コード例 #1
0
ファイル: motion_model.py プロジェクト: jjkuang/BME355_Proj
class MotionModel:
  def __init__(self, start=0, end=1, frequency = 50, duty_cycle = 0.4, scaling = 1, non_linearity = -1, shape_="monophasic"):
      self.start = start
      self.end = end
    
      self.lit_data = DataLoader()
            
      self.a = Activation(frequency, duty_cycle, scaling, non_linearity)
      self.a.get_activation_signal(self.lit_data.activation_function(), shape=shape_)

      self.a_sol = Activation(frequency, duty_cycle, scaling, non_linearity)
      self.a_sol.get_activation_signal(self.lit_data.activation_function_soleus(), shape=shape_)
     
      rest_length_soleus = self.soleus_length(23.7*np.pi/180)*1.015
      rest_length_tibialis = self.tibialis_length(-37.4*np.pi/180)*0.9158 # lower is earlier activation
      print(rest_length_soleus)
      print(rest_length_tibialis)
      soleus_f0m = 2600.06
      self.soleus = HillTypeMuscle(soleus_f0m, .1342*rest_length_soleus, .8658*rest_length_soleus)
      self.tibialis = HillTypeMuscle(605.3465, .2206*rest_length_tibialis, .7794*rest_length_tibialis)

      # theta, velocity, initial CE length of soleus, initial CE length of TA
      self.initial_state = np.array([self.lit_data.ankle_angle(self.start)[0]*np.pi/180,
                                     self.lit_data.ankle_velocity(self.start)[0]*np.pi/180,
                                     0.827034,
                                     1.050905])
      print(self.initial_state)    
      self.time = None
      self.x1 = None
      self.x2 = None
      self.x3 = None
      self.x4 = None
    
  def set_activation(self, frequency, duty_cycle, scaling, non_linearity, shape_):
      self.a = Activation(frequency, duty_cycle, scaling, non_linearity)
      self.a.get_activation_signal(self.lit_data.activation_function(), shape=shape_)
      self.a.plot()
      
  def get_global(self,theta, x, y, t):
      
      ankle_angle = theta + np.pi/2
      rotation_ankle = [[np.cos(ankle_angle), -np.sin(ankle_angle)], [np.sin(ankle_angle), np.cos(ankle_angle)]]
      
      rel_knee = np.dot(rotation_ankle, [x, y])
      rel_knee = rel_knee + [0.414024, 0]
      
      knee_angle = 2*np.pi-(self.lit_data.knee_angle(t)[0] * np.pi/180)
      rotation_knee = [[np.cos(knee_angle), -np.sin(knee_angle)], [np.sin(knee_angle), np.cos(knee_angle)]]
      
      rel_thigh = np.dot(rotation_knee, rel_knee)
      rel_thigh = rel_thigh + [0.42672, 0]
      
      thigh_angle =  3*np.pi/2+ self.lit_data.hip_angle(t)[0] * np.pi/180
      rotation_thigh = [[np.cos(thigh_angle), -np.sin(thigh_angle)], [np.sin(thigh_angle), np.cos(thigh_angle)]]
  
      global_coord = np.dot(rotation_thigh, rel_thigh)
      return global_coord

  def soleus_length(self,theta):
      """
      :param theta: body angle (up from prone horizontal)
      :return: soleus length
      """
      a = 0.10922
      b = 0.414024
      return np.sqrt(a**2 + b**2 - 2*a*b*np.cos(2*np.pi-(np.pi/2-theta)-1.77465))

  def tibialis_length(self,theta):
      """
      :param theta: body angle (up from prone horizontal)
      :return: tibialis anterior length
      """
      a = 0.1059
      b = 0.414024
      return np.sqrt(a**2 + b**2 - 2*a*b*np.cos(np.pi/2-theta))

  def gravity_moment(self,theta, t):
      """
      :param theta: angle of body segment (up from prone)
      :return: moment about ankle due to force of gravity on body
      """
      mass = 1.027 # body mass (kg; excluding feet)
      
      g = 9.81 # acceleration of gravity
      ankle = self.get_global(theta,0,0, t)
      centroid = self.get_global(theta,0.06674,-0.03581,t)
      centre_of_mass_distance_x = ankle[0] - centroid[0]
      return mass * g * centre_of_mass_distance_x

  def get_ankle_linear_acceleration(self,t):
      """
      :param t: Time in gait cycle
      :return: linear acceleration of ankle
      """
      thigh_len = 0.42672
      shank_len = 0.41402

      hip_theta = self.lit_data.hip_angle(t)*np.pi/180
      t_alpha = self.lit_data.thigh_acceleration(t)*np.pi/180
      t_omega = self.lit_data.thigh_velocity(t)*np.pi/180

      knee_theta = self.lit_data.knee_angle(t)*np.pi/180
      s_alpha = self.lit_data.shank_acceleration(t)*np.pi/180
      s_omega = self.lit_data.shank_velocity(t)*np.pi/180

      k_norm_mag = (t_omega**2) * thigh_len
      k_norm_dir = np.pi/2 - abs(hip_theta)

      k_norm = k_norm_mag*np.array([-1*hip_theta/abs(hip_theta) * abs(np.cos(k_norm_dir)),
                                     abs(np.sin(k_norm_dir))])

      k_tan_mag = abs(t_alpha) * thigh_len
      k_tan_dir = abs(hip_theta)

      k_tan = k_tan_mag*np.array([t_alpha/abs(t_alpha) * abs(np.cos(k_tan_dir)),
                                   t_alpha/abs(t_alpha)*hip_theta/abs(hip_theta) * abs(np.sin(k_tan_dir))])

      ak_norm_mag = (s_omega**2) * shank_len
      alpha = (np.pi/2 - abs(hip_theta))

      if(hip_theta > 0 ):
          if(np.pi - alpha - abs(knee_theta) > 90):
              ak_norm_dir = np.pi - (np.pi - alpha - abs(knee_theta))
              direction = -1
          else:
              ak_norm_dir = np.pi - (np.pi/2 - abs(hip_theta)) - abs(knee_theta)
              direction = 1
      else:
          if(abs(knee_theta) < alpha):
              ak_norm_dir = alpha - abs(knee_theta)
              direction = 1
          else:
              print("disaster")

      ak_norm = ak_norm_mag * np.array([direction * abs(np.cos(ak_norm_dir)),
                               abs(np.sin(ak_norm_dir))])

      ak_tan_mag = abs(s_alpha) * shank_len
      ak_tan_dir = np.pi/2 - abs(ak_norm_dir)

      ak_tan = ak_tan_mag * np.array([-1*s_alpha/abs(s_alpha) * abs(np.cos(ak_tan_dir)),
                             (s_alpha/abs(s_alpha)) * direction * abs(np.sin(ak_tan_dir))])

      a_acceleration = [k_norm[0]/4 + k_tan[0]/2 + ak_norm[0]/4 + ak_tan[0]/2,
                        k_norm[1]/4 + k_tan[1]/2 + ak_norm[1]/4 + ak_tan[1]/2]

      # print(t, k_norm[1], k_tan[1], ak_norm[1], ak_tan[1])

      return a_acceleration

  def get_acceleration_com_a_norm(self, theta, t, f_omega):
      """
      :param theta: ankle angle
      :param t: time in gait cycle
      :param f_omega: angular velocity of ankle
      :return: acceleration of COM
      """
      ankle = self.get_global(theta, 0, 0, t)
      centroid = self.get_global(theta, 0.06674, -0.03581, t)
      d_com_x = centroid[0] - ankle[0]
      d_com_y = centroid[1] - ankle[1]
      d_com = np.sqrt((d_com_x ** 2) + (d_com_y ** 2))

      com_a_norm_mag = (f_omega ** 2) * d_com
      com_a_norm_dir = abs(np.arctan(abs(d_com_y) / abs(d_com_x)))

      com_a_norm = com_a_norm_mag * np.array([-1*(d_com_x) / abs(d_com_x) * abs(np.cos(com_a_norm_dir)),
                                     abs(np.sin(com_a_norm_dir))])
      return com_a_norm

  def ankle_linear_acceleration_moment_x(self,t,theta):
      """
      :param t: time in gait cycle
      :return: moment caused by x component of COM acceleration
      """
      mass = 1.027  # body mass (kg; excluding feet)
      a_acceleration = self.get_ankle_linear_acceleration(t)

      ankle = self.get_global(theta, 0, 0, t)
      centroid = self.get_global(theta, 0.06674, -0.03581, t)
      centre_of_mass_distance_y = ankle[1] - centroid[1]

      return mass*a_acceleration[0]*centre_of_mass_distance_y

  def ankle_linear_acceleration_moment_y(self, t, theta):
      """
      :param t: time in gait cycle
      :return: moment caused by x component of COM acceleration
      """
      mass = 1.027  # body mass (kg; excluding feet)
      a_acceleration = self.get_ankle_linear_acceleration(t)

      ankle = self.get_global(theta, 0, 0, t)
      centroid = self.get_global(theta, 0.06674, -0.03581, t)
      centre_of_mass_distance_x = centroid[0] - ankle[0]

      return mass * a_acceleration[1] * centre_of_mass_distance_x

  def com_a_moment_norm_x(self, t,f_omega, theta):
      """
      :param t: time in gait cycle
      :param f_omega: angular velocity of ankle
      :return: moment caused by x component of normal acceleration COM w.r.t a
      """
      mass = 1.027  # body mass (kg; excluding feet)
      com_a_norm = self.get_acceleration_com_a_norm(theta,t,f_omega)

      ankle = self.get_global(theta, 0, 0, t)
      centroid = self.get_global(theta, 0.06674, -0.03581, t)
      centre_of_mass_distance_y = ankle[1] - centroid[1]

      return mass * com_a_norm[0] * centre_of_mass_distance_y

  def com_a_moment_norm_y(self, t,f_omega, theta):
      """
      :param t: time in gait cycle
      :param f_omega: angular velocity of ankle
      :return: moment caused by y component of normal acceleration COM w.r.t a
      """
      mass = 1.027  # body mass (kg; excluding feet)
      com_a_norm = self.get_acceleration_com_a_norm(theta,t,f_omega)

      ankle = self.get_global(theta, 0, 0, t)
      centroid = self.get_global(theta, 0.06674, -0.03581, t)
      centre_of_mass_distance_x = centroid[0] - ankle[0]

      return mass * com_a_norm[1] * centre_of_mass_distance_x

  def solve_com_a_tan(self, t,theta):
      mass = 1.027  # body mass (kg; excluding feet)
      ankle = self.get_global(theta, 0, 0, t)
      centroid = self.get_global(theta, 0.06674, -0.03581, t)
      d_com_x = centroid[0] - ankle[0]
      d_com_y = centroid[1] - ankle[1]
      d_com = np.sqrt(d_com_x ** 2 + d_com_y ** 2)

      com_a_tan_dir = np.pi/2 - abs(np.arctan(abs(d_com_y) / abs(d_com_x)))

      com_a_tan_terms = [mass * d_com * abs(np.cos(com_a_tan_dir)),
                         mass * d_com * abs(np.sin(com_a_tan_dir))*d_com_x/abs(d_com_x)]
      return com_a_tan_terms

  def dynamics(self,x, soleus, tibialis, t):
      """
      :param x: state vector (ankle angle, angular velocity, soleus normalized CE length, TA normalized CE length)
      :param soleus: soleus muscle (HillTypeModel)
      :param tibialis: tibialis anterior muscle (HillTypeModel)
      :param control: True if balance should be controlled
      :return: derivative of state vector
      """
  
      # constants
      inertia_ankle = 0.0197
      soleus_moment_arm = .05
      tibialis_moment_arm = .03  
  
      # static activations
      activation_s = 0#self.a_sol.get_amp(t) if t >=0.68 else 0
      activation_ta = self.a.get_amp(t)
      act.append(activation_ta)
  
      # use predefined functions to calculate total muscle lengths as a function of theta
      soleus_length_val = self.soleus_length(x[0])
      tibialis_length_val = self.tibialis_length(x[0])
  
      # solve for normalized tendon length
      norm_soleus_tendon_length = self.soleus.norm_tendon_length(soleus_length_val,x[2])
      norm_tibialis_tendon_length = self.tibialis.norm_tendon_length(tibialis_length_val,x[3])
  
      # derivative of ankle angle is angular velocity
      x_0 = x[1]
  
      # calculate moments as defined by balance model mechanics 
      tau_s =  soleus_moment_arm * self.soleus.get_force(soleus_length_val, x[2])
      soleus_force.append(self.soleus.get_force(soleus_length_val, x[2]))
      soleus_length.append(soleus_length_val)
      soleus_CE_norm.append(x[2])
      ta_force.append(self.tibialis.get_force(tibialis_length_val, x[3]))
      ta_length.append(tibialis_length_val)
      ta_CE_norm.append(x[3])
      tau_ta = tibialis_moment_arm * self.tibialis.get_force(tibialis_length_val, x[3])
      gravity_moment_val = self.gravity_moment(x[0],t)
      ankle_linear_x_moment = self.ankle_linear_acceleration_moment_x(t,x[0])
      ankle_linear_y_moment = self.ankle_linear_acceleration_moment_y(t,x[0])
      normal_com_a_x_moment = self.com_a_moment_norm_x(t,x[1],x[0])
      normal_com_a_y_moment = self.com_a_moment_norm_y(t,x[1],x[0])
      com_a_terms = self.solve_com_a_tan(t,x[0])

      # derivative of angular velocity is angular acceleration
      x_1 = (tau_ta - tau_s + gravity_moment_val + ankle_linear_x_moment + ankle_linear_y_moment + \
             normal_com_a_x_moment + normal_com_a_y_moment)/(inertia_ankle + com_a_terms[0] + com_a_terms[1])

#      x_1 = (tau_ta - tau_s + gravity_moment_val+ ankle_linear_x_moment + ankle_linear_y_moment)/(inertia_ankle) #- com_a_terms[0] + com_a_terms[1])
  
      
      # derivative of normalized CE lengths is normalized velocity
      x_2 = 100*get_velocity(activation_s, x[2], norm_soleus_tendon_length)
      x_3 = 100*get_velocity(activation_ta, x[3], norm_tibialis_tendon_length)
  
      # return as a vector
      deriv.append([x_0, x_1[0], x_2[0], x_3[0]])
      return np.array([x_0, x_1[0], x_2[0], x_3[0]])

  def plot_graphs(self):
      time = self.time
      theta = self.x1
      angular_vel = self.x2
      soleus_norm_length_muscle = self.x3
      tibialis_norm_length_muscle = self.x4
    
      # Plot activation
      # plt.figure()
      #       # plt.plot(act)
      #       # plt.show()
  
      # Plot moments
      soleus_moment_arm = .05
      tibialis_moment_arm = .03
      soleus_moment = []
      tibialis_moment = []
      grav_mom = []
      ankle_linear_x_moment = []
      ankle_linear_y_moment = []
      normal_com_a_x_moment = []
      normal_com_a_y_moment = []
      for t, th, w, ls, lt in zip(time, theta, angular_vel, soleus_norm_length_muscle, tibialis_norm_length_muscle):
          soleus_moment.append(-soleus_moment_arm * self.soleus.get_force(self.soleus_length(th), ls))
          tibialis_moment.append(tibialis_moment_arm * self.tibialis.get_force(self.tibialis_length(th), lt))
          grav_mom.append(self.gravity_moment(th,t))
          ankle_linear_x_moment.append(self.ankle_linear_acceleration_moment_x(t,th))
          ankle_linear_y_moment.append(self.ankle_linear_acceleration_moment_y(t,th))
          # normal_com_a_x_moment.append(self.com_a_moment_norm_x(t,w,th))
          # normal_com_a_y_moment.append(self.com_a_moment_norm_y(t,w,th))

      plt.figure()
      plt.plot(time*100, soleus_moment, 'r')
      plt.plot(time*100, tibialis_moment, 'g')
      plt.plot(time*100, grav_mom, 'k')
      plt.plot(time*100, ankle_linear_x_moment)
      plt.plot(time*100, ankle_linear_y_moment)
      # plt.plot(time, normal_com_a_x_moment)
      # plt.plot(time, normal_com_a_y_moment)
      plt.legend(('Soleus Moment', 'Tibialis Moment', 'Moment','Ankle Linear Acceleration (x)','Ankle Linear Acceleration (y)'))
      plt.xlabel('Time (s)')
      plt.ylabel('Torques (Nm)')
     # plt.ylabel('Acceleration (m/s^2)')
      plt.title("Moments over Swing Phase")
      plt.tight_layout()
      plt.show()
      
      #Muscle lengths
      plt.figure()
      plt.plot(time*100, soleus_norm_length_muscle)
      plt.plot(time*100, tibialis_norm_length_muscle)
      plt.legend(('Normalized Soleus length', 'Normalized TA Length'))
      plt.xlabel("% Gait Cycle")
      plt.ylabel('Normalized Length')
      plt.title("Normalized Length of CE over Swing Phase")
      plt.show()

      #Angle
      plt.figure()
      plt.plot(time*100, self.lit_data.ankle_angle(time)*np.pi/180)
      plt.plot(time*100,theta, '--')
      plt.legend(('Real', 'Simulation'))
      plt.xlabel("% Gait Cycle")
      plt.ylabel('Ankle angle (rad)')
      plt.title("Ankle Angle over the Swing Phase")
      plt.show()
  
      # Toe height vs time - Plot toe height over gait cycle (swing phase to end)
      gnd_hip = 0.92964 - (-0.009488720645956072) + 0.001  # m
      x = np.arange(self.start,self.end,.01)
      true_position = [[],[]]
      for ite in x:
          coord = self.get_global(self.lit_data.ankle_angle(ite)[0]*np.pi/180,0.2218,0,ite)
          true_position[0].append(coord[0])
          true_position[1].append(gnd_hip + coord[1])
      
      position = [[],[]]
      for i in range(len(time)):
          coord = self.get_global(theta[i],0.2218,0,time[i])
          position[0].append(coord[0])
          position[1].append(gnd_hip + coord[1])

      #Plot vertical position over gait cycle
      plt.figure() 
      plt.plot(x*100,true_position[1])
      plt.plot(time*100,position[1], '--')
      plt.legend(('Real', 'Simulation'))
      plt.xlabel("% Gait Cycle")
      plt.ylabel("Toe Height (m)")
      plt.title("Toe Height over the Swing Phase")
      plt.show()

      # Plot vertical position of toe to horizontal posn of toe
      plt.figure()
      plt.plot(true_position[0], true_position[1])
      plt.plot(position[0], position[1], '--')
#      plt.scatter(position[0][0], position[1][0], marker='x', color='r')
#      plt.text(position[0][0], position[1][0], 'start')
#      plt.scatter(position[0][-1], position[1][-1], marker='x', color='g')
#      plt.text(position[0][-1], position[1][-1], 'end')
      plt.legend(('Real', 'Simulation'))
      plt.xlabel("Horizontal Position (m)")
      plt.ylabel("Vertical Position(m)")
      plt.title("Phase Portrait of Toe Trajectory over the Swing Phase")
      plt.show()
      
      print(min(position[1]))

  def plot_toe_height(self):
      time = self.time
      theta = self.x1
      angular_vel = self.x2
      soleus_norm_length_muscle = self.x3
      tibialis_norm_length_muscle = self.x4
  
      # Toe height vs time - Plot toe height over gait cycle (swing phase to end)
      gnd_hip = 0.92964 - (-0.009488720645956072) + 0.005  # m
      x = np.arange(self.start,self.end,.01)
      
      position = [[],[]]
      for i in range(len(time)):
          coord = self.get_global(theta[i],0.2218,0,time[i])
          position[0].append(coord[0])
          position[1].append(gnd_hip + coord[1])

      #Plot vertical position over gait cycle
      plt.plot(time*100,position[1])


  def rk4_update(self,f,t,time_step,x):
    s_1 = f(t, x)
    s_2 = f(t + time_step/2, x + time_step/2*s_1)
    s_3 = f(t + time_step/2, x + time_step/2*s_2)
    s_4 = f(t + time_step, x + time_step*s_3)
    return x + time_step/6*(s_1+2*s_2+2*s_3+s_4)


  def simulate(self, mode = "rk45"):
    global solution
    def f(t, x):
        return self.dynamics(x, self.soleus, self.tibialis, t)

    if mode == "rk45":
      sol = solve_ivp(f, [self.start, self.end], self.initial_state, max_step = 0.01, rtol=1e-5, atol=1e-8)
      solution = sol
      self.time = sol.t
      self.x1 = sol.y[0,:]
      self.x2 = sol.y[1,:]
      self.x3 = sol.y[2,:]
      self.x4 = sol.y[3,:]
    elif mode == "rk4":
        time_steps = [0.01]
        for i in range(0):
          time_steps.append(time_steps[i]/2)

        for time_step in time_steps:
          times = np.arange(self.start,self.end+time_step,time_step)
          sol = []
          x = self.initial_state
          for t in times:
              sol.append(x)
              x = self.rk4_update(f,t, time_step,  x)
          sol = np.transpose(sol)
          self.time = times
          self.x1 = sol[:][0]
          self.x2 = sol[:][1]
          self.x3 = sol[:][2]
          self.x4 = sol[:][3]
          
          
  def compare_ankle_angle(self):
    target = self.lit_data.ankle_angle(self.time)*np.pi/180
    return np.sqrt(np.mean((target-self.x1)**2))
  
  
  def compare_toe_height(self):
    gnd_hip = 0.92964 - (-0.009488720645956072) + 0.001 # m 
    target_toe_position = []  
    predicted_toe_position = []
    
    for i in range(len(self.time)):
        pred_coord = self.get_global(self.x1[i],0.2218,0,self.time[i])
        predicted_toe_position.append(gnd_hip + pred_coord[1])
        
        targ_coord = self.get_global(self.lit_data.ankle_angle(self.time[i])[0]*np.pi/180,0.2218,0,self.time[i])
        target_toe_position.append(gnd_hip + targ_coord[1])
        
    above_zero = True 
    predicted_toe_position = np.array(predicted_toe_position)
    find_below = np.argwhere(predicted_toe_position < 0)
    if np.size(find_below) > 0:
      above_zero = False
    
    rmse = np.sqrt(np.mean((target_toe_position-predicted_toe_position)**2))
    return [above_zero, rmse]
コード例 #2
0
                    independent_2[i][j]
                ])

    # Sorts by first element (ie RMSE)
    top_viable = sorted(viable)
    if len(top_viable) >= 5:
        top_viable = top_viable[:5]

    # Find fatigues
    emg_data = load_data('./data/ta_vs_gait.csv')
    emg_data = np.array(emg_data)
    emg_function = get_norm_emg(emg_data)

    fatigues = []
    all_fatigues = []
    for i in range(len(top_viable)):
        a = Activation(top_viable[i][1], top_viable[i][2], scaling,
                       non_linearity)
        a.get_activation_signal(emg_function)
        fatigues.append([a.get_fatigue(), i])

    for i in range(len(viable)):
        a = Activation(viable[i][1], viable[i][2], scaling, non_linearity)
        a.get_activation_signal(emg_function)
        all_fatigues.append([a.get_fatigue(), i])

    # Sorts by first element (ie fatigue)
    top_fatigues = sorted(fatigues)
    optimal = top_viable[top_fatigues[0][1]]
    print(optimal)
コード例 #3
0
    print(get_velocity(1.0, np.array([1.0]), np.array(
        [1.01])))  # calculate velocity given a=1.0,lm=1.0,ls=1.01

    # Constants
    max_isometric_force = 605.0
    total_length = 0.44479194718764087
    resting_muscle_length = .25 * total_length
    resting_tendon_length = .75 * total_length

    emg_data = load_data('./data/ta_vs_gait.csv')
    emg_data = np.array(emg_data)
    emg_data_regress = get_norm_emg(emg_data)

    frequency, duty_cycle, scaling, non_linearity = 35, 0.5, 1, -1
    a = Activation(frequency, duty_cycle, scaling, non_linearity)
    a.get_activation_signal(emg_data_regress, shape="monophasic")

    # Create an HillTypeMuscle using the given constants
    muscle = HillTypeMuscle(max_isometric_force, resting_muscle_length,
                            resting_tendon_length)

    # Dynamic equation
    def f(t, x):
        normalized_tendon_length = muscle.norm_tendon_length(total_length, x)
        temp = get_velocity(a.get_amp(t / 100), np.array([x]),
                            np.array([normalized_tendon_length]))
        return temp
        # return 100*get_velocity(0, np.array([x]), np.array([normalized_tendon_length]))

    # Simulate using rk45
    sol = solve_ivp(f, [58, 100],
コード例 #4
0
    for i in range(len(above_0_plot)):
        if above_0_plot[i] == 1:
            viable.append([rmse_toe_height_plot[i], frequency[i]])

    # Sorts by first element (ie RMSE)
    top_viable = sorted(viable)
    if len(top_viable) >= 5:
        top_viable = top_viable[:5]

    # Find fatigues
    emg_data = load_data('./data/ta_vs_gait.csv')
    emg_data = np.array(emg_data)
    emg_function = get_norm_emg(emg_data)

    fatigues = []
    all_fatigues = []
    for i in range(len(top_viable)):
        a = Activation(top_viable[i][1], duty_cycle, scaling, non_linearity)
        a.get_activation_signal(emg_function, shape="halfsin")
        fatigues.append([a.get_fatigue(), i])

    for i in range(len(viable)):
        a = Activation(viable[i][1], duty_cycle, scaling, non_linearity)
        a.get_activation_signal(emg_function, shape="halfsin")
        all_fatigues.append([a.get_fatigue(), i])

    # Sorts by first element (ie fatigue)
    top_fatigues = sorted(fatigues)
    optimal = top_viable[top_fatigues[0][1]]
    print(optimal)
コード例 #5
0
                    rmse_toe_height_plot[i][j], independent_1[i][j],
                    independent_2[i][j]
                ])

    # Sorts by first element (ie RMSE)
    top_viable = sorted(viable)
    if len(top_viable) >= 5:
        top_viable = top_viable[:5]

    # Find fatigues
    emg_data = load_data('./data/ta_vs_gait.csv')
    emg_data = np.array(emg_data)
    emg_function = get_norm_emg(emg_data)

    fatigues = []
    all_fatigues = []
    for i in range(len(top_viable)):
        a = Activation(frequency, duty_cycle, scaling, top_viable[i][1])
        a.get_activation_signal(emg_function, shape=shape[top_viable[i][2]])
        fatigues.append([a.get_fatigue(), i])

    for i in range(len(viable)):
        a = Activation(frequency, duty_cycle, scaling, viable[i][1])
        a.get_activation_signal(emg_function, shape=shape[viable[i][2]])
        all_fatigues.append([a.get_fatigue(), i])

    # Sorts by first element (ie fatigue)
    top_fatigues = sorted(fatigues)
    optimal = top_viable[top_fatigues[0][1]]
    print(optimal)