def check_rop_lop(self, y, out_shape): """ As check_mat_rop_lop, except the input is self.x which is a vector. The output is still a vector. """ # TEST ROP vx = np.asarray(self.rng.uniform(size=self.in_shape), aesara.config.floatX) vv = np.asarray(self.rng.uniform(size=self.in_shape), aesara.config.floatX) yv = Rop(y, self.x, self.v) rop_f = function([self.x, self.v], yv, on_unused_input="ignore") J, _ = aesara.scan( lambda i, y, x: grad(y[i], x), sequences=aet.arange(y.shape[0]), non_sequences=[y, self.x], ) sy = dot(J, self.v) scan_f = function([self.x, self.v], sy, on_unused_input="ignore") v1 = rop_f(vx, vv) v2 = scan_f(vx, vv) assert np.allclose(v1, v2), f"ROP mismatch: {v1} {v2}" try: Rop( aesara.clone_replace(y, replace={self.x: break_op(self.x)}), self.x, self.v, ) except ValueError: pytest.skip("Rop does not handle non-differentiable inputs " "correctly. Bug exposed by fixing Add.grad method.") vx = np.asarray(self.rng.uniform(size=self.in_shape), aesara.config.floatX) vv = np.asarray(self.rng.uniform(size=out_shape), aesara.config.floatX) yv = Lop(y, self.x, self.v) lop_f = function([self.x, self.v], yv, on_unused_input="ignore") J, _ = aesara.scan( lambda i, y, x: grad(y[i], x), sequences=aet.arange(y.shape[0]), non_sequences=[y, self.x], ) sy = dot(self.v, J) scan_f = function([self.x, self.v], sy) v1 = lop_f(vx, vv) v2 = scan_f(vx, vv) assert np.allclose(v1, v2), f"LOP mismatch: {v1} {v2}"
def check_mat_rop_lop(self, y, out_shape): """ Test the Rop/Lop when input is a matrix and the output is a vector :param y: the output variable of the op applied to self.mx :param out_shape: Used to generate a random tensor corresponding to the evaluation point of the Rop (i.e. the tensor with which you multiply the Jacobian). It should be a tuple of ints. If the Op has more than 1 input, one of them must be mx, while others must be shared variables / constants. We will test only against the input self.mx, so you must call check_mat_rop_lop/check_rop_lop for the other inputs. We expect all inputs/outputs have dtype floatX. If you want to test an Op with an output matrix, add a sum after the Op you want to test. """ vx = np.asarray(self.rng.uniform(size=self.mat_in_shape), aesara.config.floatX) vv = np.asarray(self.rng.uniform(size=self.mat_in_shape), aesara.config.floatX) yv = Rop(y, self.mx, self.mv) rop_f = function([self.mx, self.mv], yv, on_unused_input="ignore") sy, _ = aesara.scan( lambda i, y, x, v: (grad(y[i], x) * v).sum(), sequences=aet.arange(y.shape[0]), non_sequences=[y, self.mx, self.mv], ) scan_f = function([self.mx, self.mv], sy, on_unused_input="ignore") v1 = rop_f(vx, vv) v2 = scan_f(vx, vv) assert np.allclose(v1, v2), f"ROP mismatch: {v1} {v2}" self.check_nondiff_rop( aesara.clone_replace(y, replace={self.mx: break_op(self.mx)})) vv = np.asarray(self.rng.uniform(size=out_shape), aesara.config.floatX) yv = Lop(y, self.mx, self.v) lop_f = function([self.mx, self.v], yv) sy = grad((self.v * y).sum(), self.mx) scan_f = function([self.mx, self.v], sy) v1 = lop_f(vx, vv) v2 = scan_f(vx, vv) assert np.allclose(v1, v2), f"LOP mismatch: {v1} {v2}"
def test_pool2d(): shps = [ (1, 12), (1, 1, 12), (1, 1, 1, 12), (1, 1, 2, 2), (1, 1, 1, 1), (1, 1, 4, 4), (1, 1, 10, 11), (1, 2, 2, 2), (3, 5, 4, 4), (25, 1, 7, 7), (1, 1, 12, 12), (1, 1, 2, 14), (1, 1, 12, 14), (1, 1, 14, 14), (1, 1, 16, 16), (1, 1, 18, 18), (1, 1, 24, 24), (1, 6, 24, 24), (10, 1, 24, 24), (10, 6, 24, 24), (30, 6, 12, 12), (30, 2, 24, 24), (30, 6, 24, 24), (10, 10, 10, 11), (1, 1, 10, 1025), (1, 1, 10, 1023), (1, 1, 1025, 10), (1, 1, 1023, 10), (3, 2, 16, 16, 16), (3, 2, 6, 6, 6, 5), (3, 2, 6, 6, 6, 5, 7), ] np.random.RandomState(utt.fetch_seed()).shuffle(shps) test_ws = (2, 2), (3, 2), (1, 1) test_st = (2, 2), (3, 2), (1, 1) test_mode = ["max", "sum", "average_inc_pad", "average_exc_pad"] ref_mode = copy.copy(mode_without_gpu) ref_mode.check_py_code = False gpu_mode = mode_with_gpu.excluding("cudnn") gpu_mode.check_py_code = False for shp in shps: for mode, ws, st in itertools.product(test_mode, test_ws, test_st): if ws[0] > shp[-2] or ws[1] > shp[-1]: continue for ignore_border, pad in zip((True, False), [(1, 1), (0, 0)]): if pad[0] >= ws[0] or pad[1] >= ws[1]: continue if mode == "average_exc_pad" and (pad[0] > 0 or pad[1] > 0): continue # print('test_pool2d', shp, ws, st, pad, mode, ignore_border) ds_op = Pool(ndim=len(ws), mode=mode, ignore_border=ignore_border) a = aesara.shared(rand(*shp), "a") a_pooled = ds_op(aet.as_tensor_variable(a), ws, st, pad) f = aesara.function([], a_pooled, mode=gpu_mode) f2 = aesara.function([], a_pooled, mode=ref_mode) assert any( [isinstance(node.op, GpuPool) for node in f.maker.fgraph.toposort()] ) assert any( [isinstance(node.op, Pool) for node in f2.maker.fgraph.toposort()] ) assert np.allclose(f(), f2()), (shp, ws, st, pad, mode, ignore_border) a_pooled_grad = grad(a_pooled.sum(), a) g = aesara.function([], a_pooled_grad, mode=gpu_mode) g2 = aesara.function([], a_pooled_grad, mode=ref_mode) if mode == "max": gop = GpuMaxPoolGrad gop2 = MaxPoolGrad else: gop = GpuAveragePoolGrad gop2 = AveragePoolGrad assert any( [isinstance(node.op, gop) for node in g.maker.fgraph.toposort()] ) assert any( [isinstance(node.op, gop2) for node in g2.maker.fgraph.toposort()] ) assert np.allclose(g(), g2()), (shp, ws, st, pad, mode, ignore_border) # test rop and grad grad for max pooling # for average pooling grad grad is just average pooling grad if mode != "max": continue ea = aesara.shared(rand(*shp), "ea") gr = aesara.function([], Rop(a_pooled, a, ea), mode=gpu_mode) gr2 = aesara.function([], Rop(a_pooled, a, ea), mode=ref_mode) assert any( [ isinstance(node.op, GpuDownsampleFactorMaxGradGrad) for node in gr.maker.fgraph.toposort() ] ) assert any( [ isinstance(node.op, DownsampleFactorMaxGradGrad) for node in gr2.maker.fgraph.toposort() ] ) assert np.allclose(gr(), gr2()), (shp, ws, st, pad, mode, ignore_border) ggf = Lop(grad((a_pooled ** 2).sum(), a), a, a) gg = aesara.function([], ggf, mode=gpu_mode) gg2 = aesara.function([], ggf, mode=ref_mode) assert any( [ isinstance(node.op, GpuDownsampleFactorMaxGradGrad) for node in gg.maker.fgraph.toposort() ] ) assert any( [ isinstance(node.op, DownsampleFactorMaxGradGrad) for node in gg2.maker.fgraph.toposort() ] ) assert np.allclose(gg(), gg2()), (shp, ws, st, pad, mode, ignore_border)