コード例 #1
0
ファイル: admath.py プロジェクト: glider-gun/ad
def log(x, base=None):
    """
    With one argument, return the natural logarithm of x (to base e).

    With two arguments, return the logarithm of x to the given base, calculated 
    as ``log(x)/log(base)``.
    """
    if base is None:
        return log(x, base=e)
    
    if isinstance(x,ADF):
        
        ad_funcs = list(map(to_auto_diff,[x]))

        x = ad_funcs[0].x
        
        ########################################
        # Nominal value of the constructed ADF:
        f = log(x, base)
        
        ########################################

        variables = ad_funcs[0]._get_variables(ad_funcs)
        
        if not variables or isinstance(f, bool):
            return f

        ########################################

        # Calculation of the derivatives with respect to the arguments
        # of f (ad_funcs):

        lc_wrt_args = [1./(x * ln(base))]
        qc_wrt_args = [-1./(x**2 * ln(base))]
        cp_wrt_args = 0.0

        ########################################
        # Calculation of the derivative of f with respect to all the
        # variables (Variable) involved.

        lc_wrt_vars,qc_wrt_vars,cp_wrt_vars = _apply_chain_rule(
                                    ad_funcs,variables,lc_wrt_args,qc_wrt_args,
                                    cp_wrt_args)
                                    
        # The function now returns an ADF object:
        return ADF(f, lc_wrt_vars, qc_wrt_vars, cp_wrt_vars)
    
    else:
#        try: # pythonic: fails gracefully when x is not an array-like object
#            return [log(xi) for xi in x]
#        except TypeError:
        if x.imag:
            return cmath.log(x, base)
        else:
            return math.log(x.real, base)
コード例 #2
0
ファイル: admath.py プロジェクト: kumarremoa/Goferbot
def log(x, base=None):
    """
    With one argument, return the natural logarithm of x (to base e).

    With two arguments, return the logarithm of x to the given base, calculated 
    as ``log(x)/log(base)``.
    """
    if base is None:
        return log(x, base=e)

    if isinstance(x, ADF):

        ad_funcs = list(map(to_auto_diff, [x]))

        x = ad_funcs[0].x

        ########################################
        # Nominal value of the constructed ADF:
        f = log(x, base)

        ########################################

        variables = ad_funcs[0]._get_variables(ad_funcs)

        if not variables or isinstance(f, bool):
            return f

        ########################################

        # Calculation of the derivatives with respect to the arguments
        # of f (ad_funcs):

        lc_wrt_args = [1. / (x * ln(base))]
        qc_wrt_args = [-1. / (x**2 * ln(base))]
        cp_wrt_args = 0.0

        ########################################
        # Calculation of the derivative of f with respect to all the
        # variables (Variable) involved.

        lc_wrt_vars, qc_wrt_vars, cp_wrt_vars = _apply_chain_rule(
            ad_funcs, variables, lc_wrt_args, qc_wrt_args, cp_wrt_args)

        # The function now returns an ADF object:
        return ADF(f, lc_wrt_vars, qc_wrt_vars, cp_wrt_vars)

    else:
        #        try: # pythonic: fails gracefully when x is not an array-like object
        #            return [log(xi) for xi in x]
        #        except TypeError:
        if x.imag:
            return cmath.log(x, base)
        else:
            return math.log(x.real, base)
コード例 #3
0
ファイル: admath.py プロジェクト: glider-gun/ad
def expm1(x):
    """
    Return e**x - 1. For small floats x, the subtraction in exp(x) - 1 can 
    result in a significant loss of precision; the expm1() function provides 
    a way to compute this quantity to full precision::

        >>> exp(1e-5) - 1  # gives result accurate to 11 places
        1.0000050000069649e-05
        >>> expm1(1e-5)    # result accurate to full precision
        1.0000050000166668e-05

    """
    if isinstance(x,ADF):
        ad_funcs = list(map(to_auto_diff,[x]))

        x = ad_funcs[0].x
        
        ########################################
        # Nominal value of the constructed ADF:
        f = expm1(x)
        
        ########################################

        variables = ad_funcs[0]._get_variables(ad_funcs)
        
        if not variables or isinstance(f, bool):
            return f

        ########################################

        # Calculation of the derivatives with respect to the arguments
        # of f (ad_funcs):

        lc_wrt_args = [exp(x)]
        qc_wrt_args = [exp(x)]
        cp_wrt_args = 0.0

        ########################################
        # Calculation of the derivative of f with respect to all the
        # variables (Variable) involved.

        lc_wrt_vars,qc_wrt_vars,cp_wrt_vars = _apply_chain_rule(
                                    ad_funcs,variables,lc_wrt_args,qc_wrt_args,
                                    cp_wrt_args)
                                    
        # The function now returns an ADF object:
        return ADF(f, lc_wrt_vars, qc_wrt_vars, cp_wrt_vars)
    else:
#        try: # pythonic: fails gracefully when x is not an array-like object
#            return [expm1(xi) for xi in x]
#        except TypeError:
        return math.expm1(x) 
コード例 #4
0
ファイル: admath.py プロジェクト: kumarremoa/Goferbot
def expm1(x):
    """
    Return e**x - 1. For small floats x, the subtraction in exp(x) - 1 can 
    result in a significant loss of precision; the expm1() function provides 
    a way to compute this quantity to full precision::

        >>> exp(1e-5) - 1  # gives result accurate to 11 places
        1.0000050000069649e-05
        >>> expm1(1e-5)    # result accurate to full precision
        1.0000050000166668e-05

    """
    if isinstance(x, ADF):
        ad_funcs = list(map(to_auto_diff, [x]))

        x = ad_funcs[0].x

        ########################################
        # Nominal value of the constructed ADF:
        f = expm1(x)

        ########################################

        variables = ad_funcs[0]._get_variables(ad_funcs)

        if not variables or isinstance(f, bool):
            return f

        ########################################

        # Calculation of the derivatives with respect to the arguments
        # of f (ad_funcs):

        lc_wrt_args = [exp(x)]
        qc_wrt_args = [exp(x)]
        cp_wrt_args = 0.0

        ########################################
        # Calculation of the derivative of f with respect to all the
        # variables (Variable) involved.

        lc_wrt_vars, qc_wrt_vars, cp_wrt_vars = _apply_chain_rule(
            ad_funcs, variables, lc_wrt_args, qc_wrt_args, cp_wrt_args)

        # The function now returns an ADF object:
        return ADF(f, lc_wrt_vars, qc_wrt_vars, cp_wrt_vars)
    else:
        #        try: # pythonic: fails gracefully when x is not an array-like object
        #            return [expm1(xi) for xi in x]
        #        except TypeError:
        return math.expm1(x)
コード例 #5
0
ファイル: admath.py プロジェクト: glider-gun/ad
def fabs(x):
    """
    Return the absolute value of x.
    """
    if isinstance(x,ADF):
        ad_funcs = list(map(to_auto_diff,[x]))

        x = ad_funcs[0].x
        
        ########################################
        # Nominal value of the constructed ADF:
        f = fabs(x)
        
        ########################################

        variables = ad_funcs[0]._get_variables(ad_funcs)
        
        if not variables or isinstance(f, bool):
            return f

        ########################################

        # Calculation of the derivatives with respect to the arguments
        # of f (ad_funcs):

        # catch the x=0 exception
        try:
            lc_wrt_args = [x/fabs(x)]
            qc_wrt_args = [1/fabs(x)-(x**2)/fabs(x)**3]
        except ZeroDivisionError:
            lc_wrt_args = [0.0]
            qc_wrt_args = [0.0]
            
        cp_wrt_args = 0.0

        ########################################
        # Calculation of the derivative of f with respect to all the
        # variables (Variable) involved.
        lc_wrt_vars, qc_wrt_vars, cp_wrt_vars = _apply_chain_rule(
                                    ad_funcs, variables, lc_wrt_args,
                                    qc_wrt_args, cp_wrt_args)
                                    
                                    
        # The function now returns an ADF object:
        return ADF(f, lc_wrt_vars, qc_wrt_vars, cp_wrt_vars)
    else:
#        try: # pythonic: fails gracefully when x is not an array-like object
#            return [fabs(xi) for xi in x]
#        except TypeError:
        return math.fabs(x) 
コード例 #6
0
ファイル: admath.py プロジェクト: glider-gun/ad
def log10(x):
    """
    Return the base-10 logarithm of x. This is usually more accurate than 
    ``log(x, 10)``.
    """
    if isinstance(x,ADF):
        
        ad_funcs = list(map(to_auto_diff,[x]))

        x = ad_funcs[0].x
        
        ########################################
        # Nominal value of the constructed ADF:
        f = log10(x)
        
        ########################################

        variables = ad_funcs[0]._get_variables(ad_funcs)
        
        if not variables or isinstance(f, bool):
            return f

        ########################################

        # Calculation of the derivatives with respect to the arguments
        # of f (ad_funcs):

        lc_wrt_args = [1/x/log(10)]
        qc_wrt_args = [-1./x**2/log(10)]
        cp_wrt_args = 0.0

        ########################################
        # Calculation of the derivative of f with respect to all the
        # variables (Variable) involved.

        lc_wrt_vars,qc_wrt_vars,cp_wrt_vars = _apply_chain_rule(
                                    ad_funcs,variables,lc_wrt_args,qc_wrt_args,
                                    cp_wrt_args)
                                    
        # The function now returns an ADF object:
        return ADF(f, lc_wrt_vars, qc_wrt_vars, cp_wrt_vars)
    
    else:
#        try: # pythonic: fails gracefully when x is not an array-like object
#            return [log10(xi) for xi in x]
#        except TypeError:
        if x.imag:
            return cmath.log10(x)
        else:
            return math.log10(x.real)
コード例 #7
0
ファイル: admath.py プロジェクト: kumarremoa/Goferbot
def log10(x):
    """
    Return the base-10 logarithm of x. This is usually more accurate than 
    ``log(x, 10)``.
    """
    if isinstance(x, ADF):

        ad_funcs = list(map(to_auto_diff, [x]))

        x = ad_funcs[0].x

        ########################################
        # Nominal value of the constructed ADF:
        f = log10(x)

        ########################################

        variables = ad_funcs[0]._get_variables(ad_funcs)

        if not variables or isinstance(f, bool):
            return f

        ########################################

        # Calculation of the derivatives with respect to the arguments
        # of f (ad_funcs):

        lc_wrt_args = [1 / x / log(10)]
        qc_wrt_args = [-1. / x**2 / log(10)]
        cp_wrt_args = 0.0

        ########################################
        # Calculation of the derivative of f with respect to all the
        # variables (Variable) involved.

        lc_wrt_vars, qc_wrt_vars, cp_wrt_vars = _apply_chain_rule(
            ad_funcs, variables, lc_wrt_args, qc_wrt_args, cp_wrt_args)

        # The function now returns an ADF object:
        return ADF(f, lc_wrt_vars, qc_wrt_vars, cp_wrt_vars)

    else:
        #        try: # pythonic: fails gracefully when x is not an array-like object
        #            return [log10(xi) for xi in x]
        #        except TypeError:
        if x.imag:
            return cmath.log10(x)
        else:
            return math.log10(x.real)
コード例 #8
0
ファイル: admath.py プロジェクト: glider-gun/ad
def acos(x):
    """
    Return the arc cosine of x, in radians.
    """
    if isinstance(x,ADF):
        ad_funcs = list(map(to_auto_diff,[x]))

        x = ad_funcs[0].x
        
        ########################################
        # Nominal value of the constructed ADF:
        f = acos(x)
        
        ########################################

        variables = ad_funcs[0]._get_variables(ad_funcs)
        
        if not variables or isinstance(f, bool):
            return f

        ########################################

        # Calculation of the derivatives with respect to the arguments
        # of f (ad_funcs):

        lc_wrt_args = [-1/sqrt(1-x**2)]
        qc_wrt_args = [x/(sqrt(1 - x**2)*(x**2 - 1))]
        cp_wrt_args = 0.0

        ########################################
        # Calculation of the derivative of f with respect to all the
        # variables (Variable) involved.


        lc_wrt_vars,qc_wrt_vars,cp_wrt_vars = _apply_chain_rule(
                                    ad_funcs,variables,lc_wrt_args,qc_wrt_args,
                                    cp_wrt_args)
                                    
        # The function now returns an ADF object:
        return ADF(f, lc_wrt_vars, qc_wrt_vars, cp_wrt_vars)
    else:
#        try: # pythonic: fails gracefully when x is not an array-like object
#            return [acos(xi) for xi in x]
#        except TypeError:
        if x.imag:
            return cmath.acos(x)
        else:
            return math.acos(x.real)
コード例 #9
0
ファイル: admath.py プロジェクト: kumarremoa/Goferbot
def fabs(x):
    """
    Return the absolute value of x.
    """
    if isinstance(x, ADF):
        ad_funcs = list(map(to_auto_diff, [x]))

        x = ad_funcs[0].x

        ########################################
        # Nominal value of the constructed ADF:
        f = fabs(x)

        ########################################

        variables = ad_funcs[0]._get_variables(ad_funcs)

        if not variables or isinstance(f, bool):
            return f

        ########################################

        # Calculation of the derivatives with respect to the arguments
        # of f (ad_funcs):

        # catch the x=0 exception
        try:
            lc_wrt_args = [x / fabs(x)]
            qc_wrt_args = [1 / fabs(x) - (x**2) / fabs(x)**3]
        except ZeroDivisionError:
            lc_wrt_args = [0.0]
            qc_wrt_args = [0.0]

        cp_wrt_args = 0.0

        ########################################
        # Calculation of the derivative of f with respect to all the
        # variables (Variable) involved.
        lc_wrt_vars, qc_wrt_vars, cp_wrt_vars = _apply_chain_rule(
            ad_funcs, variables, lc_wrt_args, qc_wrt_args, cp_wrt_args)

        # The function now returns an ADF object:
        return ADF(f, lc_wrt_vars, qc_wrt_vars, cp_wrt_vars)
    else:
        #        try: # pythonic: fails gracefully when x is not an array-like object
        #            return [fabs(xi) for xi in x]
        #        except TypeError:
        return math.fabs(x)
コード例 #10
0
ファイル: admath.py プロジェクト: kumarremoa/Goferbot
def cosh(x):
    """
    Return the hyperbolic cosine of x.
    """
    if isinstance(x, ADF):
        ad_funcs = list(map(to_auto_diff, [x]))

        x = ad_funcs[0].x

        ########################################
        # Nominal value of the constructed ADF:
        f = cosh(x)

        ########################################

        variables = ad_funcs[0]._get_variables(ad_funcs)

        if not variables or isinstance(f, bool):
            return f

        ########################################

        # Calculation of the derivatives with respect to the arguments
        # of f (ad_funcs):

        lc_wrt_args = [sinh(x)]
        qc_wrt_args = [cosh(x)]
        cp_wrt_args = 0.0

        ########################################
        # Calculation of the derivative of f with respect to all the
        # variables (Variable) involved.

        lc_wrt_vars, qc_wrt_vars, cp_wrt_vars = _apply_chain_rule(
            ad_funcs, variables, lc_wrt_args, qc_wrt_args, cp_wrt_args)

        # The function now returns an ADF object:
        return ADF(f, lc_wrt_vars, qc_wrt_vars, cp_wrt_vars)
    else:
        #        try: # pythonic: fails gracefully when x is not an array-like object
        #            return [cosh(xi) for xi in x]
        #        except TypeError:
        if x.imag:
            return cmath.cosh(x)
        else:
            return math.cosh(x.real)
コード例 #11
0
ファイル: admath.py プロジェクト: glider-gun/ad
def floor(x):
    """
    Return the floor of x as a float, the largest integer value less than or 
    equal to x.
    """
    if isinstance(x,ADF):
        ad_funcs = list(map(to_auto_diff,[x]))

        x = ad_funcs[0].x
        
        ########################################
        # Nominal value of the constructed ADF:
        f = floor(x)
        
        ########################################

        variables = ad_funcs[0]._get_variables(ad_funcs)
        
        if not variables or isinstance(f, bool):
            return f

        ########################################

        # Calculation of the derivatives with respect to the arguments
        # of f (ad_funcs):

        lc_wrt_args = [0.0]
        qc_wrt_args = [0.0]
        cp_wrt_args = 0.0

        ########################################
        # Calculation of the derivative of f with respect to all the
        # variables (Variable) involved.

        lc_wrt_vars,qc_wrt_vars,cp_wrt_vars = _apply_chain_rule(
                                    ad_funcs,variables,lc_wrt_args,qc_wrt_args,
                                    cp_wrt_args)
                                    
        # The function now returns an ADF object:
        return ADF(f, lc_wrt_vars, qc_wrt_vars, cp_wrt_vars)
    else:
#        try: # pythonic: fails gracefully when x is not an array-like object
#            return [floor(xi) for xi in x]
#        except TypeError:
        return math.floor(x)
コード例 #12
0
ファイル: admath.py プロジェクト: glider-gun/ad
def trunc(x):
    """
    Return the **Real** value x truncated to an **Integral** (usually a 
    long integer). Uses the ``__trunc__`` method.
    """
    if isinstance(x,ADF):
        ad_funcs = list(map(to_auto_diff,[x]))

        x = ad_funcs[0].x
        
        ########################################
        # Nominal value of the constructed ADF:
        f = trunc(x)
        
        ########################################

        variables = ad_funcs[0]._get_variables(ad_funcs)
        
        if not variables or isinstance(f, bool):
            return f

        ########################################

        # Calculation of the derivatives with respect to the arguments
        # of f (ad_funcs):

        lc_wrt_args = [0.0]
        qc_wrt_args = [0.0]
        cp_wrt_args = 0.0

        ########################################
        # Calculation of the derivative of f with respect to all the
        # variables (Variable) involved.

        lc_wrt_vars,qc_wrt_vars,cp_wrt_vars = _apply_chain_rule(
                                    ad_funcs,variables,lc_wrt_args,qc_wrt_args,
                                    cp_wrt_args)
                                    
        # The function now returns an ADF object:
        return ADF(f, lc_wrt_vars, qc_wrt_vars, cp_wrt_vars)
    else:
        try: # pythonic: fails gracefully when x is not an array-like object
            return [trunc(xi) for xi in x]
        except TypeError:
            return math.trunc(x)
コード例 #13
0
ファイル: admath.py プロジェクト: glider-gun/ad
def erf(x):
    """
    Return the error function at x.
    """
    if isinstance(x,ADF):
        ad_funcs = list(map(to_auto_diff,[x]))

        x = ad_funcs[0].x
        
        ########################################
        # Nominal value of the constructed ADF:
        f = erf(x)
        
        ########################################

        variables = ad_funcs[0]._get_variables(ad_funcs)
        
        if not variables or isinstance(f, bool):
            return f

        ########################################

        # Calculation of the derivatives with respect to the arguments
        # of f (ad_funcs):

        lc_wrt_args = [2*exp(-x**2)/sqrt(pi)]
        qc_wrt_args = [-4*x*exp(-x**2)/sqrt(pi)]
        cp_wrt_args = 0.0

        ########################################
        # Calculation of the derivative of f with respect to all the
        # variables (Variable) involved.

        lc_wrt_vars,qc_wrt_vars,cp_wrt_vars = _apply_chain_rule(
                                    ad_funcs,variables,lc_wrt_args,qc_wrt_args,
                                    cp_wrt_args)
                                    
        # The function now returns an ADF object:
        return ADF(f, lc_wrt_vars, qc_wrt_vars, cp_wrt_vars)
    else:
#        try: # pythonic: fails gracefully when x is not an array-like object
#            return [erf(xi) for xi in x]
#        except TypeError:
        return math.erf(x)
コード例 #14
0
ファイル: admath.py プロジェクト: kumarremoa/Goferbot
def floor(x):
    """
    Return the floor of x as a float, the largest integer value less than or 
    equal to x.
    """
    if isinstance(x, ADF):
        ad_funcs = list(map(to_auto_diff, [x]))

        x = ad_funcs[0].x

        ########################################
        # Nominal value of the constructed ADF:
        f = floor(x)

        ########################################

        variables = ad_funcs[0]._get_variables(ad_funcs)

        if not variables or isinstance(f, bool):
            return f

        ########################################

        # Calculation of the derivatives with respect to the arguments
        # of f (ad_funcs):

        lc_wrt_args = [0.0]
        qc_wrt_args = [0.0]
        cp_wrt_args = 0.0

        ########################################
        # Calculation of the derivative of f with respect to all the
        # variables (Variable) involved.

        lc_wrt_vars, qc_wrt_vars, cp_wrt_vars = _apply_chain_rule(
            ad_funcs, variables, lc_wrt_args, qc_wrt_args, cp_wrt_args)

        # The function now returns an ADF object:
        return ADF(f, lc_wrt_vars, qc_wrt_vars, cp_wrt_vars)
    else:
        #        try: # pythonic: fails gracefully when x is not an array-like object
        #            return [floor(xi) for xi in x]
        #        except TypeError:
        return math.floor(x)
コード例 #15
0
ファイル: admath.py プロジェクト: kumarremoa/Goferbot
def trunc(x):
    """
    Return the **Real** value x truncated to an **Integral** (usually a 
    long integer). Uses the ``__trunc__`` method.
    """
    if isinstance(x, ADF):
        ad_funcs = list(map(to_auto_diff, [x]))

        x = ad_funcs[0].x

        ########################################
        # Nominal value of the constructed ADF:
        f = trunc(x)

        ########################################

        variables = ad_funcs[0]._get_variables(ad_funcs)

        if not variables or isinstance(f, bool):
            return f

        ########################################

        # Calculation of the derivatives with respect to the arguments
        # of f (ad_funcs):

        lc_wrt_args = [0.0]
        qc_wrt_args = [0.0]
        cp_wrt_args = 0.0

        ########################################
        # Calculation of the derivative of f with respect to all the
        # variables (Variable) involved.

        lc_wrt_vars, qc_wrt_vars, cp_wrt_vars = _apply_chain_rule(
            ad_funcs, variables, lc_wrt_args, qc_wrt_args, cp_wrt_args)

        # The function now returns an ADF object:
        return ADF(f, lc_wrt_vars, qc_wrt_vars, cp_wrt_vars)
    else:
        try:  # pythonic: fails gracefully when x is not an array-like object
            return [trunc(xi) for xi in x]
        except TypeError:
            return math.trunc(x)