コード例 #1
0
 def test_Kuka_robot(self):
     bot = Kuka()
     q_test = self.generate_random_configurations(bot)
     for qi in q_test:
         Tactual = bot.fk(qi)
         Tdesired = fki.fk_kuka(qi)
         assert_almost_equal(Tactual, Tdesired)
コード例 #2
0
 def test_Kuka_tool_robot(self):
     bot = Kuka()
     bot.tf_tool_tip = torch.tf_tool_tip
     q_test = self.generate_random_configurations(bot)
     for qi in q_test:
         Tactual = bot.fk(qi)
         Tdesired = fki.fk_kuka(qi)
         Tdesired = Tdesired @ torch.tf_tool_tip
         assert_almost_equal(Tactual, Tdesired)
コード例 #3
0
def test_generate_envelop():
    robot = Kuka()
    settings = EnvelopeSettings(1.0, 10, 8)
    we = generate_robot_envelope(robot, settings)

    max_extension = robot.estimate_max_extension()
    num_points = int(2 * max_extension / settings.sample_distance)

    assert we.shape == (num_points ** 3, 4)
コード例 #4
0
 def test_Kuka_base_robot(self):
     bot = Kuka()
     bot.tf_base = pose_x(0.5, 0.1, 0.2, 0.3)
     q_test = self.generate_random_configurations(bot)
     for qi in q_test:
         Tactual = bot.fk(qi)
         Tdesired = fki.fk_kuka(qi)
         Tdesired = bot.tf_base @ Tdesired
         assert_almost_equal(Tactual, Tdesired)
コード例 #5
0
def test_tol_quat_pt_with_weights():
    path_ori_free = []
    for s in np.linspace(0, 1, 3):
        xi = 0.8
        yi = s * 0.2 + (1 - s) * (-0.2)
        zi = 0.2
        path_ori_free.append(
            TolQuatPt(
                [xi, yi, zi],
                Quaternion(axis=[1, 0, 0], angle=np.pi),
                [NoTolerance(), NoTolerance(), NoTolerance()],
                QuaternionTolerance(2.0),
            )
        )

    table = Box(0.5, 0.5, 0.1)
    table_tf = np.array(
        [[1, 0, 0, 0.80], [0, 1, 0, 0.00], [0, 0, 1, 0.12], [0, 0, 0, 1]]
    )
    scene1 = Scene([table], [table_tf])

    robot = Kuka()
    # robot.tool = torch
    setup = PlanningSetup(robot, path_ori_free, scene1)

    # weights to express the importance of the joints in the cost function
    joint_weights = [10.0, 5.0, 1.0, 1.0, 1.0, 1.0]

    settings = SamplingSetting(
        SearchStrategy.INCREMENTAL,
        sample_method=SampleMethod.random_uniform,
        num_samples=500,
        iterations=2,
        tolerance_reduction_factor=2,
        weights=joint_weights,
    )

    solve_set = SolverSettings(
        SolveMethod.sampling_based,
        CostFuntionType.weighted_sum_squared,
        sampling_settings=settings,
    )

    sol = solve(setup, solve_set)
    assert sol.success

    for qi, s in zip(sol.joint_positions, np.linspace(0, 1, 3)):
        xi = 0.8
        yi = s * 0.2 + (1 - s) * (-0.2)
        zi = 0.2

        fk = robot.fk(qi)
        pos_fk = fk[:3, 3]
        assert_almost_equal(pos_fk, np.array([xi, yi, zi]))
コード例 #6
0
ファイル: test_robot.py プロジェクト: danielsjf/acrobotics
 def test_kuka_collision(self):
     bot = Kuka()
     q0 = [0, np.pi / 2, 0, 0, 0, 0]
     obj1 = ShapeSoup(
         [Box(0.2, 0.3, 0.5), Box(0.1, 0.3, 0.1)],
         [pose_x(0, 0.75, 0, 0.5), pose_x(0, 0.75, 0.5, 0.5)],
     )
     obj2 = ShapeSoup(
         [Box(0.2, 0.3, 0.5), Box(0.1, 0.3, 0.1)],
         [pose_x(0, 0.3, -0.7, 0.5), pose_x(0, 0.75, 0.5, 0.5)],
     )
     a1 = bot.is_in_collision(q0, obj1)
     assert a1 is True
     a2 = bot.is_in_collision(q0, obj2)
     assert a2 is False
コード例 #7
0
 def test_kuka_random(self):
     """ TODO some issues with the numerical accuracy of the ik?"""
     bot = Kuka()
     N = 20
     q_rand = np.random.rand(N, 6) * 2 * PI - PI
     for qi in q_rand:
         print(qi)
         T1 = bot.fk(qi)
         resi = bot.ik(T1)
         if resi.success:
             for q_sol in resi.solutions:
                 print(q_sol)
                 T2 = bot.fk(q_sol)
                 assert_almost_equal(T1, T2, decimal=5)
         else:
             # somethings is wrong, should be reachable
             print(resi)
             assert_almost_equal(qi, 0)
コード例 #8
0
def test_tol_position_pt_planning_problem():
    robot = Kuka()

    table = Box(0.5, 0.5, 0.1)
    table_tf = np.array(
        [[1, 0, 0, 0.80], [0, 1, 0, 0.00], [0, 0, 1, 0.12], [0, 0, 0, 1]]
    )
    scene1 = Scene([table], [table_tf])

    # create path
    quat = Quaternion(axis=np.array([1, 0, 0]), angle=np.pi)
    tolerance = [NoTolerance(), SymmetricTolerance(0.05, 10), NoTolerance()]
    first_point = TolPositionPt(np.array([0.9, -0.2, 0.2]), quat, tolerance)
    # end_position = np.array([0.9, 0.2, 0.2])

    # path = create_line(first_point, end_position, 5)
    path = create_arc(
        first_point, np.array([0.9, 0.0, 0.2]), np.array([0, 0, 1]), 2 * np.pi, 5
    )

    planner_settings = SamplingSetting(SearchStrategy.GRID, iterations=1)

    solver_settings = SolverSettings(
        SolveMethod.sampling_based,
        CostFuntionType.sum_squared,
        sampling_settings=planner_settings,
    )

    setup = PlanningSetup(robot, path, scene1)

    sol = solve(setup, solver_settings)
    assert sol.success

    for qi, pt in zip(sol.joint_positions, path):
        fk = robot.fk(qi)
        pos_fk = fk[:3, 3]
        pos_pt = pt.pos
        R_pt = pt.rotation_matrix
        pos_error = R_pt.T @ (pos_fk - pos_pt)
        assert_almost_equal(pos_error[0], 0)
        assert_almost_equal(pos_error[2], 0)
        assert pos_error[1] <= (0.05 + 1e-6)
        assert pos_error[1] >= -(0.05 + 1e-6)
コード例 #9
0
def test_complete_problem():
    path_ori_free = []
    for s in np.linspace(0, 1, 3):
        xi = 0.8
        yi = s * 0.2 + (1 - s) * (-0.2)
        zi = 0.2
        path_ori_free.append(
            FreeOrientationPt(
                [xi, yi, zi],
                [NoTolerance(), NoTolerance(),
                 NoTolerance()]))

    table = Box(0.5, 0.5, 0.1)
    table_tf = np.array([[1, 0, 0, 0.80], [0, 1, 0, 0.00], [0, 0, 1, 0.12],
                         [0, 0, 0, 1]])
    scene1 = ShapeSoup([table], [table_tf])

    robot = Kuka()
    # robot.tool = torch

    settings = SamplingSetting(
        SearchStrategy.INCREMENTAL,
        1,
        SampleMethod.random_uniform,
        500,
        tolerance_reduction_factor=2,
    )

    solve_set = SolverSettings(
        SolveMethod.sampling_based,
        CostFuntionType.sum_squared,
        sampling_settings=settings,
    )

    setup = PlanningSetup(robot, path_ori_free, scene1)

    sol1 = solve(setup, solve_set)
    assert sol1.success

    s2 = SolverSettings(
        SolveMethod.optimization_based,
        CostFuntionType.sum_squared,
        opt_settings=OptSettings(q_init=np.array(sol1.joint_positions)),
    )

    sol2 = solve(setup, s2)

    assert sol2.success
コード例 #10
0
ファイル: test_robot.py プロジェクト: danielsjf/acrobotics
 def test_kuka_self_collision(self):
     bot = Kuka()
     gl = [l.geometry for l in bot.links]
     q0 = [0, np.pi / 2, 0, 0, 0, 0]
     q_self_collision = [0, 1.5, -1.3, 0, -1.5, 0]
     tf1 = bot.fk_all_links(q0)
     a1 = bot._check_self_collision(tf1, gl)
     assert a1 is False
     tf2 = bot.fk_all_links(q_self_collision)
     a2 = bot._check_self_collision(tf2, gl)
     assert a2 is True
コード例 #11
0
def test_state_cost():
    robot = Kuka()

    table = Box(0.5, 0.5, 0.1)
    table_tf = np.array(
        [[1, 0, 0, 0.80], [0, 1, 0, 0.00], [0, 0, 1, 0.00], [0, 0, 0, 1]]
    )
    scene1 = Scene([table], [table_tf])

    # create path
    quat = Quaternion(axis=np.array([1, 0, 0]), angle=-3 * np.pi / 4)

    pos_tol = 3 * [NoTolerance()]
    # rot_tol = 3 * [NoTolerance()]
    rot_tol = [
        NoTolerance(),
        SymmetricTolerance(np.pi / 4, 20),
        SymmetricTolerance(np.pi, 20),
    ]
    first_point = TolEulerPt(np.array([0.9, -0.1, 0.2]), quat, pos_tol, rot_tol)
    # end_position = np.array([0.9, 0.1, 0.2])

    # path = create_line(first_point, end_position, 5)
    path = create_arc(
        first_point, np.array([0.9, 0.0, 0.2]), np.array([0, 0, 1]), 2 * np.pi, 5
    )

    planner_settings = SamplingSetting(
        SearchStrategy.GRID,
        iterations=1,
        tolerance_reduction_factor=2,
        use_state_cost=True,
        state_cost_weight=10.0,
    )

    solver_settings = SolverSettings(
        SolveMethod.sampling_based,
        CostFuntionType.sum_squared,
        sampling_settings=planner_settings,
    )

    setup = PlanningSetup(robot, path, scene1)

    sol = solve(setup, solver_settings)
    assert sol.success
コード例 #12
0
def test_exceptions():
    settings = SamplingSetting(
        SearchStrategy.INCREMENTAL,
        sample_method=SampleMethod.random_uniform,
        num_samples=500,
        iterations=2,
        tolerance_reduction_factor=2,
    )

    solve_set = SolverSettings(
        SolveMethod.sampling_based,
        CostFuntionType.weighted_sum_squared,
        sampling_settings=settings,
    )

    setup = PlanningSetup(None, None, None)
    with pytest.raises(Exception) as e:
        solve(setup, solve_set)
    assert (
        str(e.value)
        == "No weights specified in SamplingSettings for the weighted cost function."
    )

    robot = Kuka()
    scene = Scene([], [])

    pos = np.array([1000, 0, 0])
    quat = Quaternion(axis=np.array([1, 0, 0]), angle=-3 * np.pi / 4)
    path = [TolPositionPt(pos, quat, 3 * [NoTolerance()])]

    solve_set2 = SolverSettings(
        SolveMethod.sampling_based,
        CostFuntionType.sum_squared,
        sampling_settings=settings,
    )

    setup2 = PlanningSetup(robot, path, scene)
    with pytest.raises(Exception) as e:
        solve(setup2, solve_set2)
    assert str(e.value) == f"No valid joint solutions for path point {0}."
コード例 #13
0
 def test_kuka_tool_random(self):
     bot = Kuka()
     bot.tf_tool_tip = tool_tip_transform
     N = 20
     q_rand = np.random.rand(N, 6) * 2 * PI - PI
     for qi in q_rand:
         print(qi)
         T1 = bot.fk(qi)
         resi = bot.ik(T1)
         if resi.success:
             for q_sol in resi.solutions:
                 print(q_sol)
                 T2 = bot.fk(q_sol)
                 assert_almost_equal(T1, T2)
         else:
             # somethings is wrong, should be reachable
             print(resi)
             assert_almost_equal(qi, 0)
コード例 #14
0
    def test_plot_kuka(self):
        robot = Kuka()

        fig = plt.figure()
        ax = fig.gca(projection="3d")
        robot.plot_kinematics(ax, np.ones(robot.ndof))
コード例 #15
0
Try continous collision checking for a simple path through an obstacle.
"""
import time
import fcl
import numpy as np
import matplotlib.pyplot as plt

from acrolib.plotting import get_default_axes3d, plot_reference_frame
from acrolib.geometry import translation

from acrobotics.robot_examples import Kuka
from acrobotics.tool_examples import torch2
from acrobotics.geometry import Scene
from acrobotics.shapes import Box

robot = Kuka()
robot.tool = torch2

DEBUG = False


def show_animation(robot, scene, qa, qb):
    q_path = np.linspace(qa, qb, 10)
    fig, ax = get_default_axes3d([-0.8, 0.8], [0, 1.6], [-0.2, 1.4])
    ax.set_axis_off()
    ax.view_init(elev=31, azim=-15)
    scene.plot(ax, c="green")
    robot.animate_path(fig, ax, q_path)
    plt.show()

コード例 #16
0
"""
Getting started example from readme.txt

This example shows how to create a planning scene,
visualize a robot and check for collision between the two.
Also, forward and inverse kinematics are nice.
"""
# ======================================================
# Get a ready to go robot implementation
# ======================================================
from acrobotics.robot_examples import Kuka

robot = Kuka()

# ======================================================
# Create planning scene
# ======================================================
from acrobotics.geometry import Scene
from acrobotics.shapes import Box

# A transform matrix is represented by a 4x4 numpy array
# Here we create one using a helper function for readability
from acrobotics.util import translation

table = Box(2, 2, 0.1)
T_table = translation(0, 0, -0.2)

obstacle = Box(0.2, 0.2, 1.5)
T_obs = translation(0, 0.5, 0.55)

scene = Scene([table, obstacle], [T_table, T_obs])
コード例 #17
0
def create_robot():
    robot = Kuka()
    robot.tool = torch3
    return robot