コード例 #1
0
def handle_standard_args(args, multiprocess=True):
    def inject_arg(name, value):
        assert name in INJECTABLES
        inject.add_injectable(name, value)

    if args.working_dir:
        # activitysim will look in the current working directory for
        # 'configs', 'data', and 'output' folders by default
        os.chdir(args.working_dir)

    if args.settings_file:
        inject_arg('settings_file_name', args.settings_file)

    if args.config:
        inject_arg('configs_dir', args.config)

    if args.data:
        inject_arg('data_dir', args.data)

    if args.output:
        inject_arg('output_dir', args.output)

    if multiprocess and args.multiprocess:
        config_paths = validate_injectable('configs_dir')

        if not os.path.exists('configs_mp'):
            logger.warning("could not find 'configs_mp'. skipping...")
        else:
            logger.info("adding 'configs_mp' to config_dir list...")
            config_paths.insert(0, 'configs_mp')
            inject_arg('configs_dir', config_paths)

        config.override_setting('multiprocess', args.multiprocess)

    for injectable in ['configs_dir', 'data_dir', 'output_dir']:
        validate_injectable(injectable)

    if args.pipeline:
        inject.add_injectable('pipeline_file_name', args.pipeline)

    if args.resume:
        config.override_setting('resume_after', args.resume)
コード例 #2
0
def run(args):
    """
    Run the models. Specify a project folder using the '--working_dir' option,
    or point to the config, data, and output folders directly with
    '--config', '--data', and '--output'. Both '--config' and '--data' can be
    specified multiple times. Directories listed first take precedence.

    returns:
        int: sys.exit exit code
    """

    # register abm steps and other abm-specific injectables
    # by default, assume we are running activitysim.abm
    # other callers (e.g. populationsim) will have to arrange to register their own steps and injectables
    # (presumably) in a custom run_simulation.py instead of using the 'activitysim run' command
    if not inject.is_injectable('preload_injectables'):
        from activitysim import abm  # register abm steps and other abm-specific injectables

    tracing.config_logger(basic=True)
    handle_standard_args(args)  # possibly update injectables

    # legacy support for run_list setting nested 'models' and 'resume_after' settings
    if config.setting('run_list'):
        warnings.warn(
            "Support for 'run_list' settings group will be removed.\n"
            "The run_list.steps setting is renamed 'models'.\n"
            "The run_list.resume_after setting is renamed 'resume_after'.\n"
            "Specify both 'models' and 'resume_after' directly in settings config file.",
            FutureWarning)
        run_list = config.setting('run_list')
        if 'steps' in run_list:
            assert not config.setting('models'), \
                f"Don't expect 'steps' in run_list and 'models' as stand-alone setting!"
            config.override_setting('models', run_list['steps'])

        if 'resume_after' in run_list:
            assert not config.setting('resume_after'), \
                f"Don't expect 'resume_after' both in run_list and as stand-alone setting!"
            config.override_setting('resume_after', run_list['resume_after'])

    # If you provide a resume_after argument to pipeline.run
    # the pipeline manager will attempt to load checkpointed tables from the checkpoint store
    # and resume pipeline processing on the next submodel step after the specified checkpoint
    resume_after = config.setting('resume_after', None)

    # cleanup if not resuming
    if not resume_after:
        cleanup_output_files()
    elif config.setting('cleanup_trace_files_on_resume', False):
        tracing.delete_trace_files()

    tracing.config_logger(
        basic=False)  # update using possibly new logging configs
    config.filter_warnings()
    logging.captureWarnings(capture=True)

    # directories
    for k in ['configs_dir', 'settings_file_name', 'data_dir', 'output_dir']:
        logger.info('SETTING %s: %s' % (k, inject.get_injectable(k, None)))

    log_settings = inject.get_injectable('log_settings', {})
    for k in log_settings:
        logger.info('SETTING %s: %s' % (k, config.setting(k)))

    t0 = tracing.print_elapsed_time()

    if config.setting('multiprocess', False):
        logger.info('run multiprocess simulation')

        from activitysim.core import mp_tasks
        run_list = mp_tasks.get_run_list()
        injectables = {k: inject.get_injectable(k) for k in INJECTABLES}
        mp_tasks.run_multiprocess(run_list, injectables)

        assert not pipeline.is_open()

        if config.setting('cleanup_pipeline_after_run', False):
            pipeline.cleanup_pipeline()

    else:
        logger.info('run single process simulation')

        pipeline.run(models=config.setting('models'),
                     resume_after=resume_after)

        if config.setting('cleanup_pipeline_after_run', False):
            pipeline.cleanup_pipeline(
            )  # has side effect of closing open pipeline
        else:
            pipeline.close_pipeline()

        chunk.log_write_hwm()

    tracing.print_elapsed_time('all models', t0)

    return 0
コード例 #3
0
def run(args):
    """
    Run the models. Specify a project folder using the '--working_dir' option,
    or point to the config, data, and output folders directly with
    '--config', '--data', and '--output'. Both '--config' and '--data' can be
    specified multiple times. Directories listed first take precedence.

    returns:
        int: sys.exit exit code
    """

    # register abm steps and other abm-specific injectables
    # by default, assume we are running activitysim.abm
    # other callers (e.g. populationsim) will have to arrange to register their own steps and injectables
    # (presumably) in a custom run_simulation.py instead of using the 'activitysim run' command
    if not inject.is_injectable('preload_injectables'):
        from activitysim import abm  # register abm steps and other abm-specific injectables

    tracing.config_logger(basic=True)
    handle_standard_args(args)  # possibly update injectables

    # legacy support for run_list setting nested 'models' and 'resume_after' settings
    if config.setting('run_list'):
        warnings.warn(
            "Support for 'run_list' settings group will be removed.\n"
            "The run_list.steps setting is renamed 'models'.\n"
            "The run_list.resume_after setting is renamed 'resume_after'.\n"
            "Specify both 'models' and 'resume_after' directly in settings config file.",
            FutureWarning)
        run_list = config.setting('run_list')
        if 'steps' in run_list:
            assert not config.setting('models'), \
                f"Don't expect 'steps' in run_list and 'models' as stand-alone setting!"
            config.override_setting('models', run_list['steps'])

        if 'resume_after' in run_list:
            assert not config.setting('resume_after'), \
                f"Don't expect 'resume_after' both in run_list and as stand-alone setting!"
            config.override_setting('resume_after', run_list['resume_after'])

    # If you provide a resume_after argument to pipeline.run
    # the pipeline manager will attempt to load checkpointed tables from the checkpoint store
    # and resume pipeline processing on the next submodel step after the specified checkpoint
    resume_after = config.setting('resume_after', None)

    # cleanup if not resuming
    if not resume_after:
        cleanup_output_files()
    elif config.setting('cleanup_trace_files_on_resume', False):
        tracing.delete_trace_files()

    tracing.config_logger(
        basic=False)  # update using possibly new logging configs
    config.filter_warnings()
    logging.captureWarnings(capture=True)

    # directories
    for k in ['configs_dir', 'settings_file_name', 'data_dir', 'output_dir']:
        logger.info('SETTING %s: %s' % (k, inject.get_injectable(k, None)))

    log_settings = inject.get_injectable('log_settings', {})
    for k in log_settings:
        logger.info('SETTING %s: %s' % (k, config.setting(k)))

    # OMP_NUM_THREADS: openmp
    # OPENBLAS_NUM_THREADS: openblas
    # MKL_NUM_THREADS: mkl
    for env in ['MKL_NUM_THREADS', 'OMP_NUM_THREADS', 'OPENBLAS_NUM_THREADS']:
        logger.info(f"ENV {env}: {os.getenv(env)}")

    np_info_keys = [
        'atlas_blas_info', 'atlas_blas_threads_info', 'atlas_info',
        'atlas_threads_info', 'blas_info', 'blas_mkl_info', 'blas_opt_info',
        'lapack_info', 'lapack_mkl_info', 'lapack_opt_info', 'mkl_info'
    ]

    for cfg_key in np_info_keys:
        info = np.__config__.get_info(cfg_key)
        if info:
            for info_key in ['libraries']:
                if info_key in info:
                    logger.info(
                        f"NUMPY {cfg_key} {info_key}: {info[info_key]}")

    t0 = tracing.print_elapsed_time()

    try:
        if config.setting('multiprocess', False):
            logger.info('run multiprocess simulation')

            from activitysim.core import mp_tasks
            injectables = {k: inject.get_injectable(k) for k in INJECTABLES}
            mp_tasks.run_multiprocess(injectables)

            assert not pipeline.is_open()

            if config.setting('cleanup_pipeline_after_run', False):
                pipeline.cleanup_pipeline()

        else:
            logger.info('run single process simulation')

            pipeline.run(models=config.setting('models'),
                         resume_after=resume_after)

            if config.setting('cleanup_pipeline_after_run', False):
                pipeline.cleanup_pipeline(
                )  # has side effect of closing open pipeline
            else:
                pipeline.close_pipeline()

            mem.log_global_hwm()  # main process
    except Exception:
        # log time until error and the error traceback
        tracing.print_elapsed_time('all models until this error', t0)
        logger.exception('activitysim run encountered an unrecoverable error')
        raise

    chunk.consolidate_logs()
    mem.consolidate_logs()

    tracing.print_elapsed_time('all models', t0)

    return 0