コード例 #1
0
    def expandBoundsDDB_FB(self):
        """
        Description: Expands the search space with the full Bayesian 
        implementation of our DDB method

        """
        print('Attempting to expand search space with DDB-FB method')
        alpha=self.alpha
        beta=self.beta
        bound_samples=100    # Number of radius sample to fit the log-logistic distribution
        # Find y^+ and x^+
        ymax=np.max(self.Y)
        # Generate test radii
        max_loc=np.argmax(self.Y)
        xmax=self.X[max_loc]
        test_bound=np.zeros(self.scalebounds.shape)
        bound_dist=np.zeros(bound_samples)
        bound_center=xmax
        test_bound[:,1]=bound_center+0.5
        test_bound[:,0]=bound_center-0.5
        max_radius=np.max(np.array([np.max(max_bound_size-test_bound[:,1]),np.max(test_bound[:,0])]))
        step=max_radius/bound_samples
        packing_number=np.zeros(bound_samples)
        # Generate a Thompson sample maxima to estimate internal maxima
        TS=AcquisitionFunction.ThompsonSampling(self.gp)
        tsb_x,tsb_y=acq_max_global(TS, self.gp, bounds=self.scalebounds)
        # Generate Gumbel samples to estimate the external maxima
        for i in range(0,bound_samples):
            bound_length=test_bound[:,1]-test_bound[:,0]
            volume=np.power(max_bound_size,self.dim)-np.prod(bound_length)
            packing_number[i]=round(volume/(5*self.gp.lengthscale))
            mu=stats.norm.ppf(1.0-1.0/packing_number[i])
            sigma=stats.norm.ppf(1.0-(1.0/packing_number[i])*np.exp(-1.0))-stats.norm.ppf(1.0-(1.0/(packing_number[i])))
            bound_dist[i]=np.exp(-np.exp(-(-tsb_y-mu)/sigma))
            test_bound[:,1]=test_bound[:,1]+step
            test_bound[:,0]=test_bound[:,0]-step
        bound_dist[np.isnan(bound_dist)]=1
        # Fit the log-logistic paramaters to the Gumbel samples
        xfit=np.arange(0,max_radius,max_radius/100)
        popt,pcov=optimize.curve_fit(self.sufficientBoundPDF,xfit[0:100],bound_dist,bounds=np.array([[5,1.1],[20,5]]))
        print("popt={}".format(popt))
        b=ymax/popt[0]
        a=popt[1]
        print("b={}, ymax={}".format(b,ymax))
        # Sample for the optimal radius
        for d in range(0,self.dim):
            gamma=np.random.gamma(shape=alpha,scale=1/beta,size=100)
            loglog=stats.fisk.pdf(gamma,ymax/b,scale=a)
            scaled_weights=loglog/np.sum(loglog)
            multi=np.random.multinomial(1,scaled_weights)
            r_index=np.argmax(multi)
            print("Radius of {} selected".format(gamma[r_index]))
            self.scalebounds[d,1]=xmax[d]+gamma[r_index]
            self.scalebounds[d,0]=xmax[d]-gamma[r_index]

        print("seach space extended to {} with DDB".format(self.scalebounds))
コード例 #2
0
    def expandBoundsDDB_MAP(self):
        """
        Description: Expands the search space with the MAP implementation of
        our DDB method

        """
        
        print('Attempting to expand search space with DDB-MAP method')
        alpha=self.alpha
        beta=self.beta
        bound_samples=100    # Number of radius sample to fit the log-logistic distribution
        # Find y^+ and x^+
        ymax=np.max(self.Y)
        # Generate test radii
        max_loc=np.argmax(self.Y)
        xmax=self.X[max_loc]
        test_bound=np.zeros(self.scalebounds.shape)
        bound_dist=np.zeros(bound_samples)
        bound_center=xmax
        test_bound[:,1]=bound_center+0.5
        test_bound[:,0]=bound_center-0.5
        max_radius=np.max(np.array([np.max(max_bound_size-test_bound[:,1]),np.max(test_bound[:,0])]))
        step=max_radius/bound_samples
        packing_number=np.zeros(bound_samples)
        # Generate a Thompson sample maxima to estimate internal maxima
        TS=AcquisitionFunction.ThompsonSampling(self.gp)
        tsb_x,tsb_y=acq_max_global(TS, self.gp, bounds=self.scalebounds)
        # Generate Gumbel samples to estimate the external maxima
        for i in range(0,bound_samples):
            bound_length=test_bound[:,1]-test_bound[:,0]
            volume=np.power(max_bound_size,self.dim)-np.prod(bound_length)
            packing_number[i]=round(volume/(5*self.gp.lengthscale))
            mu=stats.norm.ppf(1.0-1.0/packing_number[i])
            sigma=stats.norm.ppf(1.0-(1.0/packing_number[i])*np.exp(-1.0))-stats.norm.ppf(1.0-(1.0/(packing_number[i])))
            bound_dist[i]=np.exp(-np.exp(-(-tsb_y-mu)/sigma))
            test_bound[:,1]=test_bound[:,1]+step
            test_bound[:,0]=test_bound[:,0]-step
        bound_dist[np.isnan(bound_dist)]=1
        # Fit the log-logistic paramaters to the Gumbel samples
        xfit=np.arange(0,max_radius,max_radius/100)
        popt,pcov=optimize.curve_fit(self.sufficientBoundPDF,xfit[0:100],bound_dist,bounds=np.array([[5,1.1],[20,5]]))
        print("popt={}".format(popt))
        b=ymax/popt[0]
        a=popt[1]
        print("b={}, ymax={}".format(b,ymax))
        # Find the gamma and log-logistic modes to determine the optimisation bound
        c=ymax/b
        loglog_mode=a*np.power((c-1.0)/(c+1.0),(1/c))
        gamma_mode=(alpha-1)/beta
        opt_bound=np.ones([2])
        opt_bound[0]=min(loglog_mode,gamma_mode)
        opt_bound[1]=max(loglog_mode,gamma_mode)
        bound_range=(opt_bound[1]-opt_bound[0])
        # Find MAP Estimate of radius r
        for d in range(0,self.dim):
            r_max=0
            p_max=0
            for x0 in np.arange(opt_bound[0],opt_bound[1],bound_range/10):
                res=optimize.minimize(lambda x: self.radiusPDF(x,alpha,beta,b,ymax,a),x0=x0, bounds=np.array([opt_bound]), method='L-BFGS-B')
                if -res.fun>p_max:
                    r_max=res.x
                    p_max=-res.fun
            if r_max>opt_bound[1]:
                r_max=opt_bound[1]
            xplot=np.arange(0,10,0.01)
            yplot=-self.radiusPDF(xplot,alpha,beta,b,ymax,a)
            max_loc=np.argmax(yplot)

            print("optimal radius of {} with unscaled probability of {}".format(r_max,p_max))
            self.scalebounds[d,1]=xmax[d]+r_max
            self.scalebounds[d,0]=xmax[d]-r_max
        print("seach space extended to {} with DDB".format(self.scalebounds))