コード例 #1
0
ファイル: sigm.py プロジェクト: Sayam753/Theano-PyMC
def hard_sigmoid(x):
    """
    An approximation of sigmoid.

    More approximate and faster than ultra_fast_sigmoid.

    Approx in 3 parts: 0, scaled linear, 1.

    Removing the slope and shift does not make it faster.

    """
    # Use the same dtype as determined by "upgrade_to_float",
    # and perform computation in that dtype.
    out_dtype = aes.upgrade_to_float(aes.Scalar(dtype=x.dtype))[0].dtype
    slope = constant(0.2, dtype=out_dtype)
    shift = constant(0.5, dtype=out_dtype)
    x = (x * slope) + shift
    x = clip(x, 0, 1)
    return x
コード例 #2
0
def test_jax_basic():
    rng = np.random.default_rng(28494)

    x = matrix("x")
    y = matrix("y")
    b = vector("b")

    # `ScalarOp`
    z = cosh(x**2 + y / 3.0)

    # `[Inc]Subtensor`
    out = aet_subtensor.set_subtensor(z[0], -10.0)
    out = aet_subtensor.inc_subtensor(out[0, 1], 2.0)
    out = out[:5, :3]

    out_fg = FunctionGraph([x, y], [out])

    test_input_vals = [
        np.tile(np.arange(10), (10, 1)).astype(config.floatX),
        np.tile(np.arange(10, 20), (10, 1)).astype(config.floatX),
    ]
    (jax_res, ) = compare_jax_and_py(out_fg, test_input_vals)

    # Confirm that the `Subtensor` slice operations are correct
    assert jax_res.shape == (5, 3)

    # Confirm that the `IncSubtensor` operations are correct
    assert jax_res[0, 0] == -10.0
    assert jax_res[0, 1] == -8.0

    out = clip(x, y, 5)
    out_fg = FunctionGraph([x, y], [out])
    compare_jax_and_py(out_fg, test_input_vals)

    out = aet.diagonal(x, 0)
    out_fg = FunctionGraph([x], [out])
    compare_jax_and_py(
        out_fg, [np.arange(10 * 10).reshape((10, 10)).astype(config.floatX)])

    out = aet_slinalg.cholesky(x)
    out_fg = FunctionGraph([x], [out])
    compare_jax_and_py(
        out_fg,
        [(np.eye(10) + rng.standard_normal(size=(10, 10)) * 0.01).astype(
            config.floatX)],
    )

    # not sure why this isn't working yet with lower=False
    out = aet_slinalg.Cholesky(lower=False)(x)
    out_fg = FunctionGraph([x], [out])
    compare_jax_and_py(
        out_fg,
        [(np.eye(10) + rng.standard_normal(size=(10, 10)) * 0.01).astype(
            config.floatX)],
    )

    out = aet_slinalg.solve(x, b)
    out_fg = FunctionGraph([x, b], [out])
    compare_jax_and_py(
        out_fg,
        [
            np.eye(10).astype(config.floatX),
            np.arange(10).astype(config.floatX),
        ],
    )

    out = aet.diag(b)
    out_fg = FunctionGraph([b], [out])
    compare_jax_and_py(out_fg, [np.arange(10).astype(config.floatX)])

    out = aet_nlinalg.det(x)
    out_fg = FunctionGraph([x], [out])
    compare_jax_and_py(
        out_fg, [np.arange(10 * 10).reshape((10, 10)).astype(config.floatX)])

    out = aet_nlinalg.matrix_inverse(x)
    out_fg = FunctionGraph([x], [out])
    compare_jax_and_py(
        out_fg,
        [(np.eye(10) + rng.standard_normal(size=(10, 10)) * 0.01).astype(
            config.floatX)],
    )