コード例 #1
0
def ditto_plus(cand_,st,ct,d,mdl,cpu=0):
    if cpu ==0:
        cpu = None
    cand = cand_.copy()
    counter = 0
    used = []
    
    while True:
        found = False

        args = ((x,st,ct,d,mdl) for x in cand)

        with mp.Pool(cpu) as pool:
            for i, pattern in enumerate(pool.imap(plus_,args)):
                if pattern:
                    used.append(pattern)
                    counter += i
                    print( f'{round(100*(counter/len(cand_)),2)}%' ,end='\r')
                    ct = add(pattern,ct,d)
                    mdl = mdl_calc(ct,d,st)
                    cand = cand[i+1:]
                    #print(f'Current MDL: {mdl}')
                    found = True
                    break
        if not found:
            print(f'After adding codes:\t\t{mdl}')
            break
    return ct, used
コード例 #2
0
from add_rem import add
from cover import cov_order
from import_data import import_dat
from output_gen import load_dictionary, painter
from pattern_finder import finder

#%%
st, d = import_dat('./output/UNHMCD/UNH_MCD_5y_close.dat')

d_og = d

ct = st.copy()

#index patterns
ct = add(((0, (4, )), (1, (4, ))), ct, d)
ct = add(((0, (4, )), (1, (3, ))), ct, d)
ct = add(((0, (2, )), (1, (4, ))), ct, d)

ct = add(((0, (5, 4)), (1, (4, ))), ct, d)
ct = add(((0, (4, )), (1, (5, 3))), ct, d)
#stock pattens
ct = add(((0, (3, )), (1, (3, ))), ct, d)
ct = add(((0, (3, )), (1, (4, ))), ct, d)

ct = add(((0, (3, )), (1, (2, ))), ct, d)
ct = add(((0, (2, )), (1, (2, ))), ct, d)

patterns = {}
for key, value in ct.items():
    if value[1] > 1:
コード例 #3
0
ct_df['Time'] = [ct_df.iloc[i,1][2] for i in range(len(ct_df))]
del ct_df['value']
ct_df = ct_df.set_index('index')
#Now we sort it based on support
ct_df = ct_df.sort_values('Support')[::-1]


#%%
st, d = import_dat('./output/UNHMCD/UNH_MCD_5y_close.dat')

d_og = d

ct = st.copy()

#this gives 30% coverage of line 0 and 1
ct = add(list(ct_df.index)[0],ct,d)
ct = add(list(ct_df.index)[1],ct,d)
ct = add(list(ct_df.index)[2],ct,d)
ct = add(list(ct_df.index)[3],ct,d)
ct = add(list(ct_df.index)[4],ct,d)
patterns = {}
for key, value in ct.items():
    if value[1]>1:
        patterns[key]=value

ordered_p = cov_order(patterns)



val_d ={}
sign = -100
コード例 #4
0
d = load_dictionary('./output/dowj_5y_close.dict')
ct = {k: v for k, v in d.items() if v[1] > 1}
ct_df = pd.DataFrame.from_dict(ct,
                               orient='index',
                               columns=['Support', 'Length', 'Time'])

#%%
st, d = import_dat('./output/dowj_5y_close.dat')
#%%
d_og = d

ct = st.copy()

#this gives 42% coverage of line 20 and 27`
ct = add(((20, (4, )), (27, (2, ))), ct, d)
ct = add(((20, (3, )), (27, (3, ))), ct, d)
ct = add(((20, (3, )), (27, (2, ))), ct, d)
ct = add(((20, (2, )), (27, (2, ))), ct, d)

patterns = {}
for key, value in ct.items():
    if value[1] > 1:
        patterns[key] = value

ordered_p = cov_order(patterns)

val_d = {}
sign = -100
for x in ordered_p:
    # 'Paint' the dataset with 0's where covered and return p amount
コード例 #5
0
def make_plot():
    # Load the dictionary to see the patterns
    btc_dict = load_dictionary('./bitcoin2016.dict')
    # Remove the singletons
    btc_dict = {k: v for k, v in btc_dict.items() if v[1] > 1}
    # Turn it into a dataframe
    df = pd.DataFrame.from_dict(btc_dict,
                                orient='Index',
                                columns=['Support', 'Length', 'Time'])
    # Sort them by support
    df = df.sort_values(by='Support')[::-1]
    st, d = import_dat('./bitcoin2016.dat')
    ct = st.copy()

    for key in list(df.index[:10]):
        ct = add(key, ct, d)
        #patterns[key]=value

    patterns = {}
    for key, value in ct.items():
        if value[1] > 1:
            patterns[key] = value

    ordered_p = cov_order(patterns)

    val_d = {}
    sign = -100
    for x in ordered_p:
        # 'Paint' the dataset with 0's where covered and return p amount
        d = painter(x, d, sign)
        val_d[sign] = x
        sign *= 2

    d2 = [[val_d[x] if x in val_d else 'None' for x in row] for row in d]
    df2 = pd.read_excel('./bitcoin2016.xlsx')
    df2['Date'] = pd.to_datetime(df2['<DATE>'])
    df2['ToolTipDates'] = df2.Date.map(lambda x: x.strftime("%d %b %y"))

    colors = [
        '#e6194B', '#3cb44b', '#ffe119', '#4363d8', '#f58231', '#42d4f4',
        '#f032e6', '#e6beff', '#9A6324', '#800000', '#000075'
    ]
    P_TO_COLOR = {x: colors[i] for i, x in enumerate(patterns)}
    P_TO_COLOR['None'] = '#f1f1f1'

    for i, x in enumerate(('<OPEN>', '<HIGH>', '<LOW>', '<CLOSE>', '<VOL>')):
        df2[f'pattern{x}'] = [str(x) for x in d2[i]]
        df2[f'color{x}'] = [P_TO_COLOR[x] for x in d2[i]]

    #for every column we generate the line we need
    open_ = xyc(df2, 'Date', 'og<OPEN>', 'color<OPEN>')
    high_ = xyc(df2, 'Date', 'og<HIGH>', 'color<HIGH>')
    low_ = xyc(df2, 'Date', 'og<LOW>', 'color<LOW>')
    close_ = xyc(df2, 'Date', 'og<CLOSE>', 'color<CLOSE>')
    vol_ = xyc(df2, 'Date', 'og<VOL>', 'color<VOL>')

    df2['labOPEN'] = df2['pattern<OPEN>']
    df2['labHIGH'] = df2['pattern<HIGH>']
    df2['labLOW'] = df2['pattern<LOW>']
    df2['labCLOSE'] = df2['pattern<CLOSE>']
    df2['labVOL'] = df2['pattern<VOL>']

    source2 = ColumnDataSource(df2)

    output_file('bitcoindaily.html')

    p = figure(x_axis_type='datetime',
               plot_width=1440,
               plot_height=600,
               title="Bitcoin Stock Price")

    p.circle(x='Date',
             y='og<OPEN>',
             name='open',
             alpha=0,
             source=source2,
             size=3)
    p.circle(x='Date',
             y='og<CLOSE>',
             name='close',
             alpha=0,
             source=source2,
             size=3)

    p.circle(x='Date',
             y='og<HIGH>',
             name='high',
             alpha=0,
             source=source2,
             size=3)

    p.circle(x='Date',
             y='og<LOW>',
             name='low',
             alpha=0,
             source=source2,
             size=3)

    p.multi_line(name='q',
                 xs=open_[0],
                 ys=open_[1],
                 color=open_[2],
                 line_width=3)
    p.multi_line(name='e',
                 xs=high_[0],
                 ys=high_[1],
                 color=high_[2],
                 line_width=3)
    p.multi_line(name='ee',
                 xs=low_[0],
                 ys=low_[1],
                 color=low_[2],
                 line_width=3)
    p.multi_line(name='w',
                 xs=close_[0],
                 ys=close_[1],
                 color=close_[2],
                 line_width=3)
    q = figure(x_range=p.x_range,
               x_axis_type='datetime',
               plot_width=1440,
               plot_height=200,
               title="Stock Volume",
               y_axis_type='linear')

    q.circle(x='Date',
             y='og<VOL>',
             name='VOL',
             alpha=0,
             source=source2,
             size=3)
    p.circle(x='Date',
             y='og<LOW>',
             name='low',
             alpha=0,
             source=source2,
             size=3)

    q.multi_line(name='qw',
                 xs=vol_[0],
                 ys=vol_[1],
                 color=vol_[2],
                 line_width=3)

    p.add_tools(
        HoverTool(names=['low'],
                  mode="vline",
                  line_policy='nearest',
                  point_policy='snap_to_data',
                  tooltips=[
                      ('Date : ', '@ToolTipDates'),
                      ('Low Price : ', '@{og<LOW>}{0.2f}'),
                      ('Low Pattern : ', '@labLOW'),
                      ('High Price : ', '@{og<HIGH>}{0.2f}'),
                      ('High Pattern : ', '@labHIGH'),
                      ('Open Price : ', '@{og<OPEN>}{0.2f}'),
                      ('Open Pattern : ', '@labOPEN'),
                      ('Close Price : ', '@{og<CLOSE>}{0.2f}'),
                      ('Close Pattern : ', '@labCLOSE'),
                  ]))

    p.add_tools(
        HoverTool(names=['open'],
                  mode="vline",
                  line_policy='nearest',
                  point_policy='snap_to_data',
                  tooltips=[
                      ('Name', 'Open'),
                  ]))
    p.add_tools(
        HoverTool(names=['close'],
                  mode="vline",
                  line_policy='nearest',
                  point_policy='snap_to_data',
                  tooltips=[
                      ('Name', 'Close'),
                  ]))

    p.add_tools(
        HoverTool(names=['high'],
                  mode="vline",
                  line_policy='nearest',
                  point_policy='snap_to_data',
                  tooltips=[
                      ('Name', 'High'),
                  ]))
    p.add_tools(
        HoverTool(names=['low'],
                  mode="vline",
                  line_policy='nearest',
                  point_policy='snap_to_data',
                  tooltips=[
                      ('Name', 'Low'),
                  ]))

    q.add_tools(
        HoverTool(names=['VOL'],
                  mode="vline",
                  line_policy='nearest',
                  point_policy='snap_to_data',
                  tooltips=[
                      ('Date : ', '@ToolTipDates'),
                      ('High Price : ', '@{og<VOL>}{0.2f}'),
                      ('High Pattern : ', '@labVOL'),
                  ]))
    show(column(p, q))
コード例 #6
0
def plus_(args):
    
    x,st,ct,d,mdl = args
    if mdl_calc(add(x,ct,d),d,st) < mdl:
        return x
コード例 #7
0
        x.append(row[date])

    xs.append(x)
    ys.append(y)
    return xs, ys, c


# %%
#We now do the usual for making a graph
d_og = d

ct = st.copy()

#this gives 16% coverage of line 1
# and 23% of line 6`
ct = add(((1, (1, )), (6, (1, ))), ct, d)
ct = add(((1, (2, )), (6, (4, ))), ct, d)
ct = add(((1, (5, )), (6, (4, ))), ct, d)
ct = add(((1, (3, )), (6, (3, 3))), ct, d)

patterns = {}
for key, value in ct.items():
    if value[1] > 1:
        patterns[key] = value

ordered_p = cov_order(patterns)

val_d = {}
sign = -100
for x in ordered_p:
    # 'Paint' the dataset with 0's where covered and return p amount