def hard_sigmoid(x): """ An approximation of sigmoid. More approximate and faster than ultra_fast_sigmoid. Approx in 3 parts: 0, scaled linear, 1. Removing the slope and shift does not make it faster. """ # Use the same dtype as determined by "upgrade_to_float", # and perform computation in that dtype. out_dtype = aes.upgrade_to_float(aes.Scalar(dtype=x.dtype))[0].dtype slope = constant(0.2, dtype=out_dtype) shift = constant(0.5, dtype=out_dtype) x = (x * slope) + shift x = clip(x, 0, 1) return x
def test_jax_basic(): rng = np.random.default_rng(28494) x = matrix("x") y = matrix("y") b = vector("b") # `ScalarOp` z = cosh(x**2 + y / 3.0) # `[Inc]Subtensor` out = aet_subtensor.set_subtensor(z[0], -10.0) out = aet_subtensor.inc_subtensor(out[0, 1], 2.0) out = out[:5, :3] out_fg = FunctionGraph([x, y], [out]) test_input_vals = [ np.tile(np.arange(10), (10, 1)).astype(config.floatX), np.tile(np.arange(10, 20), (10, 1)).astype(config.floatX), ] (jax_res, ) = compare_jax_and_py(out_fg, test_input_vals) # Confirm that the `Subtensor` slice operations are correct assert jax_res.shape == (5, 3) # Confirm that the `IncSubtensor` operations are correct assert jax_res[0, 0] == -10.0 assert jax_res[0, 1] == -8.0 out = clip(x, y, 5) out_fg = FunctionGraph([x, y], [out]) compare_jax_and_py(out_fg, test_input_vals) out = aet.diagonal(x, 0) out_fg = FunctionGraph([x], [out]) compare_jax_and_py( out_fg, [np.arange(10 * 10).reshape((10, 10)).astype(config.floatX)]) out = aet_slinalg.cholesky(x) out_fg = FunctionGraph([x], [out]) compare_jax_and_py( out_fg, [(np.eye(10) + rng.standard_normal(size=(10, 10)) * 0.01).astype( config.floatX)], ) # not sure why this isn't working yet with lower=False out = aet_slinalg.Cholesky(lower=False)(x) out_fg = FunctionGraph([x], [out]) compare_jax_and_py( out_fg, [(np.eye(10) + rng.standard_normal(size=(10, 10)) * 0.01).astype( config.floatX)], ) out = aet_slinalg.solve(x, b) out_fg = FunctionGraph([x, b], [out]) compare_jax_and_py( out_fg, [ np.eye(10).astype(config.floatX), np.arange(10).astype(config.floatX), ], ) out = aet.diag(b) out_fg = FunctionGraph([b], [out]) compare_jax_and_py(out_fg, [np.arange(10).astype(config.floatX)]) out = aet_nlinalg.det(x) out_fg = FunctionGraph([x], [out]) compare_jax_and_py( out_fg, [np.arange(10 * 10).reshape((10, 10)).astype(config.floatX)]) out = aet_nlinalg.matrix_inverse(x) out_fg = FunctionGraph([x], [out]) compare_jax_and_py( out_fg, [(np.eye(10) + rng.standard_normal(size=(10, 10)) * 0.01).astype( config.floatX)], )