コード例 #1
0
    def test_random_integers_vector(self):
        random = RandomStreams(utt.fetch_seed())
        low = tensor.lvector()
        high = tensor.lvector()
        out = random.random_integers(low=low, high=high)
        assert out.ndim == 1
        f = function([low, high], out)

        low_val = [100, 200, 300]
        high_val = [110, 220, 330]
        seed_gen = np.random.RandomState(utt.fetch_seed())
        numpy_rng = np.random.RandomState(int(seed_gen.randint(2**30)))

        # Arguments of size (3,)
        val0 = f(low_val, high_val)
        numpy_val0 = np.asarray([
            numpy_rng.randint(low=lv, high=hv + 1)
            for lv, hv in zip(low_val, high_val)
        ])
        assert np.all(val0 == numpy_val0)

        # arguments of size (2,)
        val1 = f(low_val[:-1], high_val[:-1])
        numpy_val1 = np.asarray([
            numpy_rng.randint(low=lv, high=hv + 1)
            for lv, hv in zip(low_val[:-1], high_val[:-1])
        ])
        assert np.all(val1 == numpy_val1)

        # Specifying the size explicitly
        g = function([low, high],
                     random.random_integers(low=low, high=high, size=(3, )))
        val2 = g(low_val, high_val)
        numpy_rng = np.random.RandomState(int(seed_gen.randint(2**30)))
        numpy_val2 = np.asarray([
            numpy_rng.randint(low=lv, high=hv + 1)
            for lv, hv in zip(low_val, high_val)
        ])
        assert np.all(val2 == numpy_val2)
        with pytest.raises(ValueError):
            g(low_val[:-1], high_val[:-1])
コード例 #2
0
    def test_dtype(self):
        random = RandomStreams(utt.fetch_seed())
        low = tensor.lscalar()
        high = tensor.lscalar()
        out = random.random_integers(low=low,
                                     high=high,
                                     size=(20, ),
                                     dtype="int8")
        assert out.dtype == "int8"
        f = function([low, high], out)

        val0 = f(0, 9)
        assert val0.dtype == "int8"

        val1 = f(255, 257)
        assert val1.dtype == "int8"
        assert np.all(abs(val1) <= 1)
コード例 #3
0
    def test_random_integers(self):
        # Test that RandomStreams.random_integers generates the same
        # results as numpy.  We use randint() for numpy since
        # random_integers() is deprecated.

        # Check over two calls to see if the random state is correctly updated.
        random = RandomStreams(utt.fetch_seed())
        fn = function([], random.random_integers((20, 20), -5, 5))
        fn_val0 = fn()
        fn_val1 = fn()

        rng_seed = np.random.RandomState(utt.fetch_seed()).randint(2**30)
        rng = np.random.RandomState(int(rng_seed))  # int() is for 32bit
        numpy_val0 = rng.randint(-5, 6, size=(20, 20))
        numpy_val1 = rng.randint(-5, 6, size=(20, 20))

        assert np.all(fn_val0 == numpy_val0)
        assert np.all(fn_val1 == numpy_val1)