コード例 #1
0
def aco(graph):
    """Ant Colony Optimisation Algorithm
    
    Tests out multiple configurations for ACO parameters"""

    configs = [
        #rho, q, alpha, beta, limit
        [.03, 1, 1, 3, 500],
        [.03, 5, 1, 3, 500],
        [.03, 10, 1, 3, 500],
        [.03, 25, 1, 3, 500],
        [.06, 1, 1, 3, 500],
        [.06, 5, 1, 3, 500],
        [.06, 10, 1, 3, 500],
        [.06, 25, 1, 3, 500]
    ]

    for index, config in enumerate(configs):
        print("Test:", index + 1)
        solver = acopy.Solver(rho=config[0], q=config[1])
        timer = acopy.plugins.Timer()
        solver.add_plugin(timer)
        colony = acopy.Colony(alpha=config[2], beta=config[3])
        tour = solver.solve(graph, colony, limit=config[4])
        print("Total time taken:", timer.duration)
        print("Time per iteration:", timer.time_per_iter)
        print("Cost of tour:", tour.cost)
        print("Tour:", tour.path)
        print("")
コード例 #2
0
ファイル: solver.py プロジェクト: gzhou2142/cs170proj
def ant_colony_tour(G, start):
    solver = aco.Solver(rho=0.01, q=1)
    colony = aco.Colony(alpha=1, beta=5)
    tour = solver.solve(G, colony, limit=500, gen_size=1000)
    tour_list = tour.nodes
    start_index = tour_list.index(int(start))
    tour_list = tour_list[start_index:] + tour_list[:start_index] + [
        int(start)
    ]
    return tour_list
コード例 #3
0
def solve_aco_tsp(resPath):

    print(resPath)
    solver = acopy.Solver(rho=.03, q=.5)
    colony = acopy.Colony(alpha=1, beta=3)

    problem = tsplib95.load_problem(resPath)
    G = problem.get_graph()

    tour = solver.solve(G, colony, limit=100)

    return tour
コード例 #4
0
 def run(self):
     for i in range(self.numExecution):
         solver = acopy.Solver(rho=.03, q=1)
         time = acopy.plugins.Timer()
         solver.add_plugin(time)
         colony = acopy.Colony(alpha=1, beta=3)
         tour = solver.solve(self.nodes, colony, limit=100)
         self.bestSolutions.append(tour.nodes)
         self.bestDistances.append(tour.cost)
         self.executionTimes.append(time.duration)
         if self.debug:
             print(
                 f"[{i}] Execution Time: {time.duration}; Distance: {tour.cost}; ",
                 end=" ")
             print(tour.nodes)
コード例 #5
0
ファイル: ACOpy.py プロジェクト: baobabsoluciones/corn
 def solve(self, options: dict):
     solver = aco.Solver(rho=options.get("rho", 0.03),
                         q=options.get("q", 1))
     timeLimit_plugin = aco.plugins.TimeLimit(options.get("timeLimit", 10))
     solver.add_plugin(timeLimit_plugin)
     colony = aco.Colony(alpha=options.get("alpha", 1),
                         beta=options.get("beta", 3))
     problem = self.instance.to_tsplib95()
     G = problem.get_graph()
     tour = solver.solve(G, colony, limit=100)
     solution = TupList(
         dict(pos=pos, node=el) for pos, el in enumerate(tour.nodes))
     self.solution = Solution(dict(route=solution))
     return dict(status_sol=SOLUTION_STATUS_FEASIBLE,
                 status=STATUS_UNDEFINED)
コード例 #6
0
 def Ant_Colony_solver(self, G_prime, start_index, cluster_center_drop_off):
     # alpha = how much pheromone matters
     # beta = how much distance matters
     colony = acopy.Colony(alpha=0.6, beta=6)
     solver = acopy.Solver(rho=.6, q=1)
     ant_tour = solver.solve(G_prime, colony, limit=10)
     ant_tour_nodes = ant_tour.nodes
     cost = ant_tour.cost
     if (ant_tour_nodes.count(start_index) == 1):
         ant_start = ant_tour_nodes.index(start_index)
         ant_tour_nodes = ant_tour_nodes[
             ant_start:] + ant_tour_nodes[:ant_start] + [start_index]
     tour_ant = [(ant_tour_nodes[i], ant_tour_nodes[i + 1])
                 for i in range(len(ant_tour_nodes) - 1)]
     rao_tour_2 = compute_tour_paths(self.G, tour_ant)
     rao_tour_2 = [
         rao_tour_2[i] for i in range(len(rao_tour_2) - 1)
         if rao_tour_2[i] != rao_tour_2[i + 1]
     ] + [start_index]
     cost = self.faster_cost_solution(rao_tour_2, cluster_center_drop_off)
     return rao_tour_2, cost
コード例 #7
0
import tsplib95
import acopy

# setting up the environment
solver = acopy.Solver(rho=.03, q=1)
colony = acopy.Colony(alpha=1, beta=3)

# adding a timer to record the total time to find the best path
timer = acopy.plugins.Timer()
solver.add_plugin(timer)

# setting it up so that is prints out each iteration
printout = acopy.plugins.Printout()
solver.add_plugin(printout)

problem = tsplib95.load('problems/pr124.tsp.txt')  # loading in the dataset
G = problem.get_graph()  # changing the dataset so that it can be used by the algorithm

tour = solver.solve(G, colony, limit=100)  #running the algorithm

# printing out relevant information
print("Shortest tour: ", tour.cost)
print("Best tour: ", tour.nodes)
print("Time to complete: ", timer.duration)

コード例 #8
0
ファイル: test_acopy.py プロジェクト: Ganariya/kiacopy
import acopy
import kiacopy
import tsplib95

from kiacopy.parameter import Parameter

logger = getLogger()
logger.addHandler(StreamHandler())
logger.setLevel(DEBUG)

graph_name: str = 'gr17.tsp'
problem = tsplib95.load_problem(graph_name)
G = problem.get_graph()

solver = acopy.Solver()
colony = acopy.Colony()

solver.solve(G, colony, limit=300)

config_path = os.path.join(os.path.dirname(__file__), 'config', 'normal.yaml')
parameter: Parameter = Parameter.create(config_path)

solver = kiacopy.Solver(parameter=parameter)
recorder = kiacopy.plugins.StatsRecorder('results')
plotter = kiacopy.utils.plot.Plotter(stats=recorder.stats)
# drawer = kiacopy.plugins.DrawGraph(problem=problem, is_each=True, is_label=True, is_consecutive=True)
converter = kiacopy.plugins.ConvertStateToJson(save_path='results')
solver.add_plugins(recorder, converter)

colony = kiacopy.Colony()
コード例 #9
0
ファイル: runner.py プロジェクト: charlie67/mmp-code
def run_algorithm_with_options(program_options: Options, problem_data_array,
                               problem: tsplib95.Problem):
    program_start_time = timeit.default_timer()

    # key is the node location and the value is the node id
    node_location_to_id_dict = dict()

    # Key is the node id and the value is the node location
    node_id_to_location_dict = dict()
    counter = 0

    for node in problem_data_array:
        node_location_to_id_dict[repr(node)] = counter
        node_id_to_location_dict[counter] = node
        counter += 1

    colors = cycle('bgrcmybgrcmybgrcmybgrcmy')

    clustered_data = None
    if program_options.SHOULD_CLUSTER:
        if program_options.CLUSTER_TYPE is ClusterAlgorithmType.K_MEANS:
            clustered_data = perform_k_means_clustering(
                problem_data_array, program_options)
        if program_options.CLUSTER_TYPE is ClusterAlgorithmType.AFFINITY_PROPAGATION:
            clustered_data = perform_affinity_propagation(
                problem_data_array, program_options)
        if program_options.CLUSTER_TYPE is ClusterAlgorithmType.BIRCH:
            clustered_data = perform_birch_clustering(problem_data_array,
                                                      program_options)
        if program_options.CLUSTER_TYPE is ClusterAlgorithmType.DBSCAN:
            clustered_data = perform_dbscan_clustering(problem_data_array,
                                                       program_options)
        if program_options.CLUSTER_TYPE is ClusterAlgorithmType.OPTICS:
            clustered_data = perform_optics_clustering(problem_data_array,
                                                       program_options)
    else:
        clustered_data = ClusteredData(nodes=problem_data_array,
                                       clusters=list(),
                                       program_options=program_options)

        for node in problem_data_array:
            cluster = Cluster(
                cluster_centre=node,
                nodes=[node],
                cluster_type=ClusterType.UNCLASSIFIED_NODE_CLUSTER,
                program_options=program_options)
            clustered_data.add_unclassified_node(cluster)

    # Set the overall node dicts onto the clustering object
    clustered_data.node_location_to_id_dict = node_location_to_id_dict
    clustered_data.node_id_to_location_dict = node_id_to_location_dict
    cluster_nodes_dict = clustered_data.get_dict_node_id_location_mapping_aco()

    logging.debug("%s nodes after clustering", len(cluster_nodes_dict))

    # Raise an error if only 1 cluster has come out of this because ACO needs more than 1 cluster to run over
    if len(cluster_nodes_dict) <= 1:
        raise ValueError(
            "Need more than one cluster from the clustering algorithm")

    aco_tour_improvement_plotter: TourImprovementAnimator = TourImprovementAnimator(
        cluster_nodes_dict,
        problem_type="aco",
        program_options=program_options)
    before = timeit.default_timer()
    if program_options.ACO_TYPE is ACOType.ACO_MULTITHREADED:
        colony = AntColony(
            nodes=cluster_nodes_dict,
            distance_callback=aco_distance_callback,
            alpha=program_options.ACO_ALPHA_VALUE,
            beta=program_options.ACO_BETA_VALUE,
            pheromone_evaporation_coefficient=program_options.ACO_RHO_VALUE,
            pheromone_constant=program_options.ACO_Q_VALUE,
            ant_count=program_options.ACO_ANT_COUNT,
            tour_improvement_animator=aco_tour_improvement_plotter,
            iterations=program_options.ACO_ITERATIONS)
        answer = colony.mainloop()

    elif program_options.ACO_TYPE is ACOType.ACO_PY:
        solver = acopy.Solver(rho=program_options.ACO_RHO_VALUE,
                              q=program_options.ACO_Q_VALUE)
        colony = acopy.Colony(alpha=program_options.ACO_ALPHA_VALUE,
                              beta=program_options.ACO_BETA_VALUE)

        logger_plugin = LoggerPlugin()
        iteration_plotter_plugin = IterationPlotterPlugin(
            tour_improvement_animator=aco_tour_improvement_plotter)

        solver.add_plugin(logger_plugin)
        solver.add_plugin(iteration_plotter_plugin)

        graph = clustered_data.turn_clusters_into_nx_graph(problem)
        solution = solver.solve(graph,
                                colony,
                                limit=program_options.ACO_ITERATIONS,
                                gen_size=program_options.ACO_ANT_COUNT)
        answer = solution.nodes

    else:
        raise NotImplementedError()

    after = timeit.default_timer()
    dif = after - before

    logging.debug("Time taken for initial global %s aco %s",
                  program_options.ACO_TYPE, dif)

    clustered_data.aco_cluster_tour = answer
    clustered_data.find_nodes_to_move_between_clusters()

    if program_options.CLUSTER_TOUR_TYPE is InternalClusterPathFinderType.ACO:
        if program_options.ACO_TYPE is ACOType.ACO_MULTITHREADED:
            clustered_data.find_tours_within_clusters_using_multithreaded_aco()
        elif program_options.ACO_TYPE is ACOType.ACO_PY:
            clustered_data.find_tours_within_clusters_using_acopy()
        else:
            raise NotImplementedError()

    elif program_options.CLUSTER_TOUR_TYPE is InternalClusterPathFinderType.GREEDY_NEAREST_NODE:
        clustered_data.find_tours_within_clusters_using_greedy_closest_nodes()
    else:
        raise NotImplementedError()
    tour_node_coordinates = clustered_data.get_ordered_nodes_for_all_clusters()

    # Tour as node ids instead of node locations
    tour_node_id = []

    for node in tour_node_coordinates:
        tour_node_id.append(node_location_to_id_dict[repr(node)])

    clustered_data.node_level_tour = tour_node_id
    tour_node_id_set = set(tour_node_id)
    valid = len(tour_node_id) == len(tour_node_id_set) == len(
        problem_data_array)

    logging.debug("Tour is valid %s", valid)

    length_before = calculate_distance_for_tour(tour_node_id,
                                                node_id_to_location_dict)
    logging.debug("Length before 2-opt is %s", length_before)

    # If the option to run 2opt is set then process 2-opt
    if program_options.SHOULD_RUN_2_OPT:
        tsp_2_opt_graph_animator = TourImprovementAnimator(
            node_id_to_location_dict,
            problem_type="2-opt",
            program_options=program_options)

        before = timeit.default_timer()
        final_route = run_2_opt(
            existing_route=tour_node_id,
            node_id_to_location_dict=node_id_to_location_dict,
            distance_calculator_callback=calculate_distance_for_tour,
            tsp_2_opt_animator=tsp_2_opt_graph_animator)
        after = timeit.default_timer()

        dif = after - before
        logging.debug("Time taken for 2-opt %s", dif)

        length_after = calculate_distance_for_tour(final_route,
                                                   node_id_to_location_dict)
        logging.debug("Length after 2-opt is %s", length_after)

        logging.debug("Final route after 2-opt is %s", final_route)

    program_end_time = timeit.default_timer()
    dif = program_end_time - program_start_time
    logging.debug("Time taken for entire program %s", dif)

    # These are the tour plotters so should be ignored for time calculations
    logging.debug("Starting tour plotters")

    # plot the tours for each cluster
    clustered_data.plot_all_cluster_tours()

    # This is the graph that shows all the clusters
    plot_clustered_graph(colors,
                         cluster_data=clustered_data,
                         program_options=program_options)

    # Plot all the nodes in the problem, no tour
    plot_nodes(problem_data_array, program_options=program_options)

    # Plot the ACO tour of the clusters
    plot_aco_clustered_tour(answer,
                            clustered_data,
                            program_options=program_options)

    # Plot the tour pre 2-opt
    plot_complete_tsp_tour(tour_node_id,
                           node_id_to_location_dict,
                           title="TSP Tour Before 2-opt. Length: " +
                           str(length_before),
                           program_options=program_options)

    # If 2opt was ran then you can safely print out all the 2-opt related graphs
    if program_options.SHOULD_RUN_2_OPT:
        # Plot the tour post 2-opt
        plot_complete_tsp_tour(final_route,
                               node_id_to_location_dict,
                               title="TSP Tour After 2-opt. Length: " +
                               str(length_after),
                               program_options=program_options)

        # Plot the tour post 2-opt with node ids printed
        plot_complete_tsp_tour(final_route,
                               node_id_to_location_dict,
                               title="Final TSP Tour With Node ID",
                               node_id_shown=True,
                               program_options=program_options)

        if program_options.ANIMATE_IMPROVEMENTS:
            # Create an animation of the 2-opt incremental improvement
            tsp_2_opt_graph_animator.animate(
                output_directory_animation_graphs=program_options.
                OUTPUT_DIRECTORY_2_OPT_ANIMATION)

    if program_options.ANIMATE_IMPROVEMENTS:
        # Create an animation of the aco incremental improvement
        aco_tour_improvement_plotter.animate(
            output_directory_animation_graphs=program_options.
            OUTPUT_DIRECTORY_ACO_ANIMATION)

    logging.debug("Finished tour plotters")
コード例 #10
0
import acopy
import tsplib95

a = 20
coste = []
it_alpha = []

#for i in range (30):
#    it_alpha.append(a)

solver = acopy.Solver(rho=0.55, q=0.7)
colony = acopy.Colony(alpha=0.7, beta=4)
threshold = acopy.plugins.Threshold(threshold=95345)

problem = tsplib95.load_problem(
    'C://Users//Vicente//PycharmProjects//TSPproblem//venv//datasetcorto')
G = problem.get_graph()
tour = solver.solve(G, colony, limit=90)

#    a = a + 10

print(tour.cost)
print(tour.nodes)
#coste.append(tour.cost)
'''import matplotlib.pyplot as plt

plt.plot(it_alpha, coste)
plt.show()'''