コード例 #1
0
def train(rank, args, shared_model, counter, lock, optimizer=None):
    FloatTensor = torch.cuda.FloatTensor if args.use_cuda else torch.FloatTensor
    
    env = gym.make("FetchPickAndPlace-v1")
    env2 = gym.wrappers.FlattenDictWrapper(env, dict_keys=['observation', 'desired_goal'])

    model = Actor()
    model2 = second()

    if args.use_cuda:
        model.cuda()
        model2.cuda()

    if os.path.isfile(args.save_path2):
        print('Loading second parametets ...')
        pretrained_dict = torch.load(args.save_path2)
        model_dict2 = model2.state_dict()
        pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict2}
        model_dict2.update(pretrained_dict) 
        model2.load_state_dict(model_dict2)
    
    for p in model.fc1.parameters():
        p.requires_grad = False
    for p in model.fc2.parameters():
        p.requires_grad = False
        
    if optimizer is None:
        optimizer = optim.Adam(shared_model.parameters(), lr=args.lr)
    
    model.train()
    model2.eval()
    done = True       
    for num_iter in count():
        with lock:
            counter.value += 1
        #print(num_iter, counter.value)
        lastObs = env.reset()
        goal = lastObs['desired_goal']
        objectPos = lastObs['observation'][3:6]
        object_rel_pos = lastObs['observation'][6:9]
        object_oriented_goal = object_rel_pos.copy()
        object_oriented_goal[2] += 0.03 # first make the gripper go slightly above the object    
        timeStep = 0 #count the total number of timesteps
        if rank == 0:

            if num_iter % args.save_interval == 0 and num_iter > 0:
                #print ("Saving model at :" + args.save_path)            
                torch.save(shared_model.state_dict(), args.save_path1)

        if num_iter % (args.save_interval * 2.5) == 0 and num_iter > 0 and rank == 1:    # Second saver in-case first processes crashes 
            #print ("Saving model for process 1 at :" + args.save_path)            
            torch.save(shared_model.state_dict(), args.save_path1)
        
        model.load_state_dict(shared_model.state_dict())
        values, log_probs, rewards, entropies = [], [], [], []
        if done:
            cx = Variable(torch.zeros(1, 32)).type(FloatTensor)
            hx = Variable(torch.zeros(1, 32)).type(FloatTensor)
        else:
            cx = Variable(cx.data).type(FloatTensor)
            hx = Variable(hx.data).type(FloatTensor)

        state_inp = torch.from_numpy(env2.observation(lastObs)).type(FloatTensor)
        #criterion = nn.MSELoss()
        value, y, (hx, cx) = model(state_inp, hx, cx)
        prob = F.softmax(y)
        log_prob = F.log_softmax(y, dim=-1)
        act_model = prob.max(-1, keepdim=True)[1].data
        entropy = -(log_prob * prob).sum(-1, keepdim=True)
        log_prob = log_prob.gather(-1, Variable(act_model))
        action_out = act_model.to(torch.device("cpu"))
        #action_out = torch.tensor([[1]])
        entropies.append(entropy), log_probs.append(log_prob), values.append(value)
        #print(action_out)
        while np.linalg.norm(object_oriented_goal) >= 0.015 and timeStep <= env._max_episode_steps:
            #env.render()
            action = [0, 0, 0, 0, 0, 0]
            act_tensor= act(state_inp, action_out, model2)      
            #print(act_tensor)     
            for i in range(len(object_oriented_goal)):
                action[i] = act_tensor[i].cpu().detach().numpy()

            object_oriented_goal = object_rel_pos.copy()            
            object_oriented_goal[2] += 0.03
            
            action[3] = 0.05
            obsDataNew, reward, done, info = env.step(action)
            timeStep += 1
            objectPos = obsDataNew['observation'][3:6]
            object_rel_pos = obsDataNew['observation'][6:9]
            state_inp = torch.from_numpy(env2.observation(obsDataNew)).type(FloatTensor)
            if timeStep >= env._max_episode_steps: 
                reward = torch.Tensor([-1.0]).type(FloatTensor)
                break
        
        if timeStep < env._max_episode_steps: 
            reward = torch.Tensor([1.0]).type(FloatTensor)
        rewards.append(reward)
        
        value, y, (hx, cx) = model(state_inp, hx, cx)
        prob = F.softmax(y)
        log_prob = F.log_softmax(y, dim=-1)
        act_model = prob.max(-1, keepdim=True)[1].data
        entropy = -(log_prob * prob).sum(-1, keepdim=True)
        log_prob = log_prob.gather(-1, Variable(act_model))
        action_out = act_model.to(torch.device("cpu"))
        entropies.append(entropy), log_probs.append(log_prob), values.append(value)
        #action_out = torch.tensor([[0]])
        while np.linalg.norm(object_rel_pos) >= 0.005 and timeStep <= env._max_episode_steps :
            #env.render()
            action = [0, 0, 0, 0, 0, 0]
            act_tensor= act(state_inp, action_out, model2)   

            for i in range(len(object_oriented_goal)):
                action[i] = act_tensor[i].cpu().detach().numpy()
            
            action[3]= -0.01 
            if action_out == 0:
                action[4] = act_tensor[3].cpu().detach().numpy()
            
            obsDataNew, reward, done, info = env.step(action)
            timeStep += 1

            objectPos = obsDataNew['observation'][3:6]
            object_rel_pos = obsDataNew['observation'][6:9]
            state_inp = torch.from_numpy(env2.observation(obsDataNew)).type(FloatTensor)
            if timeStep >= env._max_episode_steps: 
                reward = torch.Tensor([-1.0]).type(FloatTensor)
                break
        
        if timeStep < env._max_episode_steps: 
            reward = torch.Tensor([1.0]).type(FloatTensor)
        rewards.append(reward)

        value, y, (hx, cx) = model(state_inp, hx, cx)
        prob = F.softmax(y)
        log_prob = F.log_softmax(y, dim=-1)
        act_model = prob.max(-1, keepdim=True)[1].data
        entropy = -(log_prob * prob).sum(-1, keepdim=True)
        log_prob = log_prob.gather(-1, Variable(act_model))
        action_out = act_model.to(torch.device("cpu"))
        entropies.append(entropy), log_probs.append(log_prob), values.append(value)
        #action_out = torch.tensor([[2]])
        while np.linalg.norm(goal - objectPos) >= 0.01 and timeStep <= env._max_episode_steps :
            
            #env.render()
            action = [0, 0, 0, 0, 0, 0]
            act_tensor= act(state_inp, action_out, model2)

            for i in range(len(goal - objectPos)):
                action[i] = act_tensor[i].cpu().detach().numpy()
            
            action[3] = -0.01
            obsDataNew, reward, done, info = env.step(action)
            timeStep += 1
            state_inp = torch.from_numpy(env2.observation(obsDataNew)).type(FloatTensor)
            objectPos = obsDataNew['observation'][3:6]
            object_rel_pos = obsDataNew['observation'][6:9]
            if timeStep >= env._max_episode_steps: 
                break

        while True: #limit the number of timesteps in the episode to a fixed duration
            #env.render()
            action = [0, 0, 0, 0, 0, 0]
            action[3] = -0.01 # keep the gripper closed

            obsDataNew, reward, done, info = env.step(action)
            timeStep += 1

            objectPos = obsDataNew['observation'][3:6]
            object_rel_pos = obsDataNew['observation'][6:9]

            if timeStep >= env._max_episode_steps: break
        
        if info['is_success'] == 1.0:
            reward = torch.Tensor([1.0]).type(FloatTensor)
        else:
            reward = torch.Tensor([-1.0]).type(FloatTensor)
        rewards.append(reward)
        
        R = torch.zeros(1, 1)
        values.append(Variable(R).type(FloatTensor))
        policy_loss = 0
        value_loss = 0
        R = Variable(R).type(FloatTensor)
        gae = torch.zeros(1, 1).type(FloatTensor)

        for i in reversed(range(len(rewards))):
            R = args.gamma * R + rewards[i]
            advantage = R - values[i]
            value_loss = value_loss + 0.5 * advantage.pow(2)

            delta_t = rewards[i] + args.gamma * \
                values[i + 1].data - values[i].data
            gae = gae * args.gamma * args.tau + delta_t

            policy_loss = policy_loss - \
                log_probs[i] * Variable(gae).type(FloatTensor)

        total_loss = policy_loss + args.value_loss_coef * value_loss
        optimizer.zero_grad()

        (total_loss).backward(retain_graph=True)
        torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

        ensure_shared_grads(model, shared_model)
        optimizer.step()
コード例 #2
0
ファイル: test.py プロジェクト: cvas-ug/simple-reactive-nn
                    default=0.5,
                    help='value loss coefficient (default: 0.5)')
parser.add_argument('--gamma',
                    type=float,
                    default=0.9,
                    help='discount factor for rewards (default: 0.9)')
parser.add_argument('--tau',
                    type=float,
                    default=1.00,
                    help='parameter for GAE (default: 1.00)')
args = parser.parse_args()

model = Actor()
model2 = second()
if args.use_cuda:
    model.cuda()
    model2.cuda()
torch.cuda.manual_seed_all(21)
optimizer = optim.Adam(model.parameters(), lr=0.0001)

if os.path.isfile(args.save_path1):
    print('Loading A3C parametets ...')
    model.load_state_dict(torch.load(args.save_path1))

if os.path.isfile(args.save_path2):
    print('Loading second parametets ...')
    pretrained_dict = torch.load(args.save_path2)
    model_dict2 = model2.state_dict()
    pretrained_dict = {
        k: v
        for k, v in pretrained_dict.items() if k in model_dict2
コード例 #3
0
def test(rank, args, shared_model, counter):
    
    FloatTensor = torch.cuda.FloatTensor if args.use_cuda else torch.FloatTensor
    env = gym.make("FetchPickAndPlace-v1")
    env2 = gym.wrappers.FlattenDictWrapper(env, dict_keys=['observation', 'desired_goal'])

    model = Actor()
    model2 = second()
    if args.use_cuda:
        model.cuda()
        model2.cuda()

    done = True       
    

    savefile = os.getcwd() + '/train/mario_curves.csv'
    title = ['No. episodes', 'No. of success']
    with open(savefile, 'a', newline='') as sfile:
        writer = csv.writer(sfile)
        writer.writerow(title)   

    if os.path.isfile(args.save_path2):
        print('Loading second parametets ...')
        pretrained_dict = torch.load(args.save_path2)
        model_dict2 = model2.state_dict()
        pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict2}
        model_dict2.update(pretrained_dict) 
        model2.load_state_dict(model_dict2)

    model2.eval()
    model.eval()
    while True:
        model.load_state_dict(shared_model.state_dict())
        model.eval()
        ep_num = 0
        success = 0
        num_ep = counter.value
        while ep_num < 50:
            ep_num +=1            
            lastObs = env.reset()
            goal = lastObs['desired_goal']
            objectPos = lastObs['observation'][3:6]
            object_rel_pos = lastObs['observation'][6:9]
            object_oriented_goal = object_rel_pos.copy()
            object_oriented_goal[2] += 0.03 # first make the gripper go slightly above the object    
            timeStep = 0
            if done:
                cx = Variable(torch.zeros(1, 32)).type(FloatTensor)
                hx = Variable(torch.zeros(1, 32)).type(FloatTensor)
            else:
                cx = Variable(cx.data).type(FloatTensor)
                hx = Variable(hx.data).type(FloatTensor)

            state_inp = torch.from_numpy(env2.observation(lastObs)).type(FloatTensor)
            value, y, (hx, cx) = model(state_inp, hx, cx)
            prob = F.softmax(y)
            act_model = prob.max(-1, keepdim=True)[1].data
            action_out = act_model.to(torch.device("cpu"))
            ##action_out = torch.tensor([[1]])
            while np.linalg.norm(object_oriented_goal) >= 0.015 and timeStep <= env._max_episode_steps:
                #env.render()
                action = [0, 0, 0, 0, 0, 0]
                act_tensor= act(state_inp, action_out, model2)      
                #print(act_tensor)     
                for i in range(len(object_oriented_goal)):
                    action[i] = act_tensor[i].cpu().detach().numpy()

                object_oriented_goal = object_rel_pos.copy()            
                object_oriented_goal[2] += 0.03
                
                action[3] = 0.05
                obsDataNew, reward, done, info = env.step(action)
                timeStep += 1
                objectPos = obsDataNew['observation'][3:6]
                object_rel_pos = obsDataNew['observation'][6:9]
                state_inp = torch.from_numpy(env2.observation(obsDataNew)).type(FloatTensor)
                if timeStep >= env._max_episode_steps: 
                    break
    
            value, y, (hx, cx) = model(state_inp, hx, cx)
            prob = F.softmax(y)
            act_model = prob.max(-1, keepdim=True)[1].data
            action_out = act_model.to(torch.device("cpu"))
            #action_out = torch.tensor([[0]])
            while np.linalg.norm(object_rel_pos) >= 0.005 and timeStep <= env._max_episode_steps :
                #env.render()
                action = [0, 0, 0, 0, 0, 0]
                act_tensor= act(state_inp, action_out, model2)

                for i in range(len(object_oriented_goal)):
                    action[i] = act_tensor[i].cpu().detach().numpy()
                
                action[3]= -0.01 
                if action_out ==0:
                    action[4] = act_tensor[3].cpu().detach().numpy()
                
                obsDataNew, reward, done, info = env.step(action)
                timeStep += 1

                objectPos = obsDataNew['observation'][3:6]
                object_rel_pos = obsDataNew['observation'][6:9]
                state_inp = torch.from_numpy(env2.observation(obsDataNew)).type(FloatTensor)
                if timeStep >= env._max_episode_steps: 
                    break
            
            value, y, (hx, cx) = model(state_inp, hx, cx)
            prob = F.softmax(y)            
            act_model = prob.max(-1, keepdim=True)[1].data            
            action_out = act_model.to(torch.device("cpu"))
            #action_out = torch.tensor([[2]])
            while np.linalg.norm(goal - objectPos) >= 0.01 and timeStep <= env._max_episode_steps :
            
                #env.render()
                action = [0, 0, 0, 0, 0, 0]
                act_tensor= act(state_inp, action_out, model2)

                for i in range(len(goal - objectPos)):
                    action[i] = act_tensor[i].cpu().detach().numpy()
                
                action[3] = -0.01
                obsDataNew, reward, done, info = env.step(action)
                timeStep += 1
                state_inp = torch.from_numpy(env2.observation(obsDataNew)).type(FloatTensor)
                objectPos = obsDataNew['observation'][3:6]
                object_rel_pos = obsDataNew['observation'][6:9]
                if timeStep >= env._max_episode_steps: 
                    break
            
            while True: #limit the number of timesteps in the episode to a fixed duration
                #env.render()
                action = [0, 0, 0, 0, 0, 0]
                action[3] = -0.01 # keep the gripper closed

                obsDataNew, reward, done, info = env.step(action)
                timeStep += 1

                objectPos = obsDataNew['observation'][3:6]
                object_rel_pos = obsDataNew['observation'][6:9]
                if timeStep >= env._max_episode_steps: break
                
            if info['is_success'] == 1.0:
                success +=1
            if done:
                #lastObs = env.reset()
                if ep_num % 49==0:            
                    print("num episodes {}, success {}".format(num_ep, success))
                    data = [counter.value, success]
                    with open(savefile, 'a', newline='') as sfile:
                        writer = csv.writer(sfile)
                        writer.writerows([data])
コード例 #4
0
                    type=float,
                    default=0.0001,
                    help='learning rate (default: 0.0001)')
args = parser.parse_args()

mp = _mp.get_context('spawn')
print("Cuda: " + str(torch.cuda.is_available()))

if __name__ == '__main__':
    os.environ['OMP_NUM_THREADS'] = '1'

    args = parser.parse_args()
    env = gym.make("FetchPickAndPlace-v1")
    shared_model = Actor()
    if args.use_cuda:
        shared_model.cuda()
    torch.cuda.manual_seed_all(30)

    shared_model.share_memory()

    if os.path.isfile(args.save_path1):
        print('Loading A3C parametets ...')
        pretrained_dict = torch.load(args.save_path1)
        model_dict = shared_model.state_dict()
        pretrained_dict = {
            k: v
            for k, v in pretrained_dict.items() if k in model_dict
        }
        model_dict.update(pretrained_dict)
        shared_model.load_state_dict(model_dict)