parser.add_argument('-metric', '--metricList', nargs="+", default=None) parser.add_argument('-model', '--modelList', nargs="+", default=None) args = parser.parse_args() ms.set_gpu(args.gpu) visdom_util.CreatePlotter() # init random seed # init_random_seed(10) results = {} pp_main = pretty_plot.PrettyPlot( ratio=0.5, figsize=(5, 4), legend_type="line", yscale="linear", subplots=(1, 1), shareRowLabel=True) for exp_name in args.expList: exp_dict = experiments.get_experiment_dict(args, exp_name) exp_dict["reset_src"] = args.reset_src exp_dict["reset_tgt"] = args.reset_tgt # SET SEED np.random.seed(10) torch.manual_seed(10) torch.cuda.manual_seed_all(10) history = ms.load_history(exp_dict)
if len(history["loss"]) == 0: continue results[history["exp_name"]] = history["loss"][-1] if args.mode == "plot_best": # if history["exp_name_no_lr"] in results: # continue # results[history["exp_name_no_lr"]] = l ncols = len(dList) nrows = 1 if create_plot == False: pp_main = pretty_plot.PrettyPlot(title="Experiment %s" % history["exp_name"], ratio=0.5, legend_type="line", yscale="log", shareRowLabel=False, figsize=(5 * ncols, 4 * 1), subplots=(nrows, ncols)) create_plot = True yx = pd.DataFrame(history["loss"]) y_vals = np.abs(np.array(yx["loss"])) x_vals = yx["epoch"] if args.cut is not None: y_vals = y_vals[:args.cut] x_vals = x_vals[:args.cut] pp_main.add_yxList(y_vals=y_vals, x_vals=x_vals,