def parse_args(): from docopt import docopt args = docopt(__doc__) args = {k.strip("--").replace("-", "_"): v for k, v in args.items()} del args["h"] del args["help"] args = DotDict(args) args.nb_node = int(args.nb_node) args.node_rank = int(args.node_rank) args.nb_proc = int(args.nb_proc) args.master_port = int(args.master_port) if args.resume: args.resume = parse_path(args.resume) return args if args.config: args.config = parse_path(args.config) args.logdir = parse_path(args.logdir) args.nb_env = int(args.nb_env) args.seed = int(args.seed) args.nb_step = int(float(args.nb_step)) args.tag = parse_none(args.tag) args.nb_eval_env = int(args.nb_eval_env) args.summary_freq = int(args.summary_freq) args.lr = float(args.lr) args.epoch_len = int(float(args.epoch_len)) args.profile = bool(args.profile) return args
def parse_args(): from docopt import docopt args = docopt(__doc__) args = {k.strip('--').replace('-', '_'): v for k, v in args.items()} del args['h'] del args['help'] args = DotDict(args) # Ignore other args if resuming if args.resume: args.resume = parse_path(args.resume) return args if args.config: args.config = parse_path(args.config) args.logdir = parse_path(args.logdir) args.gpu_id = int(args.gpu_id) args.nb_env = int(args.nb_env) args.seed = int(args.seed) args.nb_step = int(float(args.nb_step)) args.tag = parse_none(args.tag) args.nb_eval_env = int(args.nb_eval_env) args.summary_freq = int(args.summary_freq) args.lr = float(args.lr) args.warmup = int(float(args.warmup)) args.epoch_len = int(float(args.epoch_len)) args.profile = bool(args.profile) return args
def parse_args(): from docopt import docopt args = docopt(__doc__) args = {k.strip('--').replace('-', '_'): v for k, v in args.items()} del args['h'] del args['help'] args = DotDict(args) # Ignore other args if resuming if args.resume: args.resume = parse_path(args.resume) return args if args.config: args.config = parse_path(args.config) args.logdir = parse_path(args.logdir) args.nb_env = int(args.nb_env) args.seed = int(args.seed) args.nb_step = int(float(args.nb_step)) args.tag = parse_none(args.tag) args.summary_freq = int(args.summary_freq) args.lr = float(args.lr) args.epoch_len = int(float(args.epoch_len)) args.profile = bool(args.profile) args.ray_addr = parse_none(args.ray_addr) args.nb_learners = int(args.nb_learners) args.nb_workers = int(args.nb_workers) args.learner_cpu_alloc = int(args.learner_cpu_alloc) args.learner_gpu_alloc = float(args.learner_gpu_alloc) args.worker_cpu_alloc = int(args.worker_cpu_alloc) args.worker_gpu_alloc = float(args.worker_gpu_alloc) args.nb_learn_batch = int(args.nb_learn_batch) args.rollout_queue_size = int(args.rollout_queue_size) # arg checking assert args.nb_learn_batch <= args.nb_workers, 'WARNING: nb_learn_batch must be <= nb_workers. Got {} <= {}' \ .format(args.nb_learn_batch, args.nb_workers) return args