コード例 #1
0
ファイル: make_covsqrt_dr5.py プロジェクト: toshiyan/actsims
                                          modlmap > args.fill_min, modlmap <
                                          (args.fill_min +
                                           args.radial_fit_annulus))].mean()

    if args.fill_min is not None:
        n2d_xflat_smoothed[:, :, modlmap < args.fill_min] = fill_val

    n2d_xflat_smoothed[:, :, modlmap < 2] = 0

    # lmax cut
    if args.lmax is not None:
        n2d_xflat_smoothed[:, :, modlmap > args.lmax] = 0

    # remove off diagonals
    if args.no_off:
        n2d_xflat_smoothed = noise.null_off_diagonals(n2d_xflat_smoothed)

    # output 1D spectrum
    if args.debug:
        print('plotting 1D spectrum of n2d_xflat_smoothed with filled values')
        plots.plot_1dspec(n2d_xflat_smoothed,
                          modlmap,
                          pout + '_smoothed_filled',
                          lmin=500)

    if args.do_only_filter_noise:
        ngen.save_filter_noise(n2d_xflat_smoothed,
                               season=args.season,
                               patch=args.patch,
                               array=args.array,
                               coadd=coadd,
コード例 #2
0
ファイル: debug_s16.py プロジェクト: toshiyan/actsims
                              coadd_estimator=coadd,
                              flattened=True,
                              plot_fname=pout + "_n2d_flat")
del splits

radial_pairs = [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (0, 3), (3, 0)]
if smooth:
    n2d_flat_smoothed = noise.smooth_ps(
        n2d_flat.copy(),
        dfact=dfact,
        radial_pairs=radial_pairs,
        plot_fname=pout + "_n2d_flat_smoothed",
        radial_fit_annulus=args.radial_fit_annulus)
else:
    n2d_flat_smoothed = n2d_flat.copy()
if args.no_off: n2d_flat_smoothed = noise.null_off_diagonals(n2d_flat_smoothed)
del n2d_flat

covsqrt = noise.get_covsqrt(n2d_flat_smoothed, args.covsqrt_kind)
del n2d_flat_smoothed
ngen.save_covsqrt(covsqrt,
                  season=season,
                  patch=patch,
                  array=args.array,
                  coadd=coadd,
                  mask_patch=mask_patch)

if nsims > 0:
    bin_edges = np.arange(40, 8000, 40)
    p1ds = []
    for i in range(nsims):