def train(rank, args, shared_model, counter, lock, optimizer=None): FloatTensor = torch.cuda.FloatTensor if args.use_cuda else torch.FloatTensor env = gym.make("FetchPickAndPlace-v1") env2 = gym.wrappers.FlattenDictWrapper(env, dict_keys=['observation', 'desired_goal']) model = Actor() model2 = second() if args.use_cuda: model.cuda() model2.cuda() if os.path.isfile(args.save_path2): print('Loading second parametets ...') pretrained_dict = torch.load(args.save_path2) model_dict2 = model2.state_dict() pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict2} model_dict2.update(pretrained_dict) model2.load_state_dict(model_dict2) for p in model.fc1.parameters(): p.requires_grad = False for p in model.fc2.parameters(): p.requires_grad = False if optimizer is None: optimizer = optim.Adam(shared_model.parameters(), lr=args.lr) model.train() model2.eval() done = True for num_iter in count(): with lock: counter.value += 1 #print(num_iter, counter.value) lastObs = env.reset() goal = lastObs['desired_goal'] objectPos = lastObs['observation'][3:6] object_rel_pos = lastObs['observation'][6:9] object_oriented_goal = object_rel_pos.copy() object_oriented_goal[2] += 0.03 # first make the gripper go slightly above the object timeStep = 0 #count the total number of timesteps if rank == 0: if num_iter % args.save_interval == 0 and num_iter > 0: #print ("Saving model at :" + args.save_path) torch.save(shared_model.state_dict(), args.save_path1) if num_iter % (args.save_interval * 2.5) == 0 and num_iter > 0 and rank == 1: # Second saver in-case first processes crashes #print ("Saving model for process 1 at :" + args.save_path) torch.save(shared_model.state_dict(), args.save_path1) model.load_state_dict(shared_model.state_dict()) values, log_probs, rewards, entropies = [], [], [], [] if done: cx = Variable(torch.zeros(1, 32)).type(FloatTensor) hx = Variable(torch.zeros(1, 32)).type(FloatTensor) else: cx = Variable(cx.data).type(FloatTensor) hx = Variable(hx.data).type(FloatTensor) state_inp = torch.from_numpy(env2.observation(lastObs)).type(FloatTensor) #criterion = nn.MSELoss() value, y, (hx, cx) = model(state_inp, hx, cx) prob = F.softmax(y) log_prob = F.log_softmax(y, dim=-1) act_model = prob.max(-1, keepdim=True)[1].data entropy = -(log_prob * prob).sum(-1, keepdim=True) log_prob = log_prob.gather(-1, Variable(act_model)) action_out = act_model.to(torch.device("cpu")) #action_out = torch.tensor([[1]]) entropies.append(entropy), log_probs.append(log_prob), values.append(value) #print(action_out) while np.linalg.norm(object_oriented_goal) >= 0.015 and timeStep <= env._max_episode_steps: #env.render() action = [0, 0, 0, 0, 0, 0] act_tensor= act(state_inp, action_out, model2) #print(act_tensor) for i in range(len(object_oriented_goal)): action[i] = act_tensor[i].cpu().detach().numpy() object_oriented_goal = object_rel_pos.copy() object_oriented_goal[2] += 0.03 action[3] = 0.05 obsDataNew, reward, done, info = env.step(action) timeStep += 1 objectPos = obsDataNew['observation'][3:6] object_rel_pos = obsDataNew['observation'][6:9] state_inp = torch.from_numpy(env2.observation(obsDataNew)).type(FloatTensor) if timeStep >= env._max_episode_steps: reward = torch.Tensor([-1.0]).type(FloatTensor) break if timeStep < env._max_episode_steps: reward = torch.Tensor([1.0]).type(FloatTensor) rewards.append(reward) value, y, (hx, cx) = model(state_inp, hx, cx) prob = F.softmax(y) log_prob = F.log_softmax(y, dim=-1) act_model = prob.max(-1, keepdim=True)[1].data entropy = -(log_prob * prob).sum(-1, keepdim=True) log_prob = log_prob.gather(-1, Variable(act_model)) action_out = act_model.to(torch.device("cpu")) entropies.append(entropy), log_probs.append(log_prob), values.append(value) #action_out = torch.tensor([[0]]) while np.linalg.norm(object_rel_pos) >= 0.005 and timeStep <= env._max_episode_steps : #env.render() action = [0, 0, 0, 0, 0, 0] act_tensor= act(state_inp, action_out, model2) for i in range(len(object_oriented_goal)): action[i] = act_tensor[i].cpu().detach().numpy() action[3]= -0.01 if action_out == 0: action[4] = act_tensor[3].cpu().detach().numpy() obsDataNew, reward, done, info = env.step(action) timeStep += 1 objectPos = obsDataNew['observation'][3:6] object_rel_pos = obsDataNew['observation'][6:9] state_inp = torch.from_numpy(env2.observation(obsDataNew)).type(FloatTensor) if timeStep >= env._max_episode_steps: reward = torch.Tensor([-1.0]).type(FloatTensor) break if timeStep < env._max_episode_steps: reward = torch.Tensor([1.0]).type(FloatTensor) rewards.append(reward) value, y, (hx, cx) = model(state_inp, hx, cx) prob = F.softmax(y) log_prob = F.log_softmax(y, dim=-1) act_model = prob.max(-1, keepdim=True)[1].data entropy = -(log_prob * prob).sum(-1, keepdim=True) log_prob = log_prob.gather(-1, Variable(act_model)) action_out = act_model.to(torch.device("cpu")) entropies.append(entropy), log_probs.append(log_prob), values.append(value) #action_out = torch.tensor([[2]]) while np.linalg.norm(goal - objectPos) >= 0.01 and timeStep <= env._max_episode_steps : #env.render() action = [0, 0, 0, 0, 0, 0] act_tensor= act(state_inp, action_out, model2) for i in range(len(goal - objectPos)): action[i] = act_tensor[i].cpu().detach().numpy() action[3] = -0.01 obsDataNew, reward, done, info = env.step(action) timeStep += 1 state_inp = torch.from_numpy(env2.observation(obsDataNew)).type(FloatTensor) objectPos = obsDataNew['observation'][3:6] object_rel_pos = obsDataNew['observation'][6:9] if timeStep >= env._max_episode_steps: break while True: #limit the number of timesteps in the episode to a fixed duration #env.render() action = [0, 0, 0, 0, 0, 0] action[3] = -0.01 # keep the gripper closed obsDataNew, reward, done, info = env.step(action) timeStep += 1 objectPos = obsDataNew['observation'][3:6] object_rel_pos = obsDataNew['observation'][6:9] if timeStep >= env._max_episode_steps: break if info['is_success'] == 1.0: reward = torch.Tensor([1.0]).type(FloatTensor) else: reward = torch.Tensor([-1.0]).type(FloatTensor) rewards.append(reward) R = torch.zeros(1, 1) values.append(Variable(R).type(FloatTensor)) policy_loss = 0 value_loss = 0 R = Variable(R).type(FloatTensor) gae = torch.zeros(1, 1).type(FloatTensor) for i in reversed(range(len(rewards))): R = args.gamma * R + rewards[i] advantage = R - values[i] value_loss = value_loss + 0.5 * advantage.pow(2) delta_t = rewards[i] + args.gamma * \ values[i + 1].data - values[i].data gae = gae * args.gamma * args.tau + delta_t policy_loss = policy_loss - \ log_probs[i] * Variable(gae).type(FloatTensor) total_loss = policy_loss + args.value_loss_coef * value_loss optimizer.zero_grad() (total_loss).backward(retain_graph=True) torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) ensure_shared_grads(model, shared_model) optimizer.step()
default=0.5, help='value loss coefficient (default: 0.5)') parser.add_argument('--gamma', type=float, default=0.9, help='discount factor for rewards (default: 0.9)') parser.add_argument('--tau', type=float, default=1.00, help='parameter for GAE (default: 1.00)') args = parser.parse_args() model = Actor() model2 = second() if args.use_cuda: model.cuda() model2.cuda() torch.cuda.manual_seed_all(21) optimizer = optim.Adam(model.parameters(), lr=0.0001) if os.path.isfile(args.save_path1): print('Loading A3C parametets ...') model.load_state_dict(torch.load(args.save_path1)) if os.path.isfile(args.save_path2): print('Loading second parametets ...') pretrained_dict = torch.load(args.save_path2) model_dict2 = model2.state_dict() pretrained_dict = { k: v for k, v in pretrained_dict.items() if k in model_dict2
def test(rank, args, shared_model, counter): FloatTensor = torch.cuda.FloatTensor if args.use_cuda else torch.FloatTensor env = gym.make("FetchPickAndPlace-v1") env2 = gym.wrappers.FlattenDictWrapper(env, dict_keys=['observation', 'desired_goal']) model = Actor() model2 = second() if args.use_cuda: model.cuda() model2.cuda() done = True savefile = os.getcwd() + '/train/mario_curves.csv' title = ['No. episodes', 'No. of success'] with open(savefile, 'a', newline='') as sfile: writer = csv.writer(sfile) writer.writerow(title) if os.path.isfile(args.save_path2): print('Loading second parametets ...') pretrained_dict = torch.load(args.save_path2) model_dict2 = model2.state_dict() pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict2} model_dict2.update(pretrained_dict) model2.load_state_dict(model_dict2) model2.eval() model.eval() while True: model.load_state_dict(shared_model.state_dict()) model.eval() ep_num = 0 success = 0 num_ep = counter.value while ep_num < 50: ep_num +=1 lastObs = env.reset() goal = lastObs['desired_goal'] objectPos = lastObs['observation'][3:6] object_rel_pos = lastObs['observation'][6:9] object_oriented_goal = object_rel_pos.copy() object_oriented_goal[2] += 0.03 # first make the gripper go slightly above the object timeStep = 0 if done: cx = Variable(torch.zeros(1, 32)).type(FloatTensor) hx = Variable(torch.zeros(1, 32)).type(FloatTensor) else: cx = Variable(cx.data).type(FloatTensor) hx = Variable(hx.data).type(FloatTensor) state_inp = torch.from_numpy(env2.observation(lastObs)).type(FloatTensor) value, y, (hx, cx) = model(state_inp, hx, cx) prob = F.softmax(y) act_model = prob.max(-1, keepdim=True)[1].data action_out = act_model.to(torch.device("cpu")) ##action_out = torch.tensor([[1]]) while np.linalg.norm(object_oriented_goal) >= 0.015 and timeStep <= env._max_episode_steps: #env.render() action = [0, 0, 0, 0, 0, 0] act_tensor= act(state_inp, action_out, model2) #print(act_tensor) for i in range(len(object_oriented_goal)): action[i] = act_tensor[i].cpu().detach().numpy() object_oriented_goal = object_rel_pos.copy() object_oriented_goal[2] += 0.03 action[3] = 0.05 obsDataNew, reward, done, info = env.step(action) timeStep += 1 objectPos = obsDataNew['observation'][3:6] object_rel_pos = obsDataNew['observation'][6:9] state_inp = torch.from_numpy(env2.observation(obsDataNew)).type(FloatTensor) if timeStep >= env._max_episode_steps: break value, y, (hx, cx) = model(state_inp, hx, cx) prob = F.softmax(y) act_model = prob.max(-1, keepdim=True)[1].data action_out = act_model.to(torch.device("cpu")) #action_out = torch.tensor([[0]]) while np.linalg.norm(object_rel_pos) >= 0.005 and timeStep <= env._max_episode_steps : #env.render() action = [0, 0, 0, 0, 0, 0] act_tensor= act(state_inp, action_out, model2) for i in range(len(object_oriented_goal)): action[i] = act_tensor[i].cpu().detach().numpy() action[3]= -0.01 if action_out ==0: action[4] = act_tensor[3].cpu().detach().numpy() obsDataNew, reward, done, info = env.step(action) timeStep += 1 objectPos = obsDataNew['observation'][3:6] object_rel_pos = obsDataNew['observation'][6:9] state_inp = torch.from_numpy(env2.observation(obsDataNew)).type(FloatTensor) if timeStep >= env._max_episode_steps: break value, y, (hx, cx) = model(state_inp, hx, cx) prob = F.softmax(y) act_model = prob.max(-1, keepdim=True)[1].data action_out = act_model.to(torch.device("cpu")) #action_out = torch.tensor([[2]]) while np.linalg.norm(goal - objectPos) >= 0.01 and timeStep <= env._max_episode_steps : #env.render() action = [0, 0, 0, 0, 0, 0] act_tensor= act(state_inp, action_out, model2) for i in range(len(goal - objectPos)): action[i] = act_tensor[i].cpu().detach().numpy() action[3] = -0.01 obsDataNew, reward, done, info = env.step(action) timeStep += 1 state_inp = torch.from_numpy(env2.observation(obsDataNew)).type(FloatTensor) objectPos = obsDataNew['observation'][3:6] object_rel_pos = obsDataNew['observation'][6:9] if timeStep >= env._max_episode_steps: break while True: #limit the number of timesteps in the episode to a fixed duration #env.render() action = [0, 0, 0, 0, 0, 0] action[3] = -0.01 # keep the gripper closed obsDataNew, reward, done, info = env.step(action) timeStep += 1 objectPos = obsDataNew['observation'][3:6] object_rel_pos = obsDataNew['observation'][6:9] if timeStep >= env._max_episode_steps: break if info['is_success'] == 1.0: success +=1 if done: #lastObs = env.reset() if ep_num % 49==0: print("num episodes {}, success {}".format(num_ep, success)) data = [counter.value, success] with open(savefile, 'a', newline='') as sfile: writer = csv.writer(sfile) writer.writerows([data])
type=float, default=0.0001, help='learning rate (default: 0.0001)') args = parser.parse_args() mp = _mp.get_context('spawn') print("Cuda: " + str(torch.cuda.is_available())) if __name__ == '__main__': os.environ['OMP_NUM_THREADS'] = '1' args = parser.parse_args() env = gym.make("FetchPickAndPlace-v1") shared_model = Actor() if args.use_cuda: shared_model.cuda() torch.cuda.manual_seed_all(30) shared_model.share_memory() if os.path.isfile(args.save_path1): print('Loading A3C parametets ...') pretrained_dict = torch.load(args.save_path1) model_dict = shared_model.state_dict() pretrained_dict = { k: v for k, v in pretrained_dict.items() if k in model_dict } model_dict.update(pretrained_dict) shared_model.load_state_dict(model_dict)