##################### DeepLearning-Matrix ########################## ################ Elevation Azimuth Frequenzbänder Frames DL_Matrix = zeros((NPOINTS_ELE, NPOINTS_AZI, len(FREQBANDS), FRAMES)) # Wenn .npz, dann keine FRAMES, weil die in einzelne .npy-Tabellen?! # DL_Matrix = zeros((NPOINTS_ELE, NPOINTS_AZI, len(FREQBANDS))) for frame_index, frame in enumerate(range(STARTFRAME, ENDFRAME)): print('### FRAME: ', frame - STARTFRAME, ' (', frame, ') ###') for freq_index, freq in enumerate(FREQBANDS): print('FREQ =', freq) ts.start = frame * NUM ts.stop = (frame + 1) * NUM result = zeros((4, rg.shape[0], rg.shape[1])) for i in range(4): be.n = i result[i] = be.synthetic(freq, 3) maxind = argmax(result.max((1, 2))) # WARUM IMMER MAXINDEX = 3 ??? # print('Result Beamforming: Maxindex = ', maxind) Lm = L_p(result[maxind]).reshape(rg.shape).flatten() max_idx = argmax( Lm.flatten()) # position in grid with max source strength max_cartcoord = rg.gpos[:, max_idx] max_idx = argmax( Lm.flatten()) # position in grid with max source strength max_value = amax(Lm.flatten())
# Opt 1 maxval1 = zeros(len(FREQBANDS)) maxval2 = zeros(len(FREQBANDS)) # Opt 2 tot_maxval1 = 0 tot_maxval2 = 0 # Opt 3 tot_maxval = 0 # Befüllen von Src1_Matrix und Src2_Matrix for freq_index, freq in enumerate(FREQBANDS): be.n = -1 #Eigenwerte der Größe nach sortiert -> größter Eigenwert (default) Lm = L_p(be.synthetic(freq, 3)).reshape(rg.shape).flatten() Src1_Matrix[:,:,freq_index] = Lm.reshape(rg.shape).T max_idx1 = argmax(Lm.flatten()) # position in grid with max source strength max_value1 = amax(Lm.flatten()) be.n = -2 #Eigenwerte der Größe nach sortiert -> größter Eigenwert (default) Lm = L_p(be.synthetic(freq, 3)).reshape(rg.shape).flatten() Src2_Matrix[:,:,freq_index] = Lm.reshape(rg.shape).T max_idx2 = argmax(Lm.flatten()) # position in grid with max source strength max_value2 = amax(Lm.flatten()) # Opt 1