforms.append({
            'type': 'lutFile',
            'path': lut,
            'interpolation': 'linear',
            'direction': 'inverse'})

    return cs
コード例 #6
0
ファイル: sony.py プロジェクト: MrKepzie/OpenColorIO-Configs
def create_s_log(gamut,
                 transfer_function,
                 lut_directory,
                 lut_resolution_1d,
                 aliases):
    """
    Creates colorspace covering the conversion from Sony spaces to ACES, with various 
    transfer functions and encoding gamuts covered

    Parameters
    ----------
    gamut : str
        The name of the encoding gamut to use.
    transfer_function : str
        The name of the transfer function to use
    lut_directory : str or unicode 
        The directory to use when generating LUTs
    lut_resolution_1d : int
        The resolution of generated 1D LUTs
    aliases : list of str
        Aliases for this colorspace

    Returns
    -------
    ColorSpace
         A ColorSpace container class referencing the LUTs, matrices and identifying
         information for the requested colorspace.
    """

    name = '%s - %s' % (transfer_function, gamut)
    if transfer_function == '':
        name = 'Linear - %s' % gamut
    if gamut == '':
        name = 'Curve - %s' % transfer_function

    cs = ColorSpace(name)
    cs.description = name
    cs.aliases = aliases
    cs.equality_group = ''
    cs.family = 'Input/Sony'
    cs.is_data = False

    if gamut and transfer_function:
        cs.aces_transform_id = 'IDT.Sony.%s_%s_10i.a1.v1' % (
            transfer_function.replace('-', ''),
            gamut.replace('-', '').replace(' ', '_'))

    # A linear space needs allocation variables.
    if transfer_function == '':
        cs.allocation_type = ocio.Constants.ALLOCATION_LG2
        cs.allocation_vars = [-8, 5, 0.00390625]

    def s_log1_to_linear(s_log):
        b = 64.
        ab = 90.
        w = 940.

        if s_log >= ab:
            linear = ((pow(10.,
                           (((s_log - b) /
                             (w - b) - 0.616596 - 0.03) / 0.432699)) -
                       0.037584) * 0.9)
        else:
            linear = (((s_log - b) / (
                w - b) - 0.030001222851889303) / 5.) * 0.9
        return linear

    def s_log2_to_linear(s_log):
        b = 64.
        ab = 90.
        w = 940.

        if s_log >= ab:
            linear = ((219. * (pow(10.,
                                   (((s_log - b) /
                                     (w - b) - 0.616596 - 0.03) / 0.432699)) -
                               0.037584) / 155.) * 0.9)
        else:
            linear = (((s_log - b) / (
                w - b) - 0.030001222851889303) / 3.53881278538813) * 0.9
        return linear

    def s_log3_to_linear(code_value):
        if code_value >= 171.2102946929:
            linear = (pow(10, ((code_value - 420) / 261.5)) *
                      (0.18 + 0.01) - 0.01)
        else:
            linear = (code_value - 95) * 0.01125000 / (171.2102946929 - 95)

        return linear

    cs.to_reference_transforms = []

    if transfer_function == 'S-Log1':
        data = array.array('f', '\0' * lut_resolution_1d * 4)
        for c in range(lut_resolution_1d):
            data[c] = s_log1_to_linear(1023 * c / (lut_resolution_1d - 1))

        lut = '%s_to_linear.spi1d' % transfer_function
        genlut.write_SPI_1d(
            os.path.join(lut_directory, lut),
            0,
            1,
            data,
            lut_resolution_1d,
            1)

        cs.to_reference_transforms.append({
            'type': 'lutFile',
            'path': lut,
            'interpolation': 'linear',
            'direction': 'forward'})
    elif transfer_function == 'S-Log2':
        data = array.array('f', '\0' * lut_resolution_1d * 4)
        for c in range(lut_resolution_1d):
            data[c] = s_log2_to_linear(1023 * c / (lut_resolution_1d - 1))

        lut = '%s_to_linear.spi1d' % transfer_function
        genlut.write_SPI_1d(
            os.path.join(lut_directory, lut),
            0,
            1,
            data,
            lut_resolution_1d,
            1)

        cs.to_reference_transforms.append({
            'type': 'lutFile',
            'path': lut,
            'interpolation': 'linear',
            'direction': 'forward'})
    elif transfer_function == 'S-Log3':
        data = array.array('f', '\0' * lut_resolution_1d * 4)
        for c in range(lut_resolution_1d):
            data[c] = s_log3_to_linear(1023 * c / (lut_resolution_1d - 1))

        lut = '%s_to_linear.spi1d' % transfer_function
        genlut.write_SPI_1d(
            os.path.join(lut_directory, lut),
            0,
            1,
            data,
            lut_resolution_1d,
            1)

        cs.to_reference_transforms.append({
            'type': 'lutFile',
            'path': lut,
            'interpolation': 'linear',
            'direction': 'forward'})

    if gamut == 'S-Gamut':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': mat44_from_mat33(
                [0.754338638, 0.133697046, 0.111968437,
                 0.021198141, 1.005410934, -0.026610548,
                 -0.009756991, 0.004508563, 1.005253201]),
            'direction': 'forward'})
    elif gamut == 'S-Gamut Daylight':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': mat44_from_mat33(
                [0.8764457030, 0.0145411681, 0.1090131290,
                 0.0774075345, 0.9529571767, -0.0303647111,
                 0.0573564351, -0.1151066335, 1.0577501984]),
            'direction': 'forward'})
    elif gamut == 'S-Gamut Tungsten':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': mat44_from_mat33(
                [1.0110238740, -0.1362526051, 0.1252287310,
                 0.1011994504, 0.9562196265, -0.0574190769,
                 0.0600766530, -0.1010185315, 1.0409418785]),
            'direction': 'forward'})
    elif gamut == 'S-Gamut3.Cine':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': mat44_from_mat33(
                [0.6387886672, 0.2723514337, 0.0888598992,
                 -0.0039159061, 1.0880732308, -0.0841573249,
                 -0.0299072021, -0.0264325799, 1.0563397820]),
            'direction': 'forward'})
    elif gamut == 'S-Gamut3':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': mat44_from_mat33(
                [0.7529825954, 0.1433702162, 0.1036471884,
                 0.0217076974, 1.0153188355, -0.0370265329,
                 -0.0094160528, 0.0033704179, 1.0060456349]),
            'direction': 'forward'})

    cs.from_reference_transforms = []
    return cs
コード例 #7
0
def create_c_log(gamut,
                 transfer_function,
                 lut_directory,
                 lut_resolution_1d,
                 aliases):
    """
    Object description.

    Canon-Log to ACES.

    Parameters
    ----------
    parameter : type
        Parameter description.

    Returns
    -------
    type
         Return value description.
    """

    name = '%s - %s' % (transfer_function, gamut)
    if transfer_function == '':
        name = 'Linear - Canon %s' % gamut
    if gamut == '':
        name = 'Curve - %s' % transfer_function

    cs = ColorSpace(name)
    cs.description = name
    cs.aliases = aliases
    cs.equality_group = ''
    cs.family = 'Input/Canon'
    cs.is_data = False

    # A linear space needs allocation variables.
    if transfer_function == '':
        cs.allocation_type = ocio.Constants.ALLOCATION_LG2
        cs.allocation_vars = [-8, 5, 0.00390625]

    def legal_to_full(code_value):
        return (code_value - 64) / (940 - 64)

    def c_log_to_linear(code_value):
        # log = fullToLegal(c1 * log10(c2*linear + 1) + c3)
        # linear = (pow(10, (legalToFul(log) - c3)/c1) - 1)/c2
        c1 = 0.529136
        c2 = 10.1596
        c3 = 0.0730597

        linear = (pow(10, (legal_to_full(code_value) - c3) / c1) - 1) / c2
        linear *= 0.9

        return linear

    cs.to_reference_transforms = []

    if transfer_function == 'Canon-Log':
        data = array.array('f', '\0' * lut_resolution_1d * 4)
        for c in range(lut_resolution_1d):
            data[c] = c_log_to_linear(1023 * c / (lut_resolution_1d - 1))

        lut = '%s_to_linear.spi1d' % transfer_function
        genlut.write_SPI_1d(
            os.path.join(lut_directory, lut),
            0,
            1,
            data,
            lut_resolution_1d,
            1)

        cs.to_reference_transforms.append({
            'type': 'lutFile',
            'path': lut,
            'interpolation': 'linear',
            'direction': 'forward'})

    if gamut == 'Rec. 709 Daylight':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': [0.561538969, 0.402060105, 0.036400926, 0,
                       0.092739623, 0.924121198, -0.016860821, 0,
                       0.084812961, 0.006373835, 0.908813204, 0,
                       0, 0, 0, 1],
            'direction': 'forward'})
    elif gamut == 'Rec. 709 Tungsten':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': [0.566996399, 0.365079418, 0.067924183, 0,
                       0.070901044, 0.880331008, 0.048767948, 0,
                       0.073013542, -0.066540862, 0.99352732, 0,
                       0, 0, 0, 1],
            'direction': 'forward'})
    elif gamut == 'DCI-P3 Daylight':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': [0.607160575, 0.299507286, 0.093332140, 0,
                       0.004968120, 1.050982224, -0.055950343, 0,
                       -0.007839939, 0.000809127, 1.007030813, 0,
                       0, 0, 0, 1],
            'direction': 'forward'})
    elif gamut == 'DCI-P3 Tungsten':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': [0.650279125, 0.253880169, 0.095840706, 0,
                       -0.026137986, 1.017900530, 0.008237456, 0,
                       0.007757558, -0.063081669, 1.055324110, 0,
                       0, 0, 0, 1],
            'direction': 'forward'})
    elif gamut == 'Cinema Gamut Daylight':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': [0.763064455, 0.149021161, 0.087914384, 0,
                       0.003657457, 1.10696038, -0.110617837, 0,
                       -0.009407794, -0.218383305, 1.227791099, 0,
                       0, 0, 0, 1],
            'direction': 'forward'})
    elif gamut == 'Cinema Gamut Tungsten':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': [0.817416293, 0.090755698, 0.091828009, 0,
                       -0.035361374, 1.065690585, -0.030329211, 0,
                       0.010390366, -0.299271107, 1.288880741, 0,
                       0, 0, 0, 1],
            'direction': 'forward'})

    cs.from_reference_transforms = []
    return cs
コード例 #8
0
def create_log_c(gamut,
                 transfer_function,
                 exposure_index,
                 name,
                 lut_directory,
                 lut_resolution_1d,
                 aliases):
    """
    Object description.

    LogC to ACES.

    Parameters
    ----------
    parameter : type
        Parameter description.

    Returns
    -------
    type
         Return value description.
    """

    name = '%s (EI%s) - %s' % (transfer_function, exposure_index, gamut)
    if transfer_function == '':
        name = 'Linear - ARRI %s' % gamut
    if gamut == '':
        name = '%s (EI%s)' % (transfer_function, exposure_index)

    cs = ColorSpace(name)
    cs.description = name
    cs.aliases = aliases
    cs.equality_group = ''
    cs.family = 'Input/ARRI'
    cs.is_data = False

    # A linear space needs allocation variables
    if transfer_function == '':
        cs.allocation_type = ocio.Constants.ALLOCATION_LG2
        cs.allocation_vars = [-8, 5, 0.00390625]

    # Globals.
    IDT_maker_version = '0.08'

    nominal_EI = 400
    black_signal = 0.003907
    mid_gray_signal = 0.01
    encoding_gain = 0.256598
    encoding_offset = 0.391007

    def gain_for_EI(EI):
        return (math.log(EI / nominal_EI) / math.log(2) * (
            0.89 - 1) / 3 + 1) * encoding_gain

    def log_c_inverse_parameters_for_EI(EI):
        cut = 1 / 9
        slope = 1 / (cut * math.log(10))
        offset = math.log10(cut) - slope * cut
        gain = EI / nominal_EI
        gray = mid_gray_signal / gain
        # The higher the EI, the lower the gamma.
        enc_gain = gain_for_EI(EI)
        enc_offset = encoding_offset
        for i in range(0, 3):
            nz = ((95 / 1023 - enc_offset) / enc_gain - offset) / slope
            enc_offset = encoding_offset - math.log10(1 + nz) * enc_gain

        a = 1 / gray
        b = nz - black_signal / gray
        e = slope * a * enc_gain
        f = enc_gain * (slope * b + offset) + enc_offset

        # Ensuring we can return relative exposure.
        s = 4 / (0.18 * EI)
        t = black_signal
        b += a * t
        a *= s
        f += e * t
        e *= s

        return {'a': a,
                'b': b,
                'cut': (cut - b) / a,
                'c': enc_gain,
                'd': enc_offset,
                'e': e,
                'f': f}

    def log_c_to_linear(code_value, exposure_index):
        p = log_c_inverse_parameters_for_EI(exposure_index)
        breakpoint = p['e'] * p['cut'] + p['f']
        if code_value > breakpoint:
            linear = ((pow(10, (code_value / 1023 - p['d']) / p['c']) -
                       p['b']) / p['a'])
        else:
            linear = (code_value / 1023 - p['f']) / p['e']
        return linear

    cs.to_reference_transforms = []

    if transfer_function == 'V3 LogC':
        data = array.array('f', '\0' * lut_resolution_1d * 4)
        for c in range(lut_resolution_1d):
            data[c] = log_c_to_linear(1023 * c / (lut_resolution_1d - 1),
                                      int(exposure_index))

        lut = '%s_to_linear.spi1d' % (
            '%s_%s' % (transfer_function, exposure_index))

        lut = sanitize(lut)

        genlut.write_SPI_1d(
            os.path.join(lut_directory, lut),
            0,
            1,
            data,
            lut_resolution_1d,
            1)

        cs.to_reference_transforms.append({
            'type': 'lutFile',
            'path': lut,
            'interpolation': 'linear',
            'direction': 'forward'
        })

    if gamut == 'Wide Gamut':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': mat44_from_mat33([0.680206, 0.236137, 0.083658,
                                        0.085415, 1.017471, -0.102886,
                                        0.002057, -0.062563, 1.060506]),
            'direction': 'forward'
        })

    cs.from_reference_transforms = []
    return cs
コード例 #9
0
def create_v_log(gamut,
                 transfer_function,
                 lut_directory,
                 lut_resolution_1d,
                 aliases):
    """
    Creates colorspace covering the conversion from VLog to ACES, with various transfer 
    functions and encoding gamuts covered

    Parameters
    ----------
    gamut : str
        The name of the encoding gamut to use.
    transfer_function : str
        The name of the transfer function to use
    lut_directory : str or unicode 
        The directory to use when generating LUTs
    lut_resolution_1d : int
        The resolution of generated 1D LUTs
    aliases : list of str
        Aliases for this colorspace

    Returns
    -------
    ColorSpace
         A ColorSpace container class referencing the LUTs, matrices and identifying
         information for the requested colorspace.
    """

    name = '%s - %s' % (transfer_function, gamut)
    if transfer_function == '':
        name = 'Linear - %s' % gamut
    if gamut == '':
        name = 'Curve - %s' % transfer_function

    cs = ColorSpace(name)
    cs.description = name
    cs.aliases = aliases
    cs.equality_group = ''
    cs.family = 'Input/Panasonic'
    cs.is_data = False

    # A linear space needs allocation variables
    if transfer_function == '':
        cs.allocation_type = ocio.Constants.ALLOCATION_LG2
        cs.allocation_vars = [-8, 5, 0.00390625]

    def v_log_to_linear(x):
        cut_inv = 0.181
        b = 0.00873
        c = 0.241514
        d = 0.598206

        if x <= cut_inv:
            return (x - 0.125) / 5.6
        else:
            return pow(10, (x - d) / c) - b

    cs.to_reference_transforms = []

    if transfer_function == 'V-Log':
        data = array.array('f', '\0' * lut_resolution_1d * 4)
        for c in range(lut_resolution_1d):
            data[c] = v_log_to_linear(float(c) / (lut_resolution_1d - 1))

        lut = '%s_to_linear.spi1d' % transfer_function
        genlut.write_SPI_1d(
            os.path.join(lut_directory, lut),
            0.0,
            1.0,
            data,
            lut_resolution_1d,
            1)

        cs.to_reference_transforms.append({
            'type': 'lutFile',
            'path': lut,
            'interpolation': 'linear',
            'direction': 'forward'})

    if gamut == 'V-Gamut':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': [0.724382758, 0.166748484, 0.108497411, 0.0,
                       0.021354009, 0.985138372, -0.006319092, 0.0,
                       -0.009234278, -0.00104295, 1.010272625, 0.0,
                       0, 0, 0, 1.0],
            'direction': 'forward'})

    cs.from_reference_transforms = []
    return cs
コード例 #10
0
def create_s_log(gamut, transfer_function, name, lut_directory, lut_resolution_1d, aliases):
    """
    Object description.

    SLog to ACES.

    Parameters
    ----------
    parameter : type
        Parameter description.

    Returns
    -------
    type
         Return value description.
    """

    name = "%s - %s" % (transfer_function, gamut)
    if transfer_function == "":
        name = "Linear - %s" % gamut
    if gamut == "":
        name = "Curve - %s" % transfer_function

    cs = ColorSpace(name)
    cs.description = name
    cs.aliases = aliases
    cs.equality_group = ""
    cs.family = "Input/Sony"
    cs.is_data = False

    if gamut and transfer_function:
        cs.aces_transform_id = "IDT.Sony.%s_%s_10i.a1.v1" % (
            transfer_function.replace("-", ""),
            gamut.replace("-", "").replace(" ", "_"),
        )

    # A linear space needs allocation variables
    if transfer_function == "":
        cs.allocation_type = ocio.Constants.ALLOCATION_LG2
        cs.allocation_vars = [-8, 5, 0.00390625]

    def s_log1_to_linear(s_log):
        b = 64.0
        ab = 90.0
        w = 940.0

        if s_log >= ab:
            linear = (pow(10.0, (((s_log - b) / (w - b) - 0.616596 - 0.03) / 0.432699)) - 0.037584) * 0.9
        else:
            linear = (((s_log - b) / (w - b) - 0.030001222851889303) / 5.0) * 0.9
        return linear

    def s_log2_to_linear(s_log):
        b = 64.0
        ab = 90.0
        w = 940.0

        if s_log >= ab:
            linear = (
                219.0 * (pow(10.0, (((s_log - b) / (w - b) - 0.616596 - 0.03) / 0.432699)) - 0.037584) / 155.0
            ) * 0.9
        else:
            linear = (((s_log - b) / (w - b) - 0.030001222851889303) / 3.53881278538813) * 0.9
        return linear

    def s_log3_to_linear(code_value):
        if code_value >= 171.2102946929:
            linear = pow(10, ((code_value - 420) / 261.5)) * (0.18 + 0.01) - 0.01
        else:
            linear = (code_value - 95) * 0.01125000 / (171.2102946929 - 95)

        return linear

    cs.to_reference_transforms = []

    if transfer_function == "S-Log1":
        data = array.array("f", "\0" * lut_resolution_1d * 4)
        for c in range(lut_resolution_1d):
            data[c] = s_log1_to_linear(1023 * c / (lut_resolution_1d - 1))

        lut = "%s_to_linear.spi1d" % transfer_function
        genlut.write_SPI_1d(os.path.join(lut_directory, lut), 0, 1, data, lut_resolution_1d, 1)

        cs.to_reference_transforms.append(
            {"type": "lutFile", "path": lut, "interpolation": "linear", "direction": "forward"}
        )
    elif transfer_function == "S-Log2":
        data = array.array("f", "\0" * lut_resolution_1d * 4)
        for c in range(lut_resolution_1d):
            data[c] = s_log2_to_linear(1023 * c / (lut_resolution_1d - 1))

        lut = "%s_to_linear.spi1d" % transfer_function
        genlut.write_SPI_1d(os.path.join(lut_directory, lut), 0, 1, data, lut_resolution_1d, 1)

        cs.to_reference_transforms.append(
            {"type": "lutFile", "path": lut, "interpolation": "linear", "direction": "forward"}
        )
    elif transfer_function == "S-Log3":
        data = array.array("f", "\0" * lut_resolution_1d * 4)
        for c in range(lut_resolution_1d):
            data[c] = s_log3_to_linear(1023 * c / (lut_resolution_1d - 1))

        lut = "%s_to_linear.spi1d" % transfer_function
        genlut.write_SPI_1d(os.path.join(lut_directory, lut), 0, 1, data, lut_resolution_1d, 1)

        cs.to_reference_transforms.append(
            {"type": "lutFile", "path": lut, "interpolation": "linear", "direction": "forward"}
        )

    if gamut == "S-Gamut":
        cs.to_reference_transforms.append(
            {
                "type": "matrix",
                "matrix": mat44_from_mat33(
                    [
                        0.754338638,
                        0.133697046,
                        0.111968437,
                        0.021198141,
                        1.005410934,
                        -0.026610548,
                        -0.009756991,
                        0.004508563,
                        1.005253201,
                    ]
                ),
                "direction": "forward",
            }
        )
    elif gamut == "S-Gamut Daylight":
        cs.to_reference_transforms.append(
            {
                "type": "matrix",
                "matrix": mat44_from_mat33(
                    [
                        0.8764457030,
                        0.0145411681,
                        0.1090131290,
                        0.0774075345,
                        0.9529571767,
                        -0.0303647111,
                        0.0573564351,
                        -0.1151066335,
                        1.0577501984,
                    ]
                ),
                "direction": "forward",
            }
        )
    elif gamut == "S-Gamut Tungsten":
        cs.to_reference_transforms.append(
            {
                "type": "matrix",
                "matrix": mat44_from_mat33(
                    [
                        1.0110238740,
                        -0.1362526051,
                        0.1252287310,
                        0.1011994504,
                        0.9562196265,
                        -0.0574190769,
                        0.0600766530,
                        -0.1010185315,
                        1.0409418785,
                    ]
                ),
                "direction": "forward",
            }
        )
    elif gamut == "S-Gamut3.Cine":
        cs.to_reference_transforms.append(
            {
                "type": "matrix",
                "matrix": mat44_from_mat33(
                    [
                        0.6387886672,
                        0.2723514337,
                        0.0888598992,
                        -0.0039159061,
                        1.0880732308,
                        -0.0841573249,
                        -0.0299072021,
                        -0.0264325799,
                        1.0563397820,
                    ]
                ),
                "direction": "forward",
            }
        )
    elif gamut == "S-Gamut3":
        cs.to_reference_transforms.append(
            {
                "type": "matrix",
                "matrix": mat44_from_mat33(
                    [
                        0.7529825954,
                        0.1433702162,
                        0.1036471884,
                        0.0217076974,
                        1.0153188355,
                        -0.0370265329,
                        -0.0094160528,
                        0.0033704179,
                        1.0060456349,
                    ]
                ),
                "direction": "forward",
            }
        )

    cs.from_reference_transforms = []
    return cs
コード例 #11
0
ファイル: red.py プロジェクト: cynlangley/OpenColorIO-Configs
def create_RED_log_film(gamut,
                        transfer_function,
                        name,
                        lut_directory,
                        lut_resolution_1d,
                        aliases=[]):
    """
    Object description.

    RED colorspaces to ACES.

    Parameters
    ----------
    parameter : type
        Parameter description.

    Returns
    -------
    type
         Return value description.
    """

    name = '%s - %s' % (transfer_function, gamut)
    if transfer_function == '':
        name = 'Linear - %s' % gamut
    if gamut == '':
        name = 'Curve - %s' % transfer_function

    cs = ColorSpace(name)
    cs.description = name
    cs.aliases = aliases
    cs.equality_group = ''
    cs.family = 'Input/RED'
    cs.is_data = False

    # A linear space needs allocation variables
    if transfer_function == '':
        cs.allocation_type = ocio.Constants.ALLOCATION_LG2
        cs.allocation_vars = [-8, 5, 0.00390625]

    def cineon_to_linear(code_value):
        n_gamma = 0.6
        black_point = 95
        white_point = 685
        code_value_to_density = 0.002

        black_linear = pow(10, (black_point - white_point) * (
            code_value_to_density / n_gamma))
        code_linear = pow(10, (code_value - white_point) * (
            code_value_to_density / n_gamma))

        return (code_linear - black_linear) / (1 - black_linear)

    cs.to_reference_transforms = []

    if transfer_function == 'REDlogFilm':
        data = array.array('f', '\0' * lut_resolution_1d * 4)
        for c in range(lut_resolution_1d):
            data[c] = cineon_to_linear(1023 * c / (lut_resolution_1d - 1))

        lut = 'CineonLog_to_linear.spi1d'
        genlut.write_SPI_1d(
            os.path.join(lut_directory, lut),
            0,
            1,
            data,
            lut_resolution_1d,
            1)

        cs.to_reference_transforms.append({
            'type': 'lutFile',
            'path': lut,
            'interpolation': 'linear',
            'direction': 'forward'})

    if gamut == 'DRAGONcolor':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': mat44_from_mat33([0.532279, 0.376648, 0.091073,
                                        0.046344, 0.974513, -0.020860,
                                        -0.053976, -0.000320, 1.054267]),
            'direction': 'forward'})
    elif gamut == 'DRAGONcolor2':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': mat44_from_mat33([0.468452, 0.331484, 0.200064,
                                        0.040787, 0.857658, 0.101553,
                                        -0.047504, -0.000282, 1.047756]),
            'direction': 'forward'})
    elif gamut == 'REDcolor':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': mat44_from_mat33([0.451464, 0.388498, 0.160038,
                                        0.062716, 0.866790, 0.070491,
                                        -0.017541, 0.086921, 0.930590]),
            'direction': 'forward'})
    elif gamut == 'REDcolor2':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': mat44_from_mat33([0.480997, 0.402289, 0.116714,
                                        -0.004938, 1.000154, 0.004781,
                                        -0.105257, 0.025320, 1.079907]),
            'direction': 'forward'})
    elif gamut == 'REDcolor3':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': mat44_from_mat33([0.512136, 0.360370, 0.127494,
                                        0.070377, 0.903884, 0.025737,
                                        -0.020824, 0.017671, 1.003123]),
            'direction': 'forward'})
    elif gamut == 'REDcolor4':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': mat44_from_mat33([0.474202, 0.333677, 0.192121,
                                        0.065164, 0.836932, 0.097901,
                                        -0.019281, 0.016362, 1.002889]),
            'direction': 'forward'})

    cs.from_reference_transforms = []
    return cs
コード例 #12
0
def create_log_c(gamut, transfer_function, exposure_index, lut_directory, lut_resolution_1d, aliases):
    """
    Object description.

    LogC to ACES.

    Parameters
    ----------
    parameter : type
        Parameter description.

    Returns
    -------
    type
         Return value description.
    """

    name = "%s (EI%s) - %s" % (transfer_function, exposure_index, gamut)
    if transfer_function == "":
        name = "Linear - ARRI %s" % gamut
    if gamut == "":
        name = "Curve - %s (EI%s)" % (transfer_function, exposure_index)

    cs = ColorSpace(name)
    cs.description = name
    cs.aliases = aliases
    cs.equality_group = ""
    cs.family = "Input/ARRI"
    cs.is_data = False

    if gamut and transfer_function:
        cs.aces_transform_id = "IDT.ARRI.Alexa-v3-logC-EI%s.a1.v1" % exposure_index

    # A linear space needs allocation variables.
    if transfer_function == "":
        cs.allocation_type = ocio.Constants.ALLOCATION_LG2
        cs.allocation_vars = [-8, 5, 0.00390625]

    IDT_maker_version = "0.08"

    nominal_EI = 400
    black_signal = 0.003907
    mid_gray_signal = 0.01
    encoding_gain = 0.256598
    encoding_offset = 0.391007

    def gain_for_EI(EI):
        return (math.log(EI / nominal_EI) / math.log(2) * (0.89 - 1) / 3 + 1) * encoding_gain

    def log_c_inverse_parameters_for_EI(EI):
        cut = 1 / 9
        slope = 1 / (cut * math.log(10))
        offset = math.log10(cut) - slope * cut
        gain = EI / nominal_EI
        gray = mid_gray_signal / gain
        # The higher the EI, the lower the gamma.
        enc_gain = gain_for_EI(EI)
        enc_offset = encoding_offset
        for i in range(0, 3):
            nz = ((95 / 1023 - enc_offset) / enc_gain - offset) / slope
            enc_offset = encoding_offset - math.log10(1 + nz) * enc_gain

        a = 1 / gray
        b = nz - black_signal / gray
        e = slope * a * enc_gain
        f = enc_gain * (slope * b + offset) + enc_offset

        # Ensuring we can return relative exposure.
        s = 4 / (0.18 * EI)
        t = black_signal
        b += a * t
        a *= s
        f += e * t
        e *= s

        return {"a": a, "b": b, "cut": (cut - b) / a, "c": enc_gain, "d": enc_offset, "e": e, "f": f}

    def normalized_log_c_to_linear(code_value, exposure_index):
        p = log_c_inverse_parameters_for_EI(exposure_index)
        breakpoint = p["e"] * p["cut"] + p["f"]
        if code_value > breakpoint:
            linear = (pow(10, (code_value - p["d"]) / p["c"]) - p["b"]) / p["a"]
        else:
            linear = (code_value - p["f"]) / p["e"]
        return linear

    cs.to_reference_transforms = []

    if transfer_function == "V3 LogC":
        data = array.array("f", "\0" * lut_resolution_1d * 4)
        for c in range(lut_resolution_1d):
            data[c] = normalized_log_c_to_linear(c / (lut_resolution_1d - 1), int(exposure_index))

        lut = "%s_to_linear.spi1d" % ("%s_%s" % (transfer_function, exposure_index))

        lut = sanitize(lut)

        genlut.write_SPI_1d(os.path.join(lut_directory, lut), 0, 1, data, lut_resolution_1d, 1)

        cs.to_reference_transforms.append(
            {"type": "lutFile", "path": lut, "interpolation": "linear", "direction": "forward"}
        )

    if gamut == "Wide Gamut":
        cs.to_reference_transforms.append(
            {
                "type": "matrix",
                "matrix": mat44_from_mat33(
                    [0.680206, 0.236137, 0.083658, 0.085415, 1.017471, -0.102886, 0.002057, -0.062563, 1.060506]
                ),
                "direction": "forward",
            }
        )

    cs.from_reference_transforms = []
    return cs
コード例 #13
0
ファイル: arri.py プロジェクト: MrKepzie/OpenColorIO-Configs
def create_log_c(gamut,
                 transfer_function,
                 exposure_index,
                 lut_directory,
                 lut_resolution_1d,
                 aliases):
    """
    Creates colorspace covering the conversion from LogC to ACES, with various transfer 
    functions and encoding gamuts covered

    Parameters
    ----------
    gamut : str
        The name of the encoding gamut to use.
    transfer_function : str
        The name of the transfer function to use
    exposure_index : str
        The exposure index to use
    lut_directory : str or unicode 
        The directory to use when generating LUTs
    lut_resolution_1d : int
        The resolution of generated 1D LUTs
    aliases : list of str
        Aliases for this colorspace

    Returns
    -------
    ColorSpace
         A ColorSpace container class referencing the LUTs, matrices and identifying
         information for the requested colorspace.
    """

    name = '%s (EI%s) - %s' % (transfer_function, exposure_index, gamut)
    if transfer_function == '':
        name = 'Linear - ARRI %s' % gamut
    if gamut == '':
        name = 'Curve - %s (EI%s)' % (transfer_function, exposure_index)

    cs = ColorSpace(name)
    cs.description = name
    cs.aliases = aliases
    cs.equality_group = ''
    cs.family = 'Input/ARRI'
    cs.is_data = False

    if gamut and transfer_function:
        cs.aces_transform_id = (
            'IDT.ARRI.Alexa-v3-logC-EI%s.a1.v1' % exposure_index)

    # A linear space needs allocation variables.
    if transfer_function == '':
        cs.allocation_type = ocio.Constants.ALLOCATION_LG2
        cs.allocation_vars = [-8, 5, 0.00390625]

    IDT_maker_version = '0.08'

    nominal_EI = 400
    black_signal = 0.003907
    mid_gray_signal = 0.01
    encoding_gain = 0.256598
    encoding_offset = 0.391007

    def gain_for_EI(EI):
        return (math.log(EI / nominal_EI) / math.log(2) * (
            0.89 - 1) / 3 + 1) * encoding_gain

    def log_c_inverse_parameters_for_EI(EI):
        cut = 1 / 9
        slope = 1 / (cut * math.log(10))
        offset = math.log10(cut) - slope * cut
        gain = EI / nominal_EI
        gray = mid_gray_signal / gain
        # The higher the EI, the lower the gamma.
        enc_gain = gain_for_EI(EI)
        enc_offset = encoding_offset
        for i in range(0, 3):
            nz = ((95 / 1023 - enc_offset) / enc_gain - offset) / slope
            enc_offset = encoding_offset - math.log10(1 + nz) * enc_gain

        a = 1 / gray
        b = nz - black_signal / gray
        e = slope * a * enc_gain
        f = enc_gain * (slope * b + offset) + enc_offset

        # Ensuring we can return relative exposure.
        s = 4 / (0.18 * EI)
        t = black_signal
        b += a * t
        a *= s
        f += e * t
        e *= s

        return {'a': a,
                'b': b,
                'cut': (cut - b) / a,
                'c': enc_gain,
                'd': enc_offset,
                'e': e,
                'f': f}

    def normalized_log_c_to_linear(code_value, exposure_index):
        p = log_c_inverse_parameters_for_EI(exposure_index)
        breakpoint = p['e'] * p['cut'] + p['f']
        if code_value > breakpoint:
            linear = ((pow(10, (code_value - p['d']) / p['c']) -
                       p['b']) / p['a'])
        else:
            linear = (code_value - p['f']) / p['e']
        return linear

    cs.to_reference_transforms = []

    if transfer_function == 'V3 LogC':
        data = array.array('f', '\0' * lut_resolution_1d * 4)
        for c in range(lut_resolution_1d):
            data[c] = normalized_log_c_to_linear(c / (lut_resolution_1d - 1),
                                                 int(exposure_index))

        lut = '%s_to_linear.spi1d' % (
            '%s_%s' % (transfer_function, exposure_index))

        lut = sanitize(lut)

        genlut.write_SPI_1d(
            os.path.join(lut_directory, lut),
            0,
            1,
            data,
            lut_resolution_1d,
            1)

        cs.to_reference_transforms.append({
            'type': 'lutFile',
            'path': lut,
            'interpolation': 'linear',
            'direction': 'forward'})

    if gamut == 'Wide Gamut':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': mat44_from_mat33([0.680206, 0.236137, 0.083658,
                                        0.085415, 1.017471, -0.102886,
                                        0.002057, -0.062563, 1.060506]),
            'direction': 'forward'})

    cs.from_reference_transforms = []
    return cs
コード例 #14
0
def create_s_log(gamut,
                 transfer_function,
                 name,
                 lut_directory,
                 lut_resolution_1d,
                 aliases):
    """
    Object description.

    SLog to ACES.

    Parameters
    ----------
    parameter : type
        Parameter description.

    Returns
    -------
    type
         Return value description.
    """

    name = '%s - %s' % (transfer_function, gamut)
    if transfer_function == '':
        name = 'Linear - %s' % gamut
    if gamut == '':
        name = '%s' % transfer_function

    cs = ColorSpace(name)
    cs.description = name
    cs.aliases = aliases
    cs.equality_group = ''
    cs.family = 'Input/Sony'
    cs.is_data = False

    # A linear space needs allocation variables
    if transfer_function == '':
        cs.allocation_type = ocio.Constants.ALLOCATION_LG2
        cs.allocation_vars = [-8, 5, 0.00390625]

    def s_log1_to_linear(s_log):
        b = 64.
        ab = 90.
        w = 940.

        if s_log >= ab:
            linear = ((pow(10.,
                           (((s_log - b) /
                             (w - b) - 0.616596 - 0.03) / 0.432699)) -
                       0.037584) * 0.9)
        else:
            linear = (((s_log - b) / (
                w - b) - 0.030001222851889303) / 5.) * 0.9
        return linear

    def s_log2_to_linear(s_log):
        b = 64.
        ab = 90.
        w = 940.

        if s_log >= ab:
            linear = ((219. * (pow(10.,
                                   (((s_log - b) /
                                     (w - b) - 0.616596 - 0.03) / 0.432699)) -
                               0.037584) / 155.) * 0.9)
        else:
            linear = (((s_log - b) / (
                w - b) - 0.030001222851889303) / 3.53881278538813) * 0.9
        return linear

    def s_log3_to_linear(code_value):
        if code_value >= 171.2102946929:
            linear = (pow(10, ((code_value - 420) / 261.5)) *
                      (0.18 + 0.01) - 0.01)
        else:
            linear = (code_value - 95) * 0.01125000 / (171.2102946929 - 95)

        return linear

    cs.to_reference_transforms = []

    if transfer_function == 'S-Log1':
        data = array.array('f', '\0' * lut_resolution_1d * 4)
        for c in range(lut_resolution_1d):
            data[c] = s_log1_to_linear(1023 * c / (lut_resolution_1d - 1))

        lut = '%s_to_linear.spi1d' % transfer_function
        genlut.write_SPI_1d(
            os.path.join(lut_directory, lut),
            0,
            1,
            data,
            lut_resolution_1d,
            1)

        cs.to_reference_transforms.append({
            'type': 'lutFile',
            'path': lut,
            'interpolation': 'linear',
            'direction': 'forward'})
    elif transfer_function == 'S-Log2':
        data = array.array('f', '\0' * lut_resolution_1d * 4)
        for c in range(lut_resolution_1d):
            data[c] = s_log2_to_linear(1023 * c / (lut_resolution_1d - 1))

        lut = '%s_to_linear.spi1d' % transfer_function
        genlut.write_SPI_1d(
            os.path.join(lut_directory, lut),
            0,
            1,
            data,
            lut_resolution_1d,
            1)

        cs.to_reference_transforms.append({
            'type': 'lutFile',
            'path': lut,
            'interpolation': 'linear',
            'direction': 'forward'})
    elif transfer_function == 'S-Log3':
        data = array.array('f', '\0' * lut_resolution_1d * 4)
        for c in range(lut_resolution_1d):
            data[c] = s_log3_to_linear(1023 * c / (lut_resolution_1d - 1))

        lut = '%s_to_linear.spi1d' % transfer_function
        genlut.write_SPI_1d(
            os.path.join(lut_directory, lut),
            0,
            1,
            data,
            lut_resolution_1d,
            1)

        cs.to_reference_transforms.append({
            'type': 'lutFile',
            'path': lut,
            'interpolation': 'linear',
            'direction': 'forward'})

    if gamut == 'S-Gamut':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': mat44_from_mat33(
                [0.754338638, 0.133697046, 0.111968437,
                 0.021198141, 1.005410934, -0.026610548,
                 -0.009756991, 0.004508563, 1.005253201]),
            'direction': 'forward'})
    elif gamut == 'S-Gamut Daylight':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': mat44_from_mat33(
                [0.8764457030, 0.0145411681, 0.1090131290,
                 0.0774075345, 0.9529571767, -0.0303647111,
                 0.0573564351, -0.1151066335, 1.0577501984]),
            'direction': 'forward'})
    elif gamut == 'S-Gamut Tungsten':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': mat44_from_mat33(
                [1.0110238740, -0.1362526051, 0.1252287310,
                 0.1011994504, 0.9562196265, -0.0574190769,
                 0.0600766530, -0.1010185315, 1.0409418785]),
            'direction': 'forward'})
    elif gamut == 'S-Gamut3.Cine':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': mat44_from_mat33(
                [0.6387886672, 0.2723514337, 0.0888598992,
                 -0.0039159061, 1.0880732308, -0.0841573249,
                 -0.0299072021, -0.0264325799, 1.0563397820]),
            'direction': 'forward'})
    elif gamut == 'S-Gamut3':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': mat44_from_mat33(
                [0.7529825954, 0.1433702162, 0.1036471884,
                 0.0217076974, 1.0153188355, -0.0370265329,
                 -0.0094160528, 0.0033704179, 1.0060456349]),
            'direction': 'forward'})

    cs.from_reference_transforms = []
    return cs
コード例 #15
0
ファイル: gopro.py プロジェクト: MrKepzie/OpenColorIO-Configs
def create_protune(gamut,
                   transfer_function,
                   lut_directory,
                   lut_resolution_1d,
                   aliases):
    """
    Creates colorspace covering the conversion from ProTune to ACES, with various transfer 
    functions and encoding gamuts covered

    Parameters
    ----------
    gamut : str
        The name of the encoding gamut to use.
    transfer_function : str
        The name of the transfer function to use
    lut_directory : str or unicode 
        The directory to use when generating LUTs
    lut_resolution_1d : int
        The resolution of generated 1D LUTs
    aliases : list of str
        Aliases for this colorspace

    Returns
    -------
    ColorSpace
         A ColorSpace container class referencing the LUTs, matrices and identifying
         information for the requested colorspace.
    """

    # The gamut should be marked as experimental until  matrices are fully
    # verified.
    name = '%s - %s - Experimental' % (transfer_function, gamut)
    if transfer_function == '':
        name = 'Linear - %s - Experimental' % gamut
    if gamut == '':
        name = 'Curve - %s' % transfer_function

    cs = ColorSpace(name)
    cs.description = name
    cs.aliases = aliases
    cs.equality_group = ''
    cs.family = 'Input/GoPro'
    cs.is_data = False

    # A linear space needs allocation variables.
    if transfer_function == '':
        cs.allocation_type = ocio.Constants.ALLOCATION_LG2
        cs.allocation_vars = [-8, 5, 0.00390625]

    def protune_to_linear(normalized_code_value):
        c1 = 113.0
        c2 = 1.0
        c3 = 112.0
        linear = ((pow(c1, normalized_code_value) - c2) / c3)

        return linear

    cs.to_reference_transforms = []

    if transfer_function == 'Protune Flat':
        data = array.array('f', '\0' * lut_resolution_1d * 4)
        for c in range(lut_resolution_1d):
            data[c] = protune_to_linear(float(c) / (lut_resolution_1d - 1))

        lut = '%s_to_linear.spi1d' % transfer_function
        lut = sanitize(lut)
        genlut.write_SPI_1d(
            os.path.join(lut_directory, lut),
            0,
            1,
            data,
            lut_resolution_1d,
            1)

        cs.to_reference_transforms.append({
            'type': 'lutFile',
            'path': lut,
            'interpolation': 'linear',
            'direction': 'forward'})

    if gamut == 'Protune Native':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': [0.533448429, 0.32413911, 0.142412421, 0,
                       -0.050729924, 1.07572006, -0.024990416, 0,
                       0.071419661, -0.290521962, 1.219102381, 0,
                       0, 0, 0, 1],
            'direction': 'forward'})

    cs.from_reference_transforms = []
    return cs
コード例 #16
0
def create_matrix_plus_transfer_colorspace(
        name='matrix_plus_transfer',
        transfer_function_name='transfer_function',
        transfer_function=lambda x: x,
        lut_directory='/tmp',
        lut_resolution_1d=1024,
        from_reference_values=None,
        to_reference_values=None,
        aliases=None):
    """
    Creates a ColorSpace that uses transfer functions encoded as 1D LUTs and
    matrice

    Parameters
    ----------
    name : str, optional
        Aliases for this colorspace
    transfer_function_name : str, optional
        The name of the transfer function
    transfer_function : function, optional
        The transfer function to be evaluated
    lut_directory : str or unicode 
        The directory to use when generating LUTs
    lut_resolution_1d : int
        The resolution of generated 1D LUTs
    from_reference_values : list of matrices
        List of matrices to convert from the reference colorspace to this space        
    to_reference_values : list of matrices
        List of matrices to convert to the reference colorspace from this space
    aliases : list of str
        Aliases for this colorspace

    Returns
    -------
    ColorSpace
         A *Matrx and LUT1D Transform*-based ColorSpace representing a transfer 
         function and matrix
    """

    if from_reference_values is None:
        from_reference_values = []

    if to_reference_values is None:
        to_reference_values = []

    if aliases is None:
        aliases = []

    cs = ColorSpace(name)
    cs.description = 'The %s color space' % name
    cs.aliases = aliases
    cs.equality_group = name
    cs.family = 'Utility'
    cs.is_data = False

    # A linear space needs allocation variables.
    cs.allocation_type = ocio.Constants.ALLOCATION_UNIFORM
    cs.allocation_vars = [0, 1]

    # Sampling the transfer function.
    data = array.array('f', '\0' * lut_resolution_1d * 4)
    for c in range(lut_resolution_1d):
        data[c] = transfer_function(c / (lut_resolution_1d - 1))

    # Writing the sampled data to a *LUT*.
    lut = '%s_to_linear.spi1d' % transfer_function_name
    genlut.write_SPI_1d(os.path.join(lut_directory, lut), 0, 1, data,
                        lut_resolution_1d, 1)

    # Creating the *to_reference* transforms.
    cs.to_reference_transforms = []
    if to_reference_values:
        cs.to_reference_transforms.append({
            'type': 'lutFile',
            'path': lut,
            'interpolation': 'linear',
            'direction': 'forward'
        })

        for matrix in to_reference_values:
            cs.to_reference_transforms.append({
                'type':
                'matrix',
                'matrix':
                mat44_from_mat33(matrix),
                'direction':
                'forward'
            })

    # Creating the *from_reference* transforms.
    cs.from_reference_transforms = []
    if from_reference_values:
        for matrix in from_reference_values:
            cs.from_reference_transforms.append({
                'type':
                'matrix',
                'matrix':
                mat44_from_mat33(matrix),
                'direction':
                'forward'
            })

        cs.from_reference_transforms.append({
            'type': 'lutFile',
            'path': lut,
            'interpolation': 'linear',
            'direction': 'inverse'
        })

    return cs
コード例 #17
0
def create_red_log_film(gamut,
                        transfer_function,
                        lut_directory,
                        lut_resolution_1d,
                        aliases=None):
    """
    Creates colorspace covering the conversion from RED spaces to ACES, with various 
    transfer functions and encoding gamuts covered

    Parameters
    ----------
    gamut : str
        The name of the encoding gamut to use.
    transfer_function : str
        The name of the transfer function to use
    lut_directory : str or unicode 
        The directory to use when generating LUTs
    lut_resolution_1d : int
        The resolution of generated 1D LUTs
    aliases : list of str
        Aliases for this colorspace

    Returns
    -------
    ColorSpace
         A ColorSpace container class referencing the LUTs, matrices and identifying
         information for the requested colorspace.
    """

    if aliases is None:
        aliases = []

    name = '%s - %s' % (transfer_function, gamut)
    if transfer_function == '':
        name = 'Linear - %s' % gamut
    if gamut == '':
        name = 'Curve - %s' % transfer_function

    cs = ColorSpace(name)
    cs.description = name
    cs.aliases = aliases
    cs.equality_group = ''
    cs.family = 'Input/RED'
    cs.is_data = False

    # A linear space needs allocation variables
    if transfer_function == '':
        cs.allocation_type = ocio.Constants.ALLOCATION_LG2
        cs.allocation_vars = [-8, 5, 0.00390625]

    def cineon_to_linear(code_value):
        n_gamma = 0.6
        black_point = 95
        white_point = 685
        code_value_to_density = 0.002

        black_linear = pow(10, (black_point - white_point) * (
            code_value_to_density / n_gamma))
        code_linear = pow(10, (code_value - white_point) * (
            code_value_to_density / n_gamma))

        return (code_linear - black_linear) / (1 - black_linear)

    cs.to_reference_transforms = []

    if transfer_function == 'REDlogFilm':
        data = array.array('f', '\0' * lut_resolution_1d * 4)
        for c in range(lut_resolution_1d):
            data[c] = cineon_to_linear(1023 * c / (lut_resolution_1d - 1))

        lut = 'CineonLog_to_linear.spi1d'
        genlut.write_SPI_1d(
            os.path.join(lut_directory, lut),
            0,
            1,
            data,
            lut_resolution_1d,
            1)

        cs.to_reference_transforms.append({
            'type': 'lutFile',
            'path': lut,
            'interpolation': 'linear',
            'direction': 'forward'})

    if gamut == 'DRAGONcolor':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': mat44_from_mat33([0.532279, 0.376648, 0.091073,
                                        0.046344, 0.974513, -0.020860,
                                        -0.053976, -0.000320, 1.054267]),
            'direction': 'forward'})
    elif gamut == 'DRAGONcolor2':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': mat44_from_mat33([0.468452, 0.331484, 0.200064,
                                        0.040787, 0.857658, 0.101553,
                                        -0.047504, -0.000282, 1.047756]),
            'direction': 'forward'})
    elif gamut == 'REDcolor':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': mat44_from_mat33([0.451464, 0.388498, 0.160038,
                                        0.062716, 0.866790, 0.070491,
                                        -0.017541, 0.086921, 0.930590]),
            'direction': 'forward'})
    elif gamut == 'REDcolor2':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': mat44_from_mat33([0.480997, 0.402289, 0.116714,
                                        -0.004938, 1.000154, 0.004781,
                                        -0.105257, 0.025320, 1.079907]),
            'direction': 'forward'})
    elif gamut == 'REDcolor3':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': mat44_from_mat33([0.512136, 0.360370, 0.127494,
                                        0.070377, 0.903884, 0.025737,
                                        -0.020824, 0.017671, 1.003123]),
            'direction': 'forward'})
    elif gamut == 'REDcolor4':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': mat44_from_mat33([0.474202, 0.333677, 0.192121,
                                        0.065164, 0.836932, 0.097901,
                                        -0.019281, 0.016362, 1.002889]),
            'direction': 'forward'})

    cs.from_reference_transforms = []
    return cs
コード例 #18
0
def create_s_log(gamut, transfer_function, lut_directory, lut_resolution_1d,
                 aliases):
    """
    Creates colorspace covering the conversion from Sony spaces to ACES, with various 
    transfer functions and encoding gamuts covered

    Parameters
    ----------
    gamut : str
        The name of the encoding gamut to use.
    transfer_function : str
        The name of the transfer function to use
    lut_directory : str or unicode 
        The directory to use when generating LUTs
    lut_resolution_1d : int
        The resolution of generated 1D LUTs
    aliases : list of str
        Aliases for this colorspace

    Returns
    -------
    ColorSpace
         A ColorSpace container class referencing the LUTs, matrices and identifying
         information for the requested colorspace.
    """

    name = '%s - %s' % (transfer_function, gamut)
    if transfer_function == '':
        name = 'Linear - %s' % gamut
    if gamut == '':
        name = 'Curve - %s' % transfer_function

    cs = ColorSpace(name)
    cs.description = name
    cs.aliases = aliases
    cs.equality_group = ''
    cs.family = 'Input/Sony'
    cs.is_data = False

    if gamut and transfer_function:
        cs.aces_transform_id = 'IDT.Sony.%s_%s_10i.a1.v1' % (
            transfer_function.replace('-', ''), gamut.replace('-', '').replace(
                ' ', '_'))

    # A linear space needs allocation variables.
    if transfer_function == '':
        cs.allocation_type = ocio.Constants.ALLOCATION_LG2
        cs.allocation_vars = [-8, 5, 0.00390625]

    def s_log1_to_linear(s_log):
        b = 64.
        ab = 90.
        w = 940.

        if s_log >= ab:
            linear = ((pow(10., (
                ((s_log - b) /
                 (w - b) - 0.616596 - 0.03) / 0.432699)) - 0.037584) * 0.9)
        else:
            linear = (((s_log - b) /
                       (w - b) - 0.030001222851889303) / 5.) * 0.9
        return linear

    def s_log2_to_linear(s_log):
        b = 64.
        ab = 90.
        w = 940.

        if s_log >= ab:
            linear = ((219. * (pow(10., (
                ((s_log - b) /
                 (w - b) - 0.616596 - 0.03) / 0.432699)) - 0.037584) / 155.) *
                      0.9)
        else:
            linear = (
                ((s_log - b) /
                 (w - b) - 0.030001222851889303) / 3.53881278538813) * 0.9
        return linear

    def s_log3_to_linear(code_value):
        if code_value >= 171.2102946929:
            linear = (pow(10,
                          ((code_value - 420) / 261.5)) * (0.18 + 0.01) - 0.01)
        else:
            linear = (code_value - 95) * 0.01125000 / (171.2102946929 - 95)

        return linear

    cs.to_reference_transforms = []

    if transfer_function == 'S-Log1':
        data = array.array('f', '\0' * lut_resolution_1d * 4)
        for c in range(lut_resolution_1d):
            data[c] = s_log1_to_linear(1023 * c / (lut_resolution_1d - 1))

        lut = '%s_to_linear.spi1d' % transfer_function
        genlut.write_SPI_1d(os.path.join(lut_directory, lut), 0, 1, data,
                            lut_resolution_1d, 1)

        cs.to_reference_transforms.append({
            'type': 'lutFile',
            'path': lut,
            'interpolation': 'linear',
            'direction': 'forward'
        })
    elif transfer_function == 'S-Log2':
        data = array.array('f', '\0' * lut_resolution_1d * 4)
        for c in range(lut_resolution_1d):
            data[c] = s_log2_to_linear(1023 * c / (lut_resolution_1d - 1))

        lut = '%s_to_linear.spi1d' % transfer_function
        genlut.write_SPI_1d(os.path.join(lut_directory, lut), 0, 1, data,
                            lut_resolution_1d, 1)

        cs.to_reference_transforms.append({
            'type': 'lutFile',
            'path': lut,
            'interpolation': 'linear',
            'direction': 'forward'
        })
    elif transfer_function == 'S-Log3':
        data = array.array('f', '\0' * lut_resolution_1d * 4)
        for c in range(lut_resolution_1d):
            data[c] = s_log3_to_linear(1023 * c / (lut_resolution_1d - 1))

        lut = '%s_to_linear.spi1d' % transfer_function
        genlut.write_SPI_1d(os.path.join(lut_directory, lut), 0, 1, data,
                            lut_resolution_1d, 1)

        cs.to_reference_transforms.append({
            'type': 'lutFile',
            'path': lut,
            'interpolation': 'linear',
            'direction': 'forward'
        })

    if gamut == 'S-Gamut':
        cs.to_reference_transforms.append({
            'type':
            'matrix',
            'matrix':
            mat44_from_mat33([
                0.754338638, 0.133697046, 0.111968437, 0.021198141,
                1.005410934, -0.026610548, -0.009756991, 0.004508563,
                1.005253201
            ]),
            'direction':
            'forward'
        })
    elif gamut == 'S-Gamut Daylight':
        cs.to_reference_transforms.append({
            'type':
            'matrix',
            'matrix':
            mat44_from_mat33([
                0.8764457030, 0.0145411681, 0.1090131290, 0.0774075345,
                0.9529571767, -0.0303647111, 0.0573564351, -0.1151066335,
                1.0577501984
            ]),
            'direction':
            'forward'
        })
    elif gamut == 'S-Gamut Tungsten':
        cs.to_reference_transforms.append({
            'type':
            'matrix',
            'matrix':
            mat44_from_mat33([
                1.0110238740, -0.1362526051, 0.1252287310, 0.1011994504,
                0.9562196265, -0.0574190769, 0.0600766530, -0.1010185315,
                1.0409418785
            ]),
            'direction':
            'forward'
        })
    elif gamut == 'S-Gamut3.Cine':
        cs.to_reference_transforms.append({
            'type':
            'matrix',
            'matrix':
            mat44_from_mat33([
                0.6387886672, 0.2723514337, 0.0888598992, -0.0039159061,
                1.0880732308, -0.0841573249, -0.0299072021, -0.0264325799,
                1.0563397820
            ]),
            'direction':
            'forward'
        })
    elif gamut == 'S-Gamut3':
        cs.to_reference_transforms.append({
            'type':
            'matrix',
            'matrix':
            mat44_from_mat33([
                0.7529825954, 0.1433702162, 0.1036471884, 0.0217076974,
                1.0153188355, -0.0370265329, -0.0094160528, 0.0033704179,
                1.0060456349
            ]),
            'direction':
            'forward'
        })

    cs.from_reference_transforms = []
    return cs
コード例 #19
0
def create_protune(gamut, transfer_function, lut_directory, lut_resolution_1d,
                   aliases):
    """
    Creates colorspace covering the conversion from ProTune to ACES, with various transfer 
    functions and encoding gamuts covered

    Parameters
    ----------
    gamut : str
        The name of the encoding gamut to use.
    transfer_function : str
        The name of the transfer function to use
    lut_directory : str or unicode 
        The directory to use when generating LUTs
    lut_resolution_1d : int
        The resolution of generated 1D LUTs
    aliases : list of str
        Aliases for this colorspace

    Returns
    -------
    ColorSpace
         A ColorSpace container class referencing the LUTs, matrices and identifying
         information for the requested colorspace.
    """

    # The gamut should be marked as experimental until  matrices are fully
    # verified.
    name = '%s - %s - Experimental' % (transfer_function, gamut)
    if transfer_function == '':
        name = 'Linear - %s - Experimental' % gamut
    if gamut == '':
        name = 'Curve - %s' % transfer_function

    cs = ColorSpace(name)
    cs.description = name
    cs.aliases = aliases
    cs.equality_group = ''
    cs.family = 'Input/GoPro'
    cs.is_data = False

    # A linear space needs allocation variables.
    if transfer_function == '':
        cs.allocation_type = ocio.Constants.ALLOCATION_LG2
        cs.allocation_vars = [-8, 5, 0.00390625]

    def protune_to_linear(normalized_code_value):
        c1 = 113.0
        c2 = 1.0
        c3 = 112.0
        linear = ((pow(c1, normalized_code_value) - c2) / c3)

        return linear

    cs.to_reference_transforms = []

    if transfer_function == 'Protune Flat':
        data = array.array('f', '\0' * lut_resolution_1d * 4)
        for c in range(lut_resolution_1d):
            data[c] = protune_to_linear(float(c) / (lut_resolution_1d - 1))

        lut = '%s_to_linear.spi1d' % transfer_function
        lut = sanitize(lut)
        genlut.write_SPI_1d(os.path.join(lut_directory, lut), 0, 1, data,
                            lut_resolution_1d, 1)

        cs.to_reference_transforms.append({
            'type': 'lutFile',
            'path': lut,
            'interpolation': 'linear',
            'direction': 'forward'
        })

    if gamut == 'Protune Native':
        cs.to_reference_transforms.append({
            'type':
            'matrix',
            'matrix': [
                0.533448429, 0.32413911, 0.142412421, 0, -0.050729924,
                1.07572006, -0.024990416, 0, 0.071419661, -0.290521962,
                1.219102381, 0, 0, 0, 0, 1
            ],
            'direction':
            'forward'
        })

    cs.from_reference_transforms = []
    return cs
コード例 #20
0
ファイル: canon.py プロジェクト: Wizard-collab/Wizard
def create_c_log(gamut, transfer_function, lut_directory, lut_resolution_1d,
                 aliases):
    """
    Creates a colorspace covering the conversion from CLog to ACES, with
    various transfer functions and encoding gamuts covered.

    Parameters
    ----------
    gamut : str
        The name of the encoding gamut to use.
    transfer_function : str
        The name of the transfer function to use
    lut_directory : str or unicode 
        The directory to use when generating LUTs
    lut_resolution_1d : int
        The resolution of generated 1D LUTs
    aliases : list of str
        Aliases for this colorspace.

    Returns
    -------
    ColorSpace
         A ColorSpace container class referencing the LUTs, matrices and
         identifying information for the requested colorspace.
    """

    name = '%s - %s' % (transfer_function, gamut)
    if transfer_function == '':
        name = 'Linear - Canon %s' % gamut
    if gamut == '':
        name = 'Curve - %s' % transfer_function

    cs = ColorSpace(name)
    cs.description = name
    cs.aliases = aliases
    cs.equality_group = ''
    cs.family = 'Input/Canon'
    cs.is_data = False

    # A linear space needs allocation variables.
    if transfer_function == '':
        cs.allocation_type = ocio.Constants.ALLOCATION_LG2
        cs.allocation_vars = [-8, 5, 0.00390625]

    def legal_to_full(code_value):
        return (code_value - 64) / (940 - 64)

    def c_log_to_linear(code_value):
        # log = fullToLegal(c1 * log10(c2*linear + 1) + c3)
        # linear = (pow(10, (legalToFul(log) - c3)/c1) - 1)/c2
        c1 = 0.529136
        c2 = 10.1596
        c3 = 0.0730597

        linear = (pow(10, (legal_to_full(code_value) - c3) / c1) - 1) / c2
        linear *= 0.9

        return linear

    def c_log2_to_linear(code_value):
        # log = fullToLegal(c1 * log10(c2*linear + 1) + c3)
        # linear = (pow(10, (legalToFul(log) - c3)/c1) - 1)/c2
        c1 = 0.281863093
        c2 = 87.09937546
        c3 = 0.035388128

        linear = (pow(10, (legal_to_full(code_value) - c3) / c1) - 1) / c2
        linear *= 0.9

        return linear

    def c_log3_to_linear(code_value):
        # if(clog3_ire < 0.04076162)
        #     out = -( pow( 10, ( 0.07623209 - clog3_ire ) / 0.42889912 )
        #     - 1 ) / 14.98325;
        # else if(clog3_ire <= 0.105357102)
        #     out = ( clog3_ire - 0.073059361 ) / 2.3069815;
        # else
        #     out = ( pow( 10, ( clog3_ire - 0.069886632 ) / 0.42889912 )
        #     - 1 ) / 14.98325;

        c1 = 0.42889912
        c2 = 14.98325
        c3 = 0.069886632

        c4 = 0.04076162
        c5 = 0.07623209

        c6 = 0.105357102
        c7 = 0.073059361
        c8 = 2.3069815

        clog3_ire = legal_to_full(code_value)

        if clog3_ire < c4:
            linear = -(pow(10, (c5 - clog3_ire) / c1) - 1) / c2
        elif clog3_ire <= c6:
            linear = (clog3_ire - c7) / c8
        else:
            linear = (pow(10, (clog3_ire - c3) / c1) - 1) / c2
        linear *= 0.9

        return linear

    cs.to_reference_transforms = []

    if transfer_function:
        if transfer_function == 'Canon-Log':
            data = array.array('f', '\0' * lut_resolution_1d * 4)
            for c in range(lut_resolution_1d):
                data[c] = c_log_to_linear(1023 * c / (lut_resolution_1d - 1))
        elif transfer_function == 'Canon-Log2':
            data = array.array('f', '\0' * lut_resolution_1d * 4)
            for c in range(lut_resolution_1d):
                data[c] = c_log2_to_linear(1023 * c / (lut_resolution_1d - 1))
        elif transfer_function == 'Canon-Log3':
            data = array.array('f', '\0' * lut_resolution_1d * 4)
            for c in range(lut_resolution_1d):
                data[c] = c_log3_to_linear(1023 * c / (lut_resolution_1d - 1))

        lut = '%s_to_linear.spi1d' % transfer_function
        genlut.write_SPI_1d(os.path.join(lut_directory, lut), 0, 1, data,
                            lut_resolution_1d, 1)

        cs.to_reference_transforms.append({
            'type': 'lutFile',
            'path': lut,
            'interpolation': 'linear',
            'direction': 'forward'
        })

    if gamut == 'Rec. 709 Daylight':
        cs.to_reference_transforms.append({
            'type':
            'matrix',
            'matrix': [
                0.561538969, 0.402060105, 0.036400926, 0, 0.092739623,
                0.924121198, -0.016860821, 0, 0.084812961, 0.006373835,
                0.908813204, 0, 0, 0, 0, 1
            ],
            'direction':
            'forward'
        })
    elif gamut == 'Rec. 709 Tungsten':
        cs.to_reference_transforms.append({
            'type':
            'matrix',
            'matrix': [
                0.566996399, 0.365079418, 0.067924183, 0, 0.070901044,
                0.880331008, 0.048767948, 0, 0.073013542, -0.066540862,
                0.99352732, 0, 0, 0, 0, 1
            ],
            'direction':
            'forward'
        })
    elif gamut == 'DCI-P3 Daylight':
        cs.to_reference_transforms.append({
            'type':
            'matrix',
            'matrix': [
                0.607160575, 0.299507286, 0.093332140, 0, 0.004968120,
                1.050982224, -0.055950343, 0, -0.007839939, 0.000809127,
                1.007030813, 0, 0, 0, 0, 1
            ],
            'direction':
            'forward'
        })
    elif gamut == 'DCI-P3 Tungsten':
        cs.to_reference_transforms.append({
            'type':
            'matrix',
            'matrix': [
                0.650279125, 0.253880169, 0.095840706, 0, -0.026137986,
                1.017900530, 0.008237456, 0, 0.007757558, -0.063081669,
                1.055324110, 0, 0, 0, 0, 1
            ],
            'direction':
            'forward'
        })
    elif gamut == 'Cinema Gamut Daylight':
        cs.to_reference_transforms.append({
            'type':
            'matrix',
            'matrix': [
                0.763064455, 0.149021161, 0.087914384, 0, 0.003657457,
                1.10696038, -0.110617837, 0, -0.009407794, -0.218383305,
                1.227791099, 0, 0, 0, 0, 1
            ],
            'direction':
            'forward'
        })
    elif gamut == 'Cinema Gamut Tungsten':
        cs.to_reference_transforms.append({
            'type':
            'matrix',
            'matrix': [
                0.817416293, 0.090755698, 0.091828009, 0, -0.035361374,
                1.065690585, -0.030329211, 0, 0.010390366, -0.299271107,
                1.288880741, 0, 0, 0, 0, 1
            ],
            'direction':
            'forward'
        })
    elif gamut == 'Rec. 2020 Daylight':
        cs.to_reference_transforms.append({
            'type':
            'matrix',
            'matrix': [
                0.678891151, 0.158868422, 0.162240427, 0, 0.045570831,
                0.860712772, 0.093716397, 0, -0.000485710, 0.025060196,
                0.975425515, 0, 0, 0, 0, 1
            ],
            'direction':
            'forward'
        })
    elif gamut == 'Rec. 2020 Tungsten':
        cs.to_reference_transforms.append({
            'type':
            'matrix',
            'matrix': [
                0.724488568, 0.115140904, 0.160370529, 0, 0.010659276,
                0.839605344, 0.149735380, 0, 0.014560161, 0.028562057,
                1.014001897, 0, 0, 0, 0, 1
            ],
            'direction':
            'forward'
        })

    cs.from_reference_transforms = []
    return cs
コード例 #21
0
def create_matrix_plus_transfer_colorspace(
        name='matrix_plus_transfer',
        transfer_function_name='transfer_function',
        transfer_function=lambda x: x,
        lut_directory='/tmp',
        lut_resolution_1d=1024,
        from_reference_values=None,
        to_reference_values=None,
        aliases=None):
    """
    Creates a ColorSpace that uses transfer functions encoded as 1D LUTs and
    matrice

    Parameters
    ----------
    name : str, optional
        Aliases for this colorspace
    transfer_function_name : str, optional
        The name of the transfer function
    transfer_function : function, optional
        The transfer function to be evaluated
    lut_directory : str or unicode 
        The directory to use when generating LUTs
    lut_resolution_1d : int
        The resolution of generated 1D LUTs
    from_reference_values : list of matrices
        List of matrices to convert from the reference colorspace to this space        
    to_reference_values : list of matrices
        List of matrices to convert to the reference colorspace from this space
    aliases : list of str
        Aliases for this colorspace

    Returns
    -------
    ColorSpace
         A *Matrx and LUT1D Transform*-based ColorSpace representing a transfer 
         function and matrix
    """

    if from_reference_values is None:
        from_reference_values = []

    if to_reference_values is None:
        to_reference_values = []

    if aliases is None:
        aliases = []

    cs = ColorSpace(name)
    cs.description = 'The %s color space' % name
    cs.aliases = aliases
    cs.equality_group = name
    cs.family = 'Utility'
    cs.is_data = False

    # A linear space needs allocation variables.
    cs.allocation_type = ocio.Constants.ALLOCATION_UNIFORM
    cs.allocation_vars = [0, 1]

    # Sampling the transfer function.
    data = array.array('f', '\0' * lut_resolution_1d * 4)
    for c in range(lut_resolution_1d):
        data[c] = transfer_function(c / (lut_resolution_1d - 1))

    # Writing the sampled data to a *LUT*.
    lut = '%s_to_linear.spi1d' % transfer_function_name
    genlut.write_SPI_1d(
        os.path.join(lut_directory, lut),
        0,
        1,
        data,
        lut_resolution_1d,
        1)

    # Creating the *to_reference* transforms.
    cs.to_reference_transforms = []
    if to_reference_values:
        cs.to_reference_transforms.append({
            'type': 'lutFile',
            'path': lut,
            'interpolation': 'linear',
            'direction': 'forward'})

        for matrix in to_reference_values:
            cs.to_reference_transforms.append({
                'type': 'matrix',
                'matrix': mat44_from_mat33(matrix),
                'direction': 'forward'})

    # Creating the *from_reference* transforms.
    cs.from_reference_transforms = []
    if from_reference_values:
        for matrix in from_reference_values:
            cs.from_reference_transforms.append({
                'type': 'matrix',
                'matrix': mat44_from_mat33(matrix),
                'direction': 'forward'})

        cs.from_reference_transforms.append({
            'type': 'lutFile',
            'path': lut,
            'interpolation': 'linear',
            'direction': 'inverse'})

    return cs
コード例 #22
0
def create_log_c(gamut, transfer_function, exposure_index, lut_directory,
                 lut_resolution_1d, aliases):
    """
    Creates a colorspace covering the conversion from LogC to ACES, with
    various transfer functions and encoding gamuts covered.

    Parameters
    ----------
    gamut : str
        The name of the encoding gamut to use.
    transfer_function : str
        The name of the transfer function to use.
    exposure_index : str
        The exposure index to use.
    lut_directory : str or unicode 
        The directory to use when generating LUTs.
    lut_resolution_1d : int
        The resolution of generated 1D LUTs.
    aliases : list of str
        Aliases for this colorspace.

    Returns
    -------
    ColorSpace
         A ColorSpace container class referencing the LUTs, matrices and
         identifying information for the requested colorspace.
    """

    name = '%s (EI%s) - %s' % (transfer_function, exposure_index, gamut)
    if transfer_function == '':
        name = 'Linear - ALEXA %s' % gamut
    if gamut == '':
        name = 'Curve - %s (EI%s)' % (transfer_function, exposure_index)

    cs = ColorSpace(name)
    cs.description = name
    cs.aliases = aliases
    cs.equality_group = ''
    cs.family = 'Input/ARRI'
    cs.is_data = False

    if gamut and transfer_function:
        cs.aces_transform_id = ('IDT.ARRI.Alexa-v3-logC-EI%s.a1.v1' %
                                exposure_index)

    # A linear space needs allocation variables.
    if transfer_function == '':
        cs.allocation_type = ocio.Constants.ALLOCATION_LG2
        cs.allocation_vars = [-8, 5, 0.00390625]

    IDT_maker_version = '0.09'

    nominal_exposure_index = 400
    black_signal = 16 / 4095  # 0.003907
    mid_gray_signal = 0.01
    encoding_gain = 500 / 1023 * 0.525  # 0.256598
    encoding_offset = 400 / 1023  # 0.391007

    def gain_for_EI(ei):
        return (math.log(ei / nominal_exposure_index) / math.log(2) *
                (0.89 - 1) / 3 + 1) * encoding_gain

    def hermite_weights(x, x1, x2):
        d = x2 - x1
        s = (x - x1) / d
        s2 = 1 - s
        return [(1 + 2 * s) * s2 * s2, (3 - 2 * s) * s * s, d * s * s2 * s2,
                -d * s * s * s2]

    def normalized_sensor_to_relative_exposure(ns, ei):
        return (ns - black_signal) * (
            0.18 / (mid_gray_signal * nominal_exposure_index / ei))

    def normalized_log_c_to_linear(code_value, exposure_index):
        cut = 1 / 9
        slope = 1 / (cut * math.log(10))
        offset = math.log10(cut) - slope * cut
        gain = exposure_index / nominal_exposure_index
        gray = mid_gray_signal / gain
        # The higher the EI, the lower the gamma.
        enc_gain = (math.log(gain) / math.log(2) *
                    (0.89 - 1) / 3 + 1) * encoding_gain
        enc_offset = encoding_offset
        for i in range(0, 3):
            nz = ((95 / 1023 - enc_offset) / enc_gain - offset) / slope
            enc_offset = encoding_offset - math.log10(1 + nz) * enc_gain
        # see if we need to bring the hermite spline into play
        xm = math.log10((1 - black_signal) / gray + nz) * enc_gain + enc_offset
        if xm > 1.0:
            if code_value > 0.8:
                hw = hermite_weights(code_value, 0.8, 1)
                d = 0.2 / (xm - 0.8)
                v = [0.8, xm, 1.0, 1 / (d * d)]
                # reconstruct code value from spline
                code_value = 0
                for i in range(0, 4):
                    code_value += (hw[i] * v[i])
        code_value = (code_value - enc_offset) / enc_gain
        # compute normalized sensor value
        ns = pow(10, code_value) if (code_value - offset) / slope > cut else (
            code_value - offset) / slope
        ns = (ns - nz) * gray + black_signal
        return normalized_sensor_to_relative_exposure(ns, exposure_index)

    cs.to_reference_transforms = []

    if transfer_function == 'V3 LogC':
        data = array.array('f', '\0' * lut_resolution_1d * 4)
        for c in range(lut_resolution_1d):
            data[c] = normalized_log_c_to_linear(c / (lut_resolution_1d - 1),
                                                 int(exposure_index))

        lut = '%s_to_linear.spi1d' % ('%s_%s' %
                                      (transfer_function, exposure_index))

        lut = sanitize(lut)

        genlut.write_SPI_1d(os.path.join(lut_directory, lut), 0, 1, data,
                            lut_resolution_1d, 1)

        cs.to_reference_transforms.append({
            'type': 'lutFile',
            'path': lut,
            'interpolation': 'linear',
            'direction': 'forward'
        })

    if gamut == 'Wide Gamut':
        cs.to_reference_transforms.append({
            'type':
            'matrix',
            'matrix':
            mat44_from_mat33([
                0.680206, 0.236137, 0.083658, 0.085415, 1.017471, -0.102886,
                0.002057, -0.062563, 1.060506
            ]),
            'direction':
            'forward'
        })

    cs.from_reference_transforms = []
    return cs
コード例 #23
0
def create_protune(gamut,
                   transfer_function,
                   lut_directory,
                   lut_resolution_1d,
                   aliases):
    """
    Object description.

    Protune to ACES.

    Parameters
    ----------
    parameter : type
        Parameter description.

    Returns
    -------
    type
         Return value description.
    """

    # The gamut should be marked as experimental until  matrices are fully
    # verified.
    name = '%s - %s - Experimental' % (transfer_function, gamut)
    if transfer_function == '':
        name = 'Linear - %s - Experimental' % gamut
    if gamut == '':
        name = 'Curve - %s' % transfer_function

    cs = ColorSpace(name)
    cs.description = name
    cs.aliases = aliases
    cs.equality_group = ''
    cs.family = 'Input/GoPro'
    cs.is_data = False

    # A linear space needs allocation variables.
    if transfer_function == '':
        cs.allocation_type = ocio.Constants.ALLOCATION_LG2
        cs.allocation_vars = [-8, 5, 0.00390625]

    def protune_to_linear(normalized_code_value):
        c1 = 113.0
        c2 = 1.0
        c3 = 112.0
        linear = ((pow(c1, normalized_code_value) - c2) / c3)

        return linear

    cs.to_reference_transforms = []

    if transfer_function == 'Protune Flat':
        data = array.array('f', '\0' * lut_resolution_1d * 4)
        for c in range(lut_resolution_1d):
            data[c] = protune_to_linear(float(c) / (lut_resolution_1d - 1))

        lut = '%s_to_linear.spi1d' % transfer_function
        lut = sanitize(lut)
        genlut.write_SPI_1d(
            os.path.join(lut_directory, lut),
            0,
            1,
            data,
            lut_resolution_1d,
            1)

        cs.to_reference_transforms.append({
            'type': 'lutFile',
            'path': lut,
            'interpolation': 'linear',
            'direction': 'forward'})

    if gamut == 'Protune Native':
        cs.to_reference_transforms.append({
            'type': 'matrix',
            'matrix': [0.533448429, 0.32413911, 0.142412421, 0,
                       -0.050729924, 1.07572006, -0.024990416, 0,
                       0.071419661, -0.290521962, 1.219102381, 0,
                       0, 0, 0, 1],
            'direction': 'forward'})

    cs.from_reference_transforms = []
    return cs
コード例 #24
0
def create_log_c(gamut, transfer_function, exposure_index, lut_directory,
                 lut_resolution_1d, aliases):
    """
    Creates colorspace covering the conversion from LogC to ACES, with various transfer 
    functions and encoding gamuts covered

    Parameters
    ----------
    gamut : str
        The name of the encoding gamut to use.
    transfer_function : str
        The name of the transfer function to use
    exposure_index : str
        The exposure index to use
    lut_directory : str or unicode 
        The directory to use when generating LUTs
    lut_resolution_1d : int
        The resolution of generated 1D LUTs
    aliases : list of str
        Aliases for this colorspace

    Returns
    -------
    ColorSpace
         A ColorSpace container class referencing the LUTs, matrices and identifying
         information for the requested colorspace.
    """

    name = '%s (EI%s) - %s' % (transfer_function, exposure_index, gamut)
    if transfer_function == '':
        name = 'Linear - ARRI %s' % gamut
    if gamut == '':
        name = 'Curve - %s (EI%s)' % (transfer_function, exposure_index)

    cs = ColorSpace(name)
    cs.description = name
    cs.aliases = aliases
    cs.equality_group = ''
    cs.family = 'Input/ARRI'
    cs.is_data = False

    if gamut and transfer_function:
        cs.aces_transform_id = ('IDT.ARRI.Alexa-v3-logC-EI%s.a1.v1' %
                                exposure_index)

    # A linear space needs allocation variables.
    if transfer_function == '':
        cs.allocation_type = ocio.Constants.ALLOCATION_LG2
        cs.allocation_vars = [-8, 5, 0.00390625]

    IDT_maker_version = '0.08'

    nominal_EI = 400
    black_signal = 0.003907
    mid_gray_signal = 0.01
    encoding_gain = 0.256598
    encoding_offset = 0.391007

    def gain_for_EI(EI):
        return (math.log(EI / nominal_EI) / math.log(2) *
                (0.89 - 1) / 3 + 1) * encoding_gain

    def log_c_inverse_parameters_for_EI(EI):
        cut = 1 / 9
        slope = 1 / (cut * math.log(10))
        offset = math.log10(cut) - slope * cut
        gain = EI / nominal_EI
        gray = mid_gray_signal / gain
        # The higher the EI, the lower the gamma.
        enc_gain = gain_for_EI(EI)
        enc_offset = encoding_offset
        for i in range(0, 3):
            nz = ((95 / 1023 - enc_offset) / enc_gain - offset) / slope
            enc_offset = encoding_offset - math.log10(1 + nz) * enc_gain

        a = 1 / gray
        b = nz - black_signal / gray
        e = slope * a * enc_gain
        f = enc_gain * (slope * b + offset) + enc_offset

        # Ensuring we can return relative exposure.
        s = 4 / (0.18 * EI)
        t = black_signal
        b += a * t
        a *= s
        f += e * t
        e *= s

        return {
            'a': a,
            'b': b,
            'cut': (cut - b) / a,
            'c': enc_gain,
            'd': enc_offset,
            'e': e,
            'f': f
        }

    def normalized_log_c_to_linear(code_value, exposure_index):
        p = log_c_inverse_parameters_for_EI(exposure_index)
        breakpoint = p['e'] * p['cut'] + p['f']
        if code_value > breakpoint:
            linear = ((pow(10,
                           (code_value - p['d']) / p['c']) - p['b']) / p['a'])
        else:
            linear = (code_value - p['f']) / p['e']
        return linear

    cs.to_reference_transforms = []

    if transfer_function == 'V3 LogC':
        data = array.array('f', '\0' * lut_resolution_1d * 4)
        for c in range(lut_resolution_1d):
            data[c] = normalized_log_c_to_linear(c / (lut_resolution_1d - 1),
                                                 int(exposure_index))

        lut = '%s_to_linear.spi1d' % ('%s_%s' %
                                      (transfer_function, exposure_index))

        lut = sanitize(lut)

        genlut.write_SPI_1d(os.path.join(lut_directory, lut), 0, 1, data,
                            lut_resolution_1d, 1)

        cs.to_reference_transforms.append({
            'type': 'lutFile',
            'path': lut,
            'interpolation': 'linear',
            'direction': 'forward'
        })

    if gamut == 'Wide Gamut':
        cs.to_reference_transforms.append({
            'type':
            'matrix',
            'matrix':
            mat44_from_mat33([
                0.680206, 0.236137, 0.083658, 0.085415, 1.017471, -0.102886,
                0.002057, -0.062563, 1.060506
            ]),
            'direction':
            'forward'
        })

    cs.from_reference_transforms = []
    return cs