コード例 #1
0
    # --------------------------------------------------------------------------
    modeller = PyEMMAAnalysis(pdb_file=pdb_file,
                              source_folder=File('../staging_area/ntl9/trajs'))

    # --------------------------------------------------------------------------
    # CREATE THE SESSION
    #   the instance that runs the simulations on the resource
    # --------------------------------------------------------------------------

    # add the task generating capabilities
    project.register(engine)
    project.register(modeller)

    project.open()

    scheduler = project.get_scheduler(cores=2)
    trajs = project.new_trajectory(pdb_file, 100, 4)

    # submit the trajectories
    scheduler.submit(trajs)

    def task_generator():
        return [engine.run(traj) for traj in project.new_ml_trajectory(100, 2)]

    scheduler.add_event(Event().on(project.on_ntraj(range(
        4, 50, 2))).do(task_generator))

    # todo: change that this will stop when the first event is done
    scheduler.add_event(Event().on(project.on_ntraj(10)).do(
        modeller.task_run_msm).repeat().until(project.on_ntraj(20)))
コード例 #2
0
        args='-r --report-interval 1 --store-interval 1').named('openmm')

    # --------------------------------------------------------------------------
    # CREATE AN ANALYZER
    #   the instance that knows how to compute a msm from the trajectories
    # --------------------------------------------------------------------------

    modeller = PyEMMAAnalysis(pdb_file=pdb_file).named('pyemma')

    project.generators.add(engine)
    project.generators.add(modeller)

    # --------------------------------------------------------------------------
    # CREATE THE CLUSTER
    #   the instance that runs the simulations on the resource
    # --------------------------------------------------------------------------

    scheduler = project.get_scheduler('gpu')
    # print scheduler.rp_resource_name
    # print scheduler.resource.resource

    trajectories = project.new_trajectory(engine['pdb_file'], 100, 4)
    task = engine.run(trajectories)

    scheduler(task)

    scheduler.wait()
    scheduler.exit()

    project.close()
コード例 #3
0
    # CREATE AN ANALYZER
    #   the instance that knows how to compute a msm from the trajectories
    # --------------------------------------------------------------------------

    modeller = PyEMMAAnalysis(pdb_file=pdb_file).named('pyemma')

    project.generators.add(engine)
    project.generators.add(modeller)

    # --------------------------------------------------------------------------
    # CREATE THE CLUSTER
    #   the instance that runs the simulations on the resource
    # --------------------------------------------------------------------------

    gpu_scheduler = [
        project.get_scheduler('gpu', runtime=4 * 24 * 60) for _ in range(4)
    ]
    pyemma_scheduler = project.get_scheduler('cpu',
                                             cores=1,
                                             runtime=4 * 24 * 60)

    # create 4 trajectories
    trajectories = project.new_trajectory(pdb_file, 100, 4)
    gpu_scheduler[0](trajectories)
    gpu_scheduler[0].wait()

    # now start adaptive loop
    def strategy_trajectory(scheduler, loops, num):
        for loop in range(loops):
            trajectories = [
                project.new_ml_trajectory(length=20, number=4)
コード例 #4
0
    # --------------------------------------------------------------------------
    # CREATE AN ANALYZER
    #   the instance that knows how to compute a msm from the trajectories
    # --------------------------------------------------------------------------

    modeller = PyEMMAAnalysis(pdb_file=pdb_file).named('pyemma')

    project.generators.add(engine)
    project.generators.add(modeller)

    # --------------------------------------------------------------------------
    # CREATE THE CLUSTER
    #   the instance that runs the simulations on the resource
    # --------------------------------------------------------------------------

    scheduler = project.get_scheduler('gpu', cores=1, runtime=4 * 24 * 60)

    # create 4 blocks a 4 trajectories
    trajectories = [
        project.new_trajectory(engine['pdb_file'], 100, 4) for _ in range(4)
    ]
    tasks = map(engine.run, trajectories)

    print trajectories

    # submit
    scheduler(tasks)

    scheduler.wait()

    # now start adaptive loop
コード例 #5
0
    # --------------------------------------------------------------------------
    # CREATE AN ANALYZER
    #   the instance that knows how to compute a msm from the trajectories
    # --------------------------------------------------------------------------

    modeller = PyEMMAAnalysis(pdb_file=pdb_file).named('pyemma')

    project.generators.add(engine)
    project.generators.add(modeller)

    # --------------------------------------------------------------------------
    # CREATE THE CLUSTER
    #   the instance that runs the simulations on the resource
    # --------------------------------------------------------------------------

    scheduler1 = project.get_scheduler('cpu', cores=4, runtime=4 * 24 * 60)
    scheduler2 = project.get_scheduler('cpu', cores=16, runtime=4 * 24 * 60)
    scheduler3 = project.get_scheduler('cpu', cores=1, runtime=4 * 24 * 60)

    # create 4 trajectories
    trajectories = project.new_trajectory(pdb_file, 100, 4)
    scheduler1(trajectories)
    scheduler1.wait()

    # now start adaptive loop
    def strategy_trajectory(scheduler, loops):
        for loop in range(loops):
            trajectories = project.new_ml_trajectory(length=20, number=4)
            tasks = scheduler(trajectories)
            yield tasks.is_done()
コード例 #6
0
    # CREATE THE MODELLER
    #   the instance to create msm models
    # --------------------------------------------------------------------------
    modeller = PyEMMAAnalysis(
        pdb_file=pdb_file,
        source_folder=File('../staging_area/ntl9/trajs'))

    # add the task generating capabilities
    project.register(engine)
    project.register(modeller)

    # todo: save the task_generators for later in the project

    with project:
        # lets get the default scheduler from the resource with all the
        scheduler = project.get_scheduler('gpu', cores=4)
        trajs = project.new_trajectory(pdb_file, 100, 4)

        # submit the trajectories
        scheduler.submit(trajs)

        def task_generator():
            return [
                engine.run(traj) for traj in
                scheduler.new_ml_trajectory(100, 2)]

        scheduler.add_event(
            Event()
            .on(scheduler.on_ntraj(range(10, 50, 10)))
            .do(task_generator))