def main(): args = parser.parse_args() pp = pprint.PrettyPrinter() pp.pprint(vars(args)) # Data filename_queue = get_filename_queue( split_file=os.path.join(args.data_dir, 'splits', args.dataset, args.split + '.lst'), data_dir=os.path.join(args.data_dir, args.dataset)) # test data test_filename_queue = get_filename_queue( split_file=os.path.join(args.data_dir, 'splits', args.dataset, 'test.lst'), data_dir=os.path.join(args.data_dir, args.dataset)) image, label = get_input_cifar10(filename_queue) output_size = 32 c_dim = 3 test_image, test_label = get_input_cifar10(test_filename_queue) image_batch = create_batch([image, label], batch_size=args.batch_size, num_preprocess_threads=16, min_queue_examples=10000) test_image_batch = tf.train.shuffle_batch([test_image, test_label], batch_size=args.batch_size, num_threads=16, capacity=10000 + 3 * args.batch_size, min_after_dequeue=10000) config = vars(args) discriminator = models.get_discriminator(args.d_architecture, scope='discriminator', output_size=output_size, c_dim=args.c_dim, f_dim=args.df_dim, is_training=True) gen_adv_examples(discriminator, args.model_file, image_batch, test_image_batch, config)
def main(): args = parser.parse_args() pp = pprint.PrettyPrinter() pp.pprint(vars(args)) # Test data test_filename_queue = get_filename_queue( split_file=os.path.join(args.data_dir, 'splits', args.dataset, 'test.lst'), data_dir=os.path.join(args.data_dir, args.dataset)) test_image, test_label = get_input_cifar10(test_filename_queue) test_image_batch = tf.train.shuffle_batch([test_image, test_label], batch_size=args.batch_size, num_threads=16, capacity=10000 + 3 * args.batch_size, min_after_dequeue=10000) config = vars(args) discriminator1 = models.get_discriminator(args.d_architecture1, scope='discriminator1', output_size=args.output_size, c_dim=args.c_dim, f_dim=args.df_dim, is_training=True) discriminator2 = models.get_discriminator(args.d_architecture2, scope='discriminator2', output_size=args.output_size, c_dim=args.c_dim, f_dim=args.df_dim, is_training=True) black_box_attacks(discriminator1, discriminator2, args.model_file1, args.model_file2, test_image_batch, config)